首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
There has been a great deal of scientific interest recently generated by the potential therapeutic applications of adult stem cells in human care but there are several challenges regarding quality and safety in clinical applications and a number of these challenges relate to the processing and banking of these cells ex-vivo. As the number of clinical trials and the variety of adult cells used in regenerative therapy increases, safety remains a primary concern. This has inspired many nations to formulate guidelines and standards for the quality of stem cell collection, processing, testing, banking, packaging and distribution. Clinically applicable cryopreservation and banking of adult stem cells offers unique opportunities to advance the potential uses and widespread implementation of these cells in clinical applications. Most current cryopreservation protocols include animal serum proteins and potentially toxic cryoprotectant additives (CPAs) that prevent direct use of these cells in human therapeutic applications. Long term cryopreservation of adult stem cells under good manufacturing conditions using animal product free solutions is critical to the widespread clinical implementation of ex-vivo adult stem cell therapies. Furthermore, to avoid any potential cryoprotectant related complications, reduced CPA concentrations and efficient post-thaw washing to remove CPA are also desirable. The present review focuses on the current strategies and important aspects of adult stem cell banking for clinical applications. These include current good manufacturing practices (cGMPs), animal protein free freezing solutions, cryoprotectants, freezing & thawing protocols, viability assays, packaging and distribution. The importance and benefits of banking clinical grade adult stem cells are also discussed.  相似文献   

2.
The field of tissue engineering is emerging as a multidisciplinary area with promising potential for regenerating new tissues and organs. This approach requires the involvement of three essential components: stem cells, scaffolds and growth factors. To date, dental pulp stem cells have received special attention because they represent a readily accessible source of stem cells. Their high plasticity and multipotential capacity to differentiate into a large array of tissues can be explained by its neural crest origin, which supports applications beyond the scope of oral tissues. Many isolation, culture and cryopreservation protocols have been proposed that are known to affect cell phenotype, proliferation rate and differentiation capacity. The clinical applications of therapies based on dental pulp stem cells demand the development of new biomaterials suitable for regenerative purposes that can act as scaffolds to handle, carry and implant stem cells into patients. Currently, the development of xeno-free culture media is emerging as a means of standardization to improve safe and reproducibility. The present review aims to describe the current knowledge of dental pulp stem cells, considering in depth the key aspects related to the characterization, establishment, maintenance and cryopreservation of primary cultures and their involvement in the multilineage differentiation potential. The main clinical applications for these stem cells and their combination with several biomaterials is also covered.  相似文献   

3.
Dental follicle tissue is a promising resource of mesenchymal stem cells for cytotherapeutic approaches and tissue engineering applications. There are two procedures for banking of human dental follicle stem cells have been reported. Conventional method requires cell isolation, expansion and immediate cryopreservation. Whereas dental follicle stem cells can be isolated from cryopreserved dental follicle fragments. The aim of this study was to compare the characteristics of dental follicle cells isolated from cryopreserved fragments (DFCs-CF) with dental follicle cells recovered from cryopreserved cells (DFCs-CC). Dental follicle fragments obtained after mechanical disaggregation were divided into two parts, with one part maintained in culture, while another part underwent cryopreservation. Dental follicle fragments and dental follicle cells from fresh tissue were stored in liquid nitrogen for 3 months. After thawing, the isolation, morphology, proliferation, cell cycle, colony-forming-unit ability, stemness-related marker expression, apoptosis, and multi-lineage differentiation potential of DFCs-CF were tested compared with DFCs-CC. DFCs-CF expressed mesenchymal stem cells marker, proliferated well, showed similar levels of mRNA for stemness- and apoptosis-related genes and exhibited the capacity of multi-lineage differentiation similar to those of DFCs-CC. These results imply that cryopreservation of dental follicle fragments is an effective banking method for isolation of dental follicle cells.  相似文献   

4.
Since dental pulp stem cells (DPSCs) were first reported, six types of dental SCs (DSCs) have been isolated and identified. DSCs originating from the craniofacial neural crest exhibit dental-like tissue differentiation potential and neuro-ectodermal features. As a member of DSCs, dental follicle SCs (DFSCs) are the only cell type obtained at the early developing stage of the tooth prior to eruption. Dental follicle tissue has the distinct advantage of large tissue volume compared with other dental tissues, which is a prerequisite for obtaining a sufficient number of cells to meet the needs of clinical applications. Furthermore, DFSCs exhibit a significantly higher cell proliferation rate, higher colony-formation capacity, and more primitive and better anti-inflammatory effects than other DSCs. In this respect, DFSCs have the potential to be of great clinical significance and translational value in oral and neurological diseases, with natural advantages based on their origin. Lastly, cryopreservation preserves the biological properties of DFSCs and enables them to be used as off-shelf products for clinical applications. This review summarizes and comments on the properties, application potential, and clinical transformation value of DFSCs, thereby inspiring novel perspectives in the future treatment of oral and neurological diseases.  相似文献   

5.
The field of stem-cell biology has emerged as a key technology for the treatment of various disorders and tissue regeneration applications. However, a major problem remains in clinical practice, which is the question of whether stem cells preserve their self-renewal and differentiation potential in the culture conditions or not. In the current study, effects of boron on the cryopreservation of human tooth germ stem cells (hTGSCs) were evaluated for the first time. The impacts of various boron concentrations (sodium pentaborate pentahydrate (NaB)) were tested on characterized hTGSCs viability for different time intervals (24, 48, and 72 h). 20 μg/ml NaB with lower Me2SO concentration was found to display positive effects on hTGSCs during repeated freezing and defrosting cycles, and long-term cryopreservation. After thawing, cells were analyzed for their surface antigens and differentiation capacity. hTGSCs were successfully cryopreserved without any change in their mesenchymal stem cell characteristics as they were treated with boron containing freezing medium. In addition, fatty acid composition was examined to demonstrate membrane fatty acid profiles after freeze-thawing. Besides, NaB treatment extended osteogenic and chondrogenic differentiation of hTGSCs remarkably after long-term cryopreservation with respect to control groups. The study clearly suggests that NaB has a protective role on the survival of hTGSCs in short- and long-term cryopreservation. Due to the possible storage of hTGSCs at early ages, development of a functional and reliable cryopreservation media can be designed as a future solution to the dental stem cell banking.  相似文献   

6.
For nearly 20 years, dental stem cells (DSCs) have been successfully isolated from mature/immature teeth and surrounding tissue, including dental pulp of permanent teeth and exfoliated deciduous teeth, periodontal ligaments, dental follicles, and gingival and apical papilla. They have several properties (such as self-renewal, multidirectional differentiation, and immunomodulation) and exhibit enormous potential for clinical applications. To date, many clinical articles and clinical trials using DSCs have reported the treatment of pulpitis, periapical lesions, periodontitis, cleft lip and palate, acute ischemic stroke, and so on, and DSC-based therapies obtained satisfactory effects in most clinical trials. In these studies, no adverse events were reported, which suggested the safety of DSC-based therapy. In this review, we outline the characteristics of DSCs and summarize clinical trials and their safety as DSC-based therapies. Meanwhile, we also present the current limitations and perspectives of DSC-based therapy (such as harvesting DSCs from inflamed tissue, applying DSC-conditioned medium/DSC-derived extracellular vesicles, and expanding-free strategies) to provide a theoretical basis for their clinical applications.  相似文献   

7.
Abstract

Successful and efficient cryopreservation of living cells and organs is a key clinical application of regenerative medicine. Recently, magnetic cryopreservation has been reported for intact tooth banking and cryopreservation of dental tissue. The aim of this study was to assess the cryoprotective effects of static magnetic fields (SMFs) on human dental pulp stem cells (DPSCs) during cryopreservation. Human DPSCs isolated from extracted teeth were frozen with a 0.4-T or 0.8-T SMF and then stored at ?196?°C for 24?h. During freezing, the cells were suspended in freezing media containing with 0, 3 or 10% DMSO. After thawing, the changes in survival rate of the DPSCs were determined by flow cytometry. To understand the possible cryoprotective mechanisms of the SMF, the membrane fluidity of SMF-exposed DPSCs was tested. The results showed that when the freezing medium was DMSO-free, the survival rates of the thawed DPSCs increased 2- or 2.5-fold when the cells were exposed to 0.4-T or 0.8-T SMFs, respectively (p?<?0.01). In addition, after exposure to the 0.4-T SMF, the fluorescence anisotropy of the DPSCs increased significantly (p?<?0.01) in the hydrophilic region. These results show that SMF exposure improved DMSO-free cryopreservation. This phenomenon may be due to the improvement of membrane stability for resisting damage caused by ice crystals during the freezing procedure.  相似文献   

8.
Dental pulp is a promising source of mesenchymal stem cells with the potential for cell-mediated therapies and tissue engineering applications. We recently reported that isolation of dental pulp-derived stem cells (DPSC) is feasible for at least 120 h after tooth extraction, and that cryopreservation of early passage cultured DPSC leads to high-efficiency recovery post-thaw. This study investigated additional processing and cryobiological characteristics of DPSC, ending with development of procedures for banking. First, we aimed to optimize cryopreservation of established DPSC cultures, with regards to optimizing the cryoprotective agent (CPA), the CPA concentration, the concentration of cells frozen, and storage temperatures. Secondly, we focused on determining cryopreservation characteristics of enzymatically digested tissue as a cell suspension. Lastly, we evaluated the growth, surface markers and differentiation properties of DPSC obtained from intact teeth and undigested, whole dental tissue frozen and thawed using the optimized procedures. In these experiments it was determined that Me2SO at a concentration between 1 and 1.5 M was the ideal cryopreservative of the three studied. It was also determined that DPSC viability after cryopreservation is not limited by the concentration of cells frozen, at least up to 2 × 106 cells/mL. It was further established that DPSC can be stored at −85 °C or −196 °C for at least six months without loss of functionality. The optimal results with the least manipulation were achieved by isolating and cryopreserving the tooth pulp tissues, with digestion and culture performed post-thaw. A recovery of cells from >85% of the tissues frozen was achieved and cells isolated post-thaw from tissue processed and frozen with a serum free, defined cryopreservation medium maintained morphological and developmental competence and demonstrated MSC-hallmark trilineage differentiation under the appropriate culture conditions.  相似文献   

9.
Adipose‐derived stem cells (ADSCs) are a subset of mesenchymal stem cells (MSCs) that possess many of the same regenerative properties as other MSCs. However, the ubiquitous presence of ADSCs and their ease of access in human tissue have led to a burgeoning field of research. The plastic surgeon is uniquely positioned to harness this technology because of the relative frequency in which they perform procedures such as liposuction and autologous fat grafting. This review examines the current landscape of ADSC isolation and identification, summarizes the current applications of ADSCs in the field of plastic surgery, discusses the risks associated with their use, current barriers to universal clinical translatability, and surveys the latest research which may help to overcome these obstacles.  相似文献   

10.
Mesenchymal stromal/stem cells (MSCs) are currently applied in regenerative medicine and tissue engineering. Numerous clinical studies have indicated that MSCs from different tissue sources can provide therapeutic benefits for patients. MSCs derived from either human adult or perinatal tissues have their own unique advantages in their medical practices. Usually, clinical studies are conducted by using of cultured MSCs after thawing or short-term cryopreserved-then-thawed MSCs prior to administration for the treatment of a wide range of diseases and medical disorders. Currently, cryogenically banking perinatal MSCs for potential personalized medicine for later use in lifetime has raised growing interest in China as well as in many other countries. Meanwhile, this has led to questions regarding the availability, stability, consistency, multipotency, and therapeutic efficiency of the potential perinatal MSC-derived therapeutic products after long-term cryostorage. This opinion review does not minimize any therapeutic benefit of perinatal MSCs in many diseases after short-term cryopreservation. This article mainly describes what is known about banking perinatal MSCs in China and, importantly, it is to recognize the limitation and uncertainty of the perinatal MSCs stored in cryobanks for stem cell medical treatments in whole life. This article also provides several recommendations for banking of perinatal MSCs for potentially future personalized medicine, albeit it is impossible to anticipate whether the donor will benefit from banked MSCs during her/his lifetime.  相似文献   

11.
Magnetic resonance imaging (MRI) provides an effective approach to track labeled pluripotent stem cell (PSC)‐derived neural progenitor cells (NPCs) for neurological disorder treatments after cell labeling with a contrast agent, such as an iron oxide derivative. Cryopreservation of pre‐labeled neural cells, especially in three‐dimensional (3D) structure, can provide a uniform cell population and preserve the stem cell niche for the subsequent applications. In this study, the effects of cryopreservation on PSC‐derived multicellular NPC aggregates labeled with micron‐sized particles of iron oxide (MPIO) were investigated. These NPC aggregates were labeled prior to cryopreservation because labeling thawed cells can be limited by inefficient intracellular uptake, variations in labeling efficiency, and increased culture time before use, minimizing their translation to clinical settings. The results indicated that intracellular MPIO incorporation was retained after cryopreservation (70–80% labeling efficiency), and MPIO labeling had little adverse effects on cell recovery, proliferation, cytotoxicity and neural lineage commitment post‐cryopreservation. MRI analysis showed comparable detectability for the MPIO‐labeled cells before and after cryopreservation indicated by T2 and T2* relaxation rates. Cryopreserving MPIO‐labeled 3D multicellular NPC aggregates can be applied in in vivo cell tracking studies and lead to more rapid translation from preservation to clinical implementation. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:510–521, 2015  相似文献   

12.
脂肪组织几乎遍布于动物体全身,在整个生命过程中有极强的可塑性. 近年研究表明,运用相似的分离方法,可从人、小鼠、大鼠、兔和猪等物种脂肪组织中分离获得脂肪间充质干细胞. 与骨髓来源的间充质干细胞相比,它具有相似的表面标记和分化潜能;在合适的诱导条件下,这种细胞能分别向3个胚层的细胞分化,如成肌细胞、心肌细胞、软骨细胞、成骨细胞、脂肪细胞、神经细胞、血管内皮细胞和肝细胞等;脂肪间充质干细胞具有来源丰富,取材安全方便和扩增速率高的特点,使其在细胞治疗和组织工程方面具有更广阔的应用前景.  相似文献   

13.
Since their derivation, human embryonic stem (hES) cells have been used for a variety of applications including developmental biology, pathology, chemical biology, genomics, and proteomics. However, their most important potential application is the generation of cells and tissues, which can be used for cell‐based therapies. One of the main drawbacks of hES cell culture is that they are particularly sensitive to dissociation, which is required for passaging, expansion, cryopreservation, and other applications. Recently, it has been discovered that an inhibitor of Rho kinase (ROCKi; Y‐27632) increases the survival rate of dissociated, single hES cells. This breakthrough has allowed new methods in hES cell culture to be developed, with the promise of increasing hES cell numbers into the realm of clinical relevance. In our studies demonstrating that ROCKi dramatically increases hES cell cryopreservation efficiency, we have observed that ROCKi treatment does not decrease hES cell's susceptibility to apoptosis. Rather, we hypothesize that ROCKi treatment desensitizes single hES cells to their environment reducing the odds that individual cells will undergo anoikis.  相似文献   

14.
Cryopreservation of testicular tissue before cancer therapy for fertility preservation in prepubertal boys with cancer is of great interest in reproductive medicine. Isolation of spermatogonial stem cells (SSCs) from cryopreserved tissues would be a suitable cell source to re-establish spermatogenesis after cancer therapy. We herein establish optimized protocols for cryopreservation of human testicular tissue and isolation of SSCs from cryopreserved tissue. We developed a freezing protocol that provided high testicular cell viability and supported structural integrity and tubular epithelium coherence similar to fresh tissue. Then, we established a protocol that allowed efficient isolation of functional SSCs from cryopreserved tissues. Isolated cells were found on the testicular basement membrane after xenotransplantation. Our results demonstrated the preservation of testicular tissue structure and high cell viability with efficient isolation of SSCs after testicular cryopreservation, which is promising for future therapeutic applications in fertility preservation.  相似文献   

15.
Mesenchymal stem cells (MSCs) have received significant attention in recent years due to their large potential for cell therapy. Indeed, they secrete a wide variety of immunomodulatory factors of interest for the treatment of immune-related disorders and inflammatory diseases. MSCs can be extracted from multiple tissues of the human body. However, several factors may restrict their use for clinical applications: the requirement of invasive procedures for their isolation, their limited numbers, and their heterogeneity according to the tissue of origin or donor. In addition, MSCs often present early signs of replicative senescence limiting their expansion in vitro, and their therapeutic capacity in vivo. Due to the clinical potential of MSCs, a considerable number of methods to differentiate induced pluripotent stem cells (iPSCs) into MSCs have emerged. iPSCs represent a new reliable, unlimited source to generate MSCs (MSCs derived from iPSC, iMSCs) from homogeneous and well-characterized cell lines, which would relieve many of the above mentioned technical and biological limitations. Additionally, the use of iPSCs prevents some of the ethical concerns surrounding the use of human embryonic stem cells. In this review, we analyze the main current protocols used to differentiate human iPSCs into MSCs, which we classify into five different categories: MSC Switch, Embryoid Body Formation, Specific Differentiation, Pathway Inhibitor, and Platelet Lysate. We also evaluate common and method-specific culture components and provide a list of positive and negative markers for MSC characterization. Further guidance on material requirements to produce iMSCs with these methods and on the phenotypic features of the iMSCs obtained is added. The information may help researchers identify protocol options to design and/or refine standardized procedures for large-scale production of iMSCs fitting clinical demands.  相似文献   

16.
Over the past two decades, regenerative therapies using stem cell technologies have been developed for various neurological diseases. Although stem cell therapy is an attractive option to reverse neural tissue damage and to recover neurological deficits, it is still under development so as not to show significant treatment effects in clinical settings. In this review, we discuss the scientific and clinical basics of adult neural stem cells (aNSCs), and their current developmental status as cell therapeutics for neurological disease. Compared with other types of stem cells, aNSCs have clinical advantages, such as limited proliferation, inborn differentiation potential into functional neural cells, and no ethical issues. In spite of the merits of aNSCs, difficulties in the isolation from the normal brain, and in the in vitro expansion, have blocked preclinical and clinical study using aNSCs. However, several groups have recently developed novel techniques to isolate and expand aNSCs from normal adult brains, and showed successful applications of aNSCs to neurological diseases. With new technologies for aNSCs and their clinical strengths, previous hurdles in stem cell therapies for neurological diseases could be overcome, to realize clinically efficacious regenerative stem cell therapeutics.  相似文献   

17.
Despite a vast amount of different methods, protocols and cryoprotective agents (CPA), stem cells are often frozen using standard protocols that have been optimized for use with cell lines, rather than with stem cells. Relatively few comparative studies have been performed to assess the effects of cryopreservation methods on these stem cells. Dimethyl sulfoxide (DMSO) has been a key agent for the development of cryobiology and has been used universally for cryopreservation. However, the use of DMSO has been associated with in vitro and in vivo toxicity and has been shown to affect many cellular processes due to changes in DNA methylation and dysregulation of gene expression. Despite studies showing that DMSO may affect cell characteristics, DMSO remains the CPA of choice, both in a research setting and in the clinics. However, numerous alternatives to DMSO have been shown to hold promise for use as a CPA and include albumin, trehalose, sucrose, ethylene glycol, polyethylene glycol and many more. Here, we will discuss the use, advantages and disadvantages of these CPAs for cryopreservation of different types of stem cells, including hematopoietic stem cells, mesenchymal stromal/stem cells and induced pluripotent stem cells.  相似文献   

18.
Human multipotent dermal stem cells (DSCs) have been isolated and propagated from the dermal region of neonatal foreskin. DSCs can self-renew, express the neural crest stem cell markers NGFRp75 and nestin, and are capable of differentiating into a wide variety of cell types including mesenchymal and neuronal lineages and melanocytes, indicative of their neural crest origin. When placed in the context of reconstructed skin, DSCs migrate to the basement membrane zone and differentiate into melanocytes. These findings, combined with the identification of NGFRp75-positive cells in the dermis of human foreskin, which are devoid of hair, suggest that DSCs may be a self-renewing source of extrafollicular epidermal melanocytes. In this review, we discuss the properties of DSCs, the pathways required for melanocyte differentiation, and the value of 3D reconstructed skin to assess the behavior and contribution of DSCs in the naturalized environment of human skin. Potentially, DSCs provide a link to malignant melanoma by being a target of UVA-induced transformation.  相似文献   

19.
骨髓移植是目前治疗恶性白血病以及遗传性血液病最有效的方法之一。但是HLA相匹配的骨髓捐献者严重短缺,骨髓造血干细胞(hematopoietic stem cells,HSCs)体外培养困难,在体外修复患者骨髓造血干细胞技术不成熟,这些都大大限制了骨髓移植在临床上的应用。多能性胚胎干细胞(embryonic stem cells,ESCs)具有自我更新能力,在合适的培养条件下分化形成各种血系细胞,是造血干细胞的另一来源。在过去的二十多年里,血发生的研究是干细胞生物学中最为活跃的领域之一。小鼠及人的胚胎干细胞方面的研究最近取得了重大进展。这篇综述总结了近年来从胚胎干细胞获得造血干细胞的成就,以及在安全和技术上的障碍。胚胎干细胞诱导生成可移植性血干细胞的研究能够使我们更好地了解正常和异常造血发生的机制,同时也为造血干细胞的临床应用提供理论和实验依据。  相似文献   

20.
成体干细胞来源广泛,无伦理争议,成为近几年的关注热点。研究表明以骨髓来源的间充质干细胞为代表的成体干细胞具有较强的多系分化潜能,可以广泛的参与包括肺在内的受损组织的修复与重建。在动物实验中已观察到,供体来源的成体干细胞可以定向分化为受损肺组织的多种功能细胞,并且有抑制纤维化等病变产生的能力。在本文中,回顾了近年来与肺损伤重建和疾病治疗相关的干细胞研究的最新进展,并探讨了成体干细胞治疗肺疾病与损伤的临床应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号