首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The effectiveness of soil fumigation with 50, 100 and 200 µL kg?1 soil of essential oils (EOs) from the plant species Eucalyptus citriodora, Eucalyptus globulus, Mentha piperita, Pelargonium asperum and Ruta graveolens was assessed against the root‐knot nematode Meloidogyne incognita on potted tomato. Plant growth parameters and number of galls, nematode eggs and juveniles on tomato roots were evaluated after two months of maintenance of the treated plants at 25°C in greenhouse. EOs of E. globulus and P. asperum significantly reduced nematode multiplication and gall formation on tomato roots at all the tested rates, whereas the EOs of E. citriodora, M. piperita and R. graveolens were more suppressive at levels greater than 50 µL kg?1 soil. Biofumigation with EOs of E. globulus and P. asperum resulted also in the largest increase of tomato plant top and root biomass. The five samples of EOs had a different chemical composition as determined by GC and GC‐MS. Structure–activity relationship based on the main constituents of the tested EOs and their nematicidal effect on M. incognita is discussed.  相似文献   

2.
The essential oils (EOs) chemical composition can be affected by several environmental factors, impacting their desired biological activities. In this sense, this work aimed to evaluate the seasonal variation of the chemical composition and antimicrobial activity of Piper caldense and Piper xylosteoides leaves EOs. Their chemical composition was determined by GC/MS and GC-FID analyses, resulting in the identification of eighty compounds. P. caldense EOs were mainly consisted of sesquiterpene hydrocarbons, whereas in P. xylosteoides EOs, monoterpene hydrocarbons were predominant. EOs from both species strongly inhibited B. subtilis (MIC=0.25 mg mL−1), while only P. caldense EOs showed strong activity against S. aureus (MIC=0.50 mg mL−1). P. caldense spring EO showed the broadest spectrum of antimicrobial action amongst all samples. For each species, PCA seasonally differentiated EOs chemical composition. In addition, as expected, PCA of all samples showed a distinction between the two species. This study has successfully demonstrated the importance of evaluating the seasonal variation of EOs chemical composition and antimicrobial activity in obtaining a product with the desired properties.  相似文献   

3.
Thymus vulgaris L. (thyme), Origanum majorana L. (marjoram), and Origanum vulgare L. (oregano) were used to determine whether light modification (plants grown under nets with 40% shaded index or in un-shaded open field) could improve the quantity and quality of essential oils (EOs) and antioxidant activity. The yield of EOs of thyme, marjoram, and oregano obtained after 120 min of hydrodistillation was 2.32, 1.51, and 0.27 mL/100 g of plant material, respectively. At the same time under shading conditions plants synthetized more EOs (2.57, 1.68, and 0.32 mL/100 g of plant material). GC/MS and GC/FID analyses were applied for essential oils determinations. The main components of the thyme essential oil are thymol (8.05–9.35%); γ-terpinene (3.49–4.04%); p-cymene (2.80–3.60%) and caryophyllene oxide (1.54–2.15%). Marjoram main components were terpinene 4-ol (7.44–7.63%), γ-terpinene (2.82–2.86%) and linalool (2.04–2.65%) while oregano essential oil consisted of the following components: caryophyllene oxide (3.1–1.93%); germacrene D (1.17–2.0%) and (E)-caryophyllene (1.48–1.1%). The essential oil from thyme grown under shading (EC50 value after 20 min of incubation) have shown the highest antioxidant activity – 0.85 mg mL−1 in comparison to marjoram and oregano (shaded plants EC50 19.97 mg mL−1 and 7.02 mg mL−1 and unshaded, control plants EC50 54.01 mg mL−1 and 7.45 mg mL−1, respectively). The medicinal plants are a good source of natural antioxidants with potential application in the food and pharmaceutical industries. For production practice, it can be recommended to grow medicinal plants in shading conditions to achieve optimal quality parameters.  相似文献   

4.
Antifouling agents with low toxicity are in high demand for sustaining marine industries and the environment. This study aimed to synthesize 15 isothiocyanates derived from β-citronellol and evaluate their antifouling activities and toxicities against cypris larvae of the barnacle Amphibalanus amphitrite. The synthesized isothiocyanates exhibited effective antifouling activities (EC50=0.10–3.33 μg mL−1) with high therapeutic ratios (LC50/EC50 >30). Four isothiocyanates with an amide or isocyano group showed great potential as effective antifouling agents (EC50=0.10–0.32 μg mL−1, LC50/EC50=104–833). The enantiomers of the isothiocyanates only slightly differed in their antifouling activities. These results may serve as a basis for further research and development of β-citronellol-derived isothiocyanates as effective low-toxic antifouling agents. To the best of our knowledge, this study is the first to report the antifouling activities of isothiocyanates derived from accessible natural products.  相似文献   

5.
It is known that some plant essential oils have pesticide activities. Among the 29 oils evaluated in this study, 14 showed nematicidal activities of 8 to 100% at the concentration of 1,000 μg/ml, compared with a control of 0.01 g/ml Tween 80®. At a lower concentration of 500 μg/ml, only Dysphania ambrosioides oil caused >90% mortality of second‐stage juveniles (J2) of Meloidogyne incognita. The LC50 and LC95 values for D. ambrosioides oil were 307 μg/ml and 580 μg/ml, respectively. M. incognita eggs placed in D. ambrosioides oil solutions had a significant reduction in J2 hatching compared with controls. Therefore, the oil had a toxic effect on both eggs and J2 of M. incognita. This was in contrast to nematicides on the market that act efficiently only on J2. When J2 were placed in D. ambrosioides oil at its LC50 concentration and inoculated onto tomato plants, the reduction in numbers of galls and eggs was 99.5% and 100%, respectively. Dysphania ambrosioides oil applied to the potting substrate of plants at a concentration of 1,100 μg/ml significantly reduced the number of galls and eggs of M. incognita, whereas a concentration of 800 μg/ml only reduced the number of eggs compared with the controls (Tween 80® and water). The main components of the D. ambrosioides oil detected by gas chromatography–mass spectrometry were (Z)‐ascaridole (87.28%), E‐ascaridole (8.45%) and p‐cymene (3.35%), representing 99.08% of the total oil composition. Given its nematicidal activity, D. ambrosioides oil represents an exciting raw material in the search for new bioactive molecules for the pesticide industry.  相似文献   

6.
This work describes the study of the chemical composition and bioactivity of the essential oils (EOs) of the different organs (leaves, flowers, stems and roots) from Eruca vesicaria. According to the GC and GC/MS analysis, all the EOs were dominated by erucin (4‐methylthiobutyl isothiocyanate) with a percentage ranging from 17.9 % (leaves) to 98.5 % (roots). The isolated EOs were evaluated for their antioxidant (DPPH, ABTS and β‐carotene/linoleic acid), antibacterial and inhibitory property against α‐amylase and α‐glucosidase. Most EOs exhibited an interesting α‐glucosidase and α‐amylase inhibitory potential. The roots essential oil was found to be the most active with IC50 values of 0.80±0.06 and 0.11±0.01 μg mL?1, respectively. The essential oil of roots exhibited the highest antioxidant activity (DPPH, PI=92.76±0.01 %; ABTS, PI=78.87±0.19; and β‐carotene, PI=56.1±0.01 %). The isolated oils were also tested for their antibacterial activity against two Gram‐positive and three Gram‐negative bacteria. Moderate results have been noted by comparison with Gentamicin used as positive control.  相似文献   

7.

Nanotechnology is currently gaining immense attention to combat food borne bacteria, and biofilm. Diabetes is a common metabolic disease affecting majority of people. A better therapy relies on phytomediated nanoparticle synthesis. In this study, W. somnifera leaf extract-assisted ZnO NPs (Ws-ZnO NPs) was synthesized and characterized. From HR-TEM analysis, it has been found that the hexagonal wurtzite particle is 15.6 nm in size and − 12.14 mV of zeta potential. A greater antibacterial effect of Ws-ZnO NPs was noticed against E. faecalis and S. aureus at 100 µg mL−1. Also, the biofilm of E. faecalis and S. aureus was greatly inhibited at 100 µg mL−1 compared to E. coli and P. aeruginosa. The activity of α-amylase and α-glucosidase enzyme was inhibited at 100 µg mL−1 demonstrating its antidiabetic potential. The larval and pupal development was delayed at 25 µg mL−1 of Ws-ZnO NPs. A complete mortality (100%) was recorded at 25 µg mL−1. Ws-ZnO NPs showed least LC50 value (9.65 µg mL−1) compared to the uncoated ZnO NPs (38.8 µg mL−1) and leaf extract (13.06 µg mL−1). Therefore, it is concluded that Ws-ZnO NPs are promising to be used as effective antimicrobials, antidiabetic and insecticides to combat storage pests.

  相似文献   

8.
Sheep breeding has suffered economic losses due to parasitism by gastrointestinal nematodes, particularly Haemonchus contortus. The use of natural products, specifically Tagetes patula, has been suggested as an alternative method of combatting this issue. Chemical analyses of the extracts of this species described in the literature report the presence of important classes of secondary metabolites such as thiophenes, flavonoids, alkaloids, and benzofurans, some of which were identified and isolated in this study. The aim of this work was to test the effect of the essential oil (EO) and the ethanolic extract of the aerial parts (TpEtOH) of T. patula on eggs and larvae of H. contortus, through an egg hatch test (EHT) and a larval development test (LDT). In the EHT, the EO showed 100% inhibition at 0.75 mg mL?1 (LC50 = 0.0780 mg mL?1), and the TpEtOH showed 100% inhibition at 100 mg mL?1 (LC50 = 12.8 mg mL?1). In the LDT, the EO showed 100% inhibition at 0.375 mg mL?1 (LC50 = 0.0400 mg mL?1), and the TpEtOH showed 100% inhibition at 1.56 mg mL?1 (LC50 = 0.340 mg mL?1). Compared to available literature data, the results presented here suggest that the crude extracts of T. patula have substantial potential for controlling this nematode by interrupting its life cycle and/or preventing it from reaching the infective stage.  相似文献   

9.
Ferula cupularis (Boiss.) Spalik et S. R. Downie is an endangered endemic Iranian medicinal plant with occurrence restricted to Fars and Kohkilooyeh Boyerahmad provinces, Iran. F. cupularis is cited for strong antibacterial activity, usages in foodstuffs preservation, and has long been used by local peoples for ulcer treatment. In this research, the aerial parts of F. cupularis wild populations were collected from three natural habitats: Eqlid-Kaftar (FC1), Kakan (FC2), and Sepidan-Komohr (FC3), to assess phytochemical diversity and antioxidant activity. The quantity of essential oil (EO) ranged remarkably from 0.42 to 0.72 % v/w among the populations. Results obtained from the EO analysis by GC-FID and GC/MS detected up to 56 compounds. α-Pinene (21.65–31.53 %), sabinene (4.74–11.39 %), phellandrene (1.78–5.1 %), δ-3-carene (1.85–7.18 %), limonene (4.12–7.45 %), (Z)-β-ocimene (9.08–17.64 %), and elemicin (0.23–5.74 %) were the major compounds of EOs varied significantly among the populations. Moreover, total phenol content (250.54 to 387.45 mg gallic acid/100 g dry weight (DW)) and flavonoids (34.38 to 41.12 mg quercetin/100 g DW) of methanolic extracts varied substantially among the populations. Antioxidant activities of F. cupularis EOs and extracts were assessed by DPPH (2,2,1-diphenyl-1-picrylhydrazyl) radical scavenging method. EOs exhibited EC50 values ranging from 8.88 to 9.67 μg mL−1 and the EC50 values for the extract ranged from 941.36 to 1335.96 μg mL−1 within the populations. Results demonstrated significantly different levels of antioxidant capacities among the studied populations. Monitoring the data, the population collected from Eqlid-Kaftar (FC1) was selected as the most potent population concerning the highest EO content and antioxidant activity level. The obtained data provided new insights for an initial source of breeding plans and ultimately massive production for food and pharmaceutical industries.  相似文献   

10.
Terminalia citrina (T. citrina) belongs to the Combretaceae family and is included in the class of medicinal plants in tropical countries such as Bangladesh, Myanmar, and India. The antioxidant activities of lyophilized water (WTE) and alcohol extracts (ETE) of T. citrina fruits, their phenolic content by LC-HRMS, and their effects on cholinesterases (ChEs; AChE, acetylcholinesterase, and BChE, butyrylcholinesterase) were investigated. Especially ten different analytical methods were applied to determine the antioxidant capacity. Compared with similar studies for natural products in the literature, it was determined that both WTE and ETE exhibited strong antioxidant capacity. Syringe and ellagic acids were higher than other acids in ETE and WTE. IC50 values for ETE and WTE in DPPH radical and ABTS⋅+ scavenging activities were calculated as 1.69–1.68 μg mL−1 and 6.79–5.78 μg mL−1, respectively. The results of the biological investigations showed that ETE and WTE had an inhibition effect against ChEs, with IC50 values of 94.87 and 130.90 mg mL−1 for AChE and 262.55 and 279.70 mg mL−1 for BChE, respectively. These findings indicate that with the prominence of herbal treatments, T. citrina plant may guide the literature in treating Alzheimer's Disease, preventing oxidative damage, and mitochondrial dysfunction.  相似文献   

11.
Plant essential oils are potential sources of insecticidal compounds, but have rarely been explored for their effect on termites. In the present study, we assessed the chemical composition of essential oils of Lippia sidoides Cham. (pepper‐rosmarin; Verbenaceae) and Pogostemon cablin (Blanco) Benth. (patchouli; Lamiacaeae) and evaluated their toxicity, behavioral impairment, and repellence to termite species of the genera Amitermes and Microcerotermes (Isoptera: Termitidae: Termitinae). The main components of essential oils of L. sidoides and P. cablin were thymol (44.6%) and patchouli alcohol (36.6%), respectively. The essential oil of P. cablin was most potent against Amitermes cf. amifer Silvestri and had the lowest LD50 (0.63 μg mg?1). There was no difference in toxicity for Microcerotermes indistinctus Mathews between the essential oils of L. sidoides (LD50 = 1.49 μg mg?1) and P. cablin (LD50 = 1.67 μg mg?1). Pogostemon cablin essential oil was the most toxic to M. indistinctus (LC50 = 0.32 μl ml?1) and A. cf. amifer (LC50 = 0.29 μl ml?1). The essential oils analyzed exhibited high toxicity and repellence to the termites, in addition to reducing behavioral interactions among individuals, thus constituting potential termiticides.  相似文献   

12.
In order to investigate virulence enhancement of entomopathogenic fungi, a Beauveria bassiana-sourced Pr1 protease (CDEP-1) was expressed by a methylotrophic yeast Pichia pastoris and then used as an additive to three gradient sprays of B. bassiana strain (Bb0062) onto apterous green peach aphid Myzus persicae adults in six bioassays. The resultant data fit well to a time–concentration–mortality model. Generally, the LC50 estimates of the fungal pathogen against the aphid species decreased with increasing CDEP-1 concentrations from 0 to 100 µg mL?1. The LC50s on days 5–7 after spray were reduced by 1.5–2.5-fold at the concentrations of 20–100 µg mL?1. However, sprays of 20–100 µg CDEP-1 mL?1 aqueous solution alone had no significant effect on aphid mortality compared to water spray only. Neither did inclusion of inactivated CDEP-1 at a concentration of 50 µg mL?1 affect significantly the fungal virulence to aphids. Our results confirm for the first time that the cuticle-degrading protease CDEP-1 enhanced fungal virulence due to acceleration of conidial germination and cuticle penetration. This suggests a new approach to utilising the protease in microbial control.  相似文献   

13.
The present study is the first investigation of the volatile‐oil variability and insecticidal properties of the endemic Moroccan mint Mentha suaveolens subsp. timija (mint timija). The yield of essential oils (EOs) obtained from different wild mint timija populations ranged from 0.20±0.02 to 1.17±0.25% (v/w). GC/MS Analysis revealed the presence of 44 oil constituents, comprising 97.3–99.9% of the total oil compositions. The main constituents were found to be menthone (1.2–62.6%), pulegone (0.8–26.6%), cis‐piperitone epoxide (2.9–25.5%), piperitone (0.3–35.5%), trans‐piperitone epoxide (8.1–15.7%), piperitenone (0.2–9.6%), piperitenone oxide (0.5–28.6%), (E)‐caryophyllene (1.5–11.0%), germacrene D (1.0–15.7%), isomenthone (0.3–7.7%), and borneol (0.2–7.3%). Hierarchical‐cluster analysis allowed the classification of the EOs of the different mint timija populations into four main groups according to the contents of their major components. This variability within the species showed to be linked to the altitude variation of the mint timija growing sites. The results of the insecticidal tests showed that all samples exhibited interesting activity against adults of Tribolium castaneum, but with different degrees. The highest toxicity was observed for the EOs belonging to Group IV, which were rich in menthone and pulegone, with LC50 and LC90 values of 19.0–23.4 and 54.9–58.0 μl/l air in the fumigation assay and LC50 and LC90 values of 0.17–0.18 and 0.40–0.52 μl/cm2 in the contact assay.  相似文献   

14.
Hernandulcin (HE) is a non-caloric sweetener synthesized by the Mexican medicinal plant Phyla scaberrima. Herein we present the results of HE production through cell suspensions of P. scaberrima as well as the influence of pH, temperature, biosynthetic precursors and potential elicitors to enhance HE accumulation. The incorporation of mevalonolactone (30–400 mg L−1) farnesol (30–400 mg L−1), AgNO3 (0.025–0.175 M), cellulase (5–60 mg L−1; 0.3 units/mg), chitin (20–140 mg L−1) and (+)-epi-α-bisabolol (300-210 mg L−1) to the cell suspensions, resulted in a differential accumulation of HE and biomass. Among elicitors assayed, chitin, cellulase and farnesol increased HE production from 93.2 to ∼160 mg L−1 but, (+)-epi-α-bisabolol (obtained by a synthetic biology approach) increased HE accumulation up to 182.7 mg L−1. HE produced by the cell suspensions was evaluated against nine strains from six species of gastrointestinal bacteria revealing moderate antibacterial activity (MIC, 214–465 μg mL−1) against Staphylococcus aureus, Escherichia coli and Helicobacter pylori. Similarly, HE showed weak toxicity against Lactobacillus sp. and Bifidobacterium bifidum (>1 mg mL−1), suggesting a selective antimicrobial activity on some species of gut microbiota. According to our results, chitin and (+)-epi-α-bisabolol were the most effective molecules to enhance HE accumulation in cell suspensions of P. scaberrima.  相似文献   

15.
Triterpenic saponins isolated from seeds of Madhuca indica and fruit pericarp from Sapindus mukorossi exhibited inhibitory effect against two phyto-parasitic nematodes. Azadirachtin and salanin-nimbin-desacetylnimbin (SND) was extracted from seeds and oil of Azadirachta indica A. Juss, respectively. M. indica and S. mukorossi saponins were found to inhibit the movement of pre-adult (J4) stage of Rotylenchulus reniformis with LC50 of 168.8 and 181.9 µg/mL. Azadirachtin and SND affected the mobility of secondary juvenile stage (J2) of Meloidogyne incognita by 83.3 and 80.1% respectively, at 0.5 mg m/L. M. indica saponin (LC50 220 µg/mL) exhibited a potentiation effect in the presence of azadirachtin in a 1:3 ratio (LC50 120.1 µg/mL). A binary mixture (1:1) of azadirachtin and SND was found to show significant nematicidal activity against M. incognita (LC50 70.9 µg/mL) and R. reniformis (LC50 91.2 µg/mL).  相似文献   

16.
A series of laboratory bioassays with each consisting of low, medium and high concentration treatments of the fungal biocontrol agent Beauveria bassiana alone or supplemented with an increasing sublethal rate of imidacloprid were conducted to quantify the fungal and chemical interactions on chrysanthemum aphid Macrosiphoniella sanborni (0.01‐0.05 a.i. μg mL?1) and green peach aphid Myzus persicae (0.05‐0.5 a.i. μg mL?1). During one week after exposure to a 1 mL spray onto a 95 cm2 area in a Potter Spray Tower, M. sanborni was either more susceptible to B. bassiana or more sensitive to imidacloprid than M. persicae. The time–concentration–mortality (TCM) responses of each aphid species in each of five bioassays fit well to a TCM model, indicating a strong dependence of the fungal and chemical interactions on both concentration and post‐spray time. Adding imidacloprid to B. bassiana sprays at the rates of 0.025–0.05 μg mL?1 against M. sanborni or 0.1–0.5 μg mL?1 against M. persicae significantly enhanced or accelerated the fungal action. Based on the LC50 or LC90 estimates and their variances determined by the fitted TCM relationships for each aphid species, the relative potencies of an imidacloprid‐inclusive bioassay over those with B. bassiana alone or together with a lower sublethal rate ranged from a few to hundreds of times and varied over days after spray. These results suggest an alternative tactic for practical control of the aphid pests by a combined formulation or application of B. bassiana and imidacloprid and manage aphid resistance to the chemical insecticide.  相似文献   

17.
Plants belonging to Euphorbia L. genus are considered very interesting from a medicinal point of view due to their diverse metabolites and bioactivities. The essential oil (EO) of Euphorbia mauritanica L. is not studied up to date. Therefore, the present study aimed to explore the chemical profile of this EO and evaluate its antioxidant, cytotoxic, and allelopathic potentialities. The EO was extracted from the whole plant via hydrodistillation and then, analyzed by gas chromatography/mass spectrometry (GC/MS). The correlation of E. mauritanica with the other Euphorbia plants was established using chemometric analysis. The antioxidant activity was determined based on scavenging of the free radical, 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS). The anti-proliferation of the EO on the Hep G2 and MCF-7 cells was evaluated. Finally the allelopathic activity of the EO was assessed against the two noxious weeds, Dactyloctenium aegyptium and Urospermum picroides. Forty-one compounds were identified using GC/MS analysis, with an abundance of terpenoids (91.54 %) that were categorized into mono- (30.75 %), sesqui- (15.23 %), and diterpenes (45.56 %). Interestingly, the results revealed the preponderance of diterpenoid constituents although they are rarely found in the EOs of the plant kingdom. The major compounds were (3E)-cembrene A (18.66 %), verticiol (17.05 %), limonene (7.91 %), eucalyptol (7.26 %), α-pinene (5.61 %), neo-cembrene A (3.52 %), kaur-16-ene (3.24 %), and cembrene (3.09 %). The EO showed moderate antioxidant activity where it attained IC50 values of 83.34 and 64.21 μg mL−1 for DPPH and ABTS compared to 23.01 and 19.23 μg mL−1 for ascorbic acid as standard, respectively. The EO exhibited very weak cytotoxic effect on MCF-7 and Hep G2 cells. The EO showed significant allelopathic activities against the weeds D. aegyptium and U. picroides in a concentration-dependent manner. EO was found more effective against U. picroides than D. aegyptium with IC50 values of 0.79, 0.45, and 0.67 mg mL−1 and 1.17, 0.55, and 1.08 mg mL−1 for germination, root, and shoot growth, respectively. Due to the high content of diterpenes in E. mauritanica, further study is recommended for more characterization of pure forms of the identified diterpenes as well as evaluating their bioactivity either solely or synergistically.  相似文献   

18.
Pleurotus ferulae Lenzi, a species of edible fungus, was found to have nematicidal activity in experiments searching for nematicidal fungi. Three nematicidal metabolities cheimonophyllon E (compound 1), 5α,8α-epidioxyergosta-6,22-dien-3β-ol (compound 2) and 5-hydroxymethyl-furancarbaldehyde (compound 3) were isolated based on bioassay-guided fractionation from the extracts of the fungusP. ferulae. Their structures were determined by spectroscopic data. All of them showed activities against nematodesBursaphelenchus xylophilus (Steiner et Buhrer) Nickle andPanagrellus redivivus (Linn.) Goodey. The median lethal concentrations (LC50) of compounds 1, 2 and 3 at 72 h were 70.8, 174.6, and 54.7 mg L?1 respectively againstB. xylophilus and were 125.6, 128.1, and 82.8 mg L?1 respectively againstP. redivivus. The three compounds were obtained fromP. ferulae for the first time.  相似文献   

19.

Ticks are of great economic importance worldwide, both because they represent major obstacles to livestock productivity and because of their ability to transmit diseases to humans and animals. Although synthetic acaricides are the most common method for tick control, their overuse has led to the development of resistance as well as unacceptable residual levels in animal products and in the environment in general. There is therefore an urgent need to identify alternative treatments. Among such alternative approaches for tick control is plant essential oil (EO) therapy. In the present study, we investigated the synergistic effect of EOs of three oregano species—Origanum onites, O. majorana and O. minutiflorum—against Rhipicephalus annulatus larvae. Gas chromatography–mass spectrometry profiles of the three EOs revealed that carvacrol was their major component, with a concentration of 86.2% in O. majorana, 79.1% in O. minutiflorum and 77.4% in O. onites. The results of larvicidal assays revealed that the doses that lead to the death of 50% of the ticks (LC50) were 22.99, 25.08 and 27.06 µL/mL for O. majorana, O. minutiflorum and O. onites EOs, respectively, whereas the doses that lead to the death of 99% (LC99) were 41.26, 43.62 and 48.96 µL/mL. In addition, the LC50 and LC99 of the three oils combined was lower (viz., 4.01 and 6.97 µL/mL) than that of each oil alone. The tested EOs were also able to repel larvae of R. annulatus to varying degrees, with O. onites oil exhibiting the greatest repellent effect, as shown by the lowest RC50 dose, followed by O. minutiflorum and O. majorana. Interestingly, this means that the oil that was least effective in killing the larvae was the most effective in repelling them. The calculated synergistic factor of any combination was higher than 1 which means that combinations have a synergistic effect. In conclusion, the combination of all three oils showed higher toxic and repellent activities than either oil separately or combinations of any two oils, suggesting synergistic effects with low doses. Further studies including field trials and the establishment of the mode of action and side effects are urgently needed to expand on these findings, and other tick stages such as adults should also be tested.

  相似文献   

20.
The extracts of five invasive plants were investigated for antifungal and antibiofilm activities against Candida albicans, C. glabrata, C. krusei, and C. parapsilosis. The antifungal activity was evaluated using the microdilution assay and the antibiofilm effect by measurement of the metabolic activity. Ethanol and ethanol-water extracts of Reynoutria japonica leaves inhibited 50 % of planktonic cells at 250 μg mL−1 and 15.6 μg mL−1, respectively. Ethanol and ethanol-water extracts of Baccharis halimifolia inhibited >75 % of the mature biofilm of C. albicans at 500 μg mL−1. The essential oil (EO) of B. halimifolia leaves was the most active (50 % inhibition (IC50) at 4 and 74 μg mL−1against the maturation phase and 24 h old-biofilms of C. albicans, respectively). Oxygenated sesquiterpenes were the primary contents in this EO (62.02 %), with β-caryophyllene oxide as the major component (37 %). Aromadendrene oxide-(2), β-caryophyllene oxide, and (±)-β-pinene displayed significant activities against the maturation phase (IC50=9–310 μ mol l−1) and preformed 24 h-biofilm (IC50=38–630 μ mol l−1) of C. albicans with very low cytotoxicity for the first two compounds. C. albicans remained the most susceptible species to this EO and its components. This study highlighted for the first time the antibiofilm potential of B. halimifolia, its EO and some of its components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号