首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Summary Explants and dissociated cells from normal adult spinal cord and regenerating cord of the teleostApteronotus albifrons were grown in vitro for periods of 8 to 12 wk. During this time the neurons showed extensive neurite outgrowth. Neurite outgrowth from tissue explants and dissociated cells of regenerated spinal cord starts sooner and is more profuse than that from normal (unregenerated) cord. Neurite outgrowth is maximized by using adhesive substrata and a high density of explants or dissociated cells. Inasmuch asApteronotus does regenerate its spinal cord naturally after injury, whereas mammals do not, this culture system will be useful to study factors that control (permit) regeneration of spinal neurons in this adult vertebrate.  相似文献   

2.
Cell death of asynaptic neurons in regenerating spinal cord   总被引:1,自引:0,他引:1  
The weakly electric fish Sternarchus albifrons possesses a unique class of asynaptic neurons, the electromotor neurons, whose axons constitute the electric organ. The cell bodies of origin of the electrocyte axons are located in the spinal cord. Both spinal cord and electromotor neurons ( electrocytes ) regenerate after amputation of the tail. Sternarchus spinal cords which have regenerated for 1 or more years show a progression in number of perikarya of electromotor neurons along the rostro-caudal axis. The most recently regenerated region of the cord is at the caudal end, which consists of a tube of ependyma. Progressing rostrally along regenerated spinal cord from the caudal end, numerous cells are generated and large numbers of electromotor neurons differentiate. The maximum number of electromotor neurons per transverse section of regenerated cord is five times higher than in normal mature cord. Rostral to this, the number of electromotor neurons decreases gradually to the normal number near the transition zone (the border with unregenerated cord). As the more rostral regenerated cord has presumably had a longer period of regeneration, we conclude that excess numbers of electromotor neurons are generated initially, and that subsequently the number of these neurons is decreased by cell death. This conclusion is supported by the fact that younger regenerates (2-4 months) have larger-than-normal numbers of perikarya of electromotor neurons extending up to the transition zone (Anderson and Waxman , 1981). No evidence of migration or depletion of electromotor neurons from unregenerated cord rostral to the amputation has been observed. Since the axons of the electromotor neurons in Sternarchus do not normally form any synapses, this study provides evidence that factors other than synaptic competition must be responsible for determining cell death during regeneration of these spinal neurons.  相似文献   

3.
The potential neuroanatomical specificity of astrocyte influence on neurite outgrowth was studied using an in vitro coculture system in which neurons from embryonic rat spinal cord or hippocampus were grown for 4 days in the presence of, but not in direct contact with, astrocytes derived either from the same region (homotopic coculture) or from different regions (heterotopic coculture) of the rat central nervous system. The results showed that axonal outgrowth was greatly enhanced in heterotopic cocultures in which spinal cord or hippocampal neurons were grown with astrocytes derived from their appropriate CNS target regions. This effect was remarkably specific, because the astroglia harvested from spinal or hippocampal target regions were not effective in promoting axon growth of nonafferent neuronal populations. Dendritic outgrowth was similar under all coculture conditions. These data suggest that diffusible signals, produced by astrocytes, can regulate neurite extension in vitro in a neuroanatomically specific manner and that axons are more sensitive than dendrites to the regional astrocyte environment.  相似文献   

4.
Retinoic acid (RA) is metabolised from its precursor, retinol (vitamin A). In mammalian embryos, retinol is provided by the mother via the placenta and in birds retinol comes from the yolk. We have studied the role of RA in CNS development in quail embryos by depriving adult quails of retinol in the diet which results in them laying eggs which have no retinol stores. The resulting embryos are therefore retinol and RA deficient. The CNS of these embryos is abnormal in three regards; patterning, neural crest production and neurite outgrowth. With regard to patterning, at an early stage of development prior to somitogenesis, hindbrain patterning genes are not induced which leads to the respecification of the posterior hindbrain territory. This region is not lost from the embryo but instead becomes transformed into an enlarged anterior hindbrain. Another aspect of patterning that is abnormal in these RA deficient embryos is the dorsoventral gene expression domains in the anterior spinal cord. These domains are required for the proper specification of motor neurons, sensory neurons and various classes of interneurons. Consequently these neuronal classes are mis‐specified in the RA deficient embryos. With regard to the neural crest, these cells often fail to migrate correctly and then die in the absence of RA. With regard to neurite outgrowth, very little outgrowth seems to take place in these deficient embryos which suggests that RA is involved in neurite outgrowth. Taking these experiments into the adult to examine the role of RA in neurite regeneration, we have had success in inducing neurite outgrowth in vitro from adult mouse spinal cord by manipulating the retinoic acid receptors which transduce the RA signal at the level of the nucleus.  相似文献   

5.
Choroid plexus ependymal cells (CPECs) were known to promote axonal growth when choroid plexus is grafted into the adult rat spinal cord. The present study was carried out to examine whether CPECs promote axonal outgrowth from neurons derived from the CNS in vitro. Hippocampal neurons were cocultured on CPEC monolayers. After 24 h, neurite extension was evaluated using various parameters in comparison with cultures grown on poly-L-lysine (PLL)-coated plates and cocultures grown on astrocyte monolayers. The primary neurite length and total neurite length were longest in the cocultures with CPECs. The number of primary neurites and the number of branches were larger in the cultures with CPECs than in the cultures on PLL-coated plates, but almost the same as in the cocultures with astrocytes. Next, we examined whether the neurite extension-promoting effect occurring within 24 h is due primarily to contact with the CPECs or to factors secreted by CPECs into the culture medium. The CPEC monolayers were killed by ethanol fixation, and neurons cultured on them. The neurons extended long neurites with elaborate branching, as in the case of cocultures grown on living CPECs. On the other hand, CPEC-conditioned medium exhibited less promoting effect on neurite outgrowth from hippocampal neurons. These results indicate that CPECs have a capacity to promote neurite outgrowth from CNS neurons in vitro, and that surface plasma membrane-bound components of CPECs strongly contribute to the enhancement of neurite outgrowth in the present coculture system.  相似文献   

6.
Cowen  T.  Jenner  C.  Song  Gu Xiao  Santoso  A. W. Budi  Gavazzi  I. 《Neurochemical research》1997,22(8):1003-1011
Whilst the potent effects of NGF and laminin on developing neurons are well documented, relatively little is known about the effects of, or altered availability of or altered responsiveness to, these substances on the growth of adult neurons. We have therefore examined this question using explant cultures of sympathetic neurons from the superior cervical ganglion (SCG) of mature and aged rats. Explants were grown on substrata containing different doses of laminin, either with or without added NGF in culture medium containing FCS. Individually, laminin and NGF had relatively small effects on neurite outgrowth and length, which tended to be reduced in old neurons. In contrast, laminin in the presence of exogenous NGF exerted a powerful effect on nerve growth which was substantially greater than the sum of the effects of the individual factors. This synergy was evident in all experimental groups and was greatest in old explants at high doses of laminin, where growth was comparable to that of mature neurons. The dose-response curve of old neurons to laminin in the presence of added NGF indicated reduced responsiveness. These results suggest that variations in the availability of laminin and/or exogenous NGF, together with altered patterns of neuronal responsiveness, may contribute to impaired neuronal plasticity in old age.  相似文献   

7.
Temocapril, a angiotensin-converting enzyme (ACE) inhibitor, was tested for neurotrophic activity in primary explant cultures of ventral spinal cord of fetal rats (VSCC). Temocapril had a remarkable effect on neurite outgrowth with a 4.2- to 5.1-fold increased over that of control VSCC at their effective concentrations. In temocapril-treated VSCC, choline acetyltransferase (ChAT) activity was also increased 2.4–3.2 times over that of control at 10–9 and 10–8 M, respectively. Our data suggest that temocapril is a candidate for neurotrophic factors on spinal motor neurons in vitro. A possible therapeutic role for temocapril in damaged motor neurons, such as in motor neuropathy and amyotrophic lateral sclerosis, remains to be defined.  相似文献   

8.
The effect of cyclic AMP (cAMP) analogs and phosphodiesterase (PDE) inhibitors on neurite outgrowth was studied in explant cultures of olfactory neurons. Nasal pits from 5- or 6-day-old chick embryos were minced, explanted into culture dishes, and grown in a serum-free medium. One of the cyclic AMP analogs, dibutyryl cyclic AMP (dbcAMP) or 8-bromo-cyclic AMP (8-Br-cAMP), or one of the PDE inhibitors, theophylline or isobutylmethylxanthine (IBMX), was added to the culture medium. The explants were examined for neurite outgrowth after 2 days in vitro. Db-cAMP increased the number of explants expressing neurites by 25-35% over control cultures, whereas 8-Br-cAMP had essentially no effect at the same concentrations. Addition of dibutyryl cyclic GMP (dbcGMP) gave no increase in neurite outgrowth, thus indicating that the effect of enhancing neuritic growth is specific to cAMP and not cyclic nucleotides in general. The resulting increase in neurite outgrowth is due to the cyclic nucleotide component of dbcAMP, since both IBMX and theophylline, which elevate intracellular cAMP, also increased neurite outgrowth significantly. When forskolin was added to the culture medium, there was a trend to increased neurite outgrowth; this was significantly enhanced when a subthreshold concentration of theophylline was added in addition to the forskolin.  相似文献   

9.
It has been previously described the presence of GnRH receptor in spinal cord neurons of rat embryos and adult rats. However, the functional role of these receptors has not been studied. In this work, the effect of GnRH on neurite outgrowth and cytoskeletal protein expression in cultured spinal cord neurons of rat embryos was analyzed. Specifically, neurofilaments of 68 and 200 kDa by immunoblot assays and spinophilin mRNA expression by RT-PCR. Results show that GnRH stimulates neurite outgrowth in addition to an increase in neurofilaments and spinophilin expression. These findings suggest that GnRH may play a role as neuromodulator in neuronal plasticity and that could be considered as a potential factor for neuronal regeneration in spinal cord injuries.  相似文献   

10.
Traumatic spinal cord injury is a common and severe complication after an accident. As we all know that neurite outgrowth of neurons is difficult after a spinal cord injury. Endosome system is associated with cargoes transportation and contributes in promoting the neuronal capability for neurite outgrowth. EH domain-containing protein 1 (EHD1) transports proteins through the endosome system, especially in the recycling endosomes and regulating the neurite outgrowth. In mammalian cells, the involvement of the ubiquitin-proteasome system in endosomal sorting has been well established. Two RING fingers and a DRIL (double RING finger-linked) 1 (Triad1) plays an important role in membrane trafficking and its mutant results in the wrong accumulation of receptors in endosomes and plasma membrane. In this current study, we reasonably integrated the results of the above research and investigated the regulating function of Triad1 to EHD1 following the spinal cord injury. We characterized the upregulated expression and distribution of Triad1 and EHD1 in the neurons after SCI and declared the interaction between Triad1 with EHD1 both in vitro and in vivo. Triad1 regulated the interaction between itself and the full-length or EH domain of EHD1, which influenced the neurite outgrowth of PC12 cells. Our data delineate a novel interaction between Triad1 and EHD1 that may contribute to the regulation of neurite outgrowth for neurons after the spinal cord injury.  相似文献   

11.
This study examines the regulation of the number of electromotor neurons during postnatal growth of the spinal cord in the gymnotiform teleost Sternarchus albifrons. It specifically asks whether a large overproduction of electromotor neurons and a wave of cell death, similar to those occurring during spinal cord regeneration in this species, play a role in the on-going growth at the caudal tip of the normal spinal cord. Neurons are produced from ependymal precursors at the caudal end of the spinal cord during both normal growth in the adult and regeneration of the spinal cord in this species. Previous studies have demonstrated that during spinal cord regeneration after amputation of the tail in Sternarchus, there is an initial massive (up to fivefold) overproduction of electromotor neurons, followed by a wave of cell death which reduces the number of these neurons to the normal level. In the present study, transverse sections through the caudalmost spinal segment of normal adult Sternarchus were examined. Proceeding rostrally from the caudal tip of the cord, the number of electromotor neurons increases monotonically to reach the normal number at a site 4-5 mm rostral to the caudal tip. Neither a massive overproduction of electromotor neurons nor a wave of neuronal death are observed during on-going growth of the normal spinal cord. The mechanisms by which the neuronal number is modulated are therefore different in the on-going normal growth of spinal cord versus regeneration of spinal cord in this species.  相似文献   

12.
In larval lamprey, descending brain neurons, which regenerate their axons following spinal cord injury, were isolated and examined in cell culture to identify some of the factors that regulate neurite outgrowth. Focal application of 5 mM or 25 mM L-glutamate to single growth cones inhibited outgrowth of the treated neurite, but other neurites from the same neuron were not inhibited, an effect that has not been well studied for neurons in other systems. Glutamate-induced inhibition of neurite outgrowth was abolished by 10 mM kynurenic acid. Application of high potassium media to growth cones inhibited neurite outgrowth, an effect that was blocked by 2 mM cobalt or 100 microM cadmium, suggesting that calcium influx via voltage-gated channels contributes to glutamate-induced regulation of neurite outgrowth. Application of glutamate to growth cones in the presence of 2 microM omega-conotoxin MVIIC (CTX) still inhibited neurite outgrowth, while CTX blocked high potassium-induced inhibition of neurite outgrowth. Thus, CTX blocked virtually all of the calcium influx resulting from depolarization. To our knowledge, this is the first direct demonstration that calcium influx via ligand-gated ion channels can contribute to regulation of neurite outgrowth. Finally, focal application of glutamate to the cell bodies of descending brain neurons inhibited outgrowth of multiple neurites from the same neuron, and this is the first demonstration that multiple neurites can be regulated in this fashion. Signaling mechanisms involving intracellular calcium, similar to those shown here, may be important for regulating axonal regeneration following spinal cord injury in the lamprey.  相似文献   

13.
Epidermal growth factor (EGF)-responsive stem cells from both developing and adult central nervous system (CNS) can be expanded and induced to differentiate into neurons and glia in vitro. Because of their self-renewal and multipotent properties, these cells can potentially provide an unlimited tissue source for neural grafting in neurodegenerative disorders. However, the capability of neurons derived from these stem cells to project axons to distant targets following grafting, thereby enabling the restoration of damaged CNS circuitry, remains unknown. We hypothesize that grafted EGF-responsive stem cells and their progeny are not competent to project axons into distant target sites unless exposed to specific neurotrophic factors. We compared neurite outgrowth between gestation day 14 primary mouse hippocampal cells and EGF-generated secondary neurospheres of postnatal mouse hippocampal stem cells, following grafting onto the CA3 region of organotypic hippocampal slice cultures prepared from postnatal rats. Neurite outgrowth from grafted cells was visualized using immunohistochemical staining for the mouse specific antigen M6. Fetal hippocampal cells showed extensive and specific neurite outgrowth into many regions of the slice, including the CA1 region and distant subiculum, by 7 days after grafting. In contrast, neurite outgrowth from neurosphere cells was nonspecific and restricted to the immediate surrounding region after either 7 or even 15 days following grafting. Application of brain-derived neurotrophic factor (BDNF) (5 ng in 0.5 microL) to slices on day 1 after grafting significantly enhanced neurite outgrowth from neurosphere cells, but overall neurite outgrowth from neurosphere cells remained decreased compared to that from fetal hippocampal cells. These results underscore that EGF-responsive stem cell-derived neurons possess limited intrinsic capability for long-distance neurite outgrowth compared to fetal neurons. However, neurite outgrowth from EGF-responsive stem cell-derived neurons can be enhanced by treating with specific neurotrophic factors such as BDNF.  相似文献   

14.
The neurotransmitter serotonin has been shown to inhibit neurite outgrowth in specific identified neurons isolated from adult Helisoma. While in vivo experiments on Helisoma embryos have supported the hypothesis that endogenous serotonin regulates neurite outgrowth during embryonic development, direct effects of serotonin on embryonic neurons have not been measured. In the present study, cultures of dissociated embryonic neurons were used to test the direct actions of serotonin on developing embryonic neurons. Serotonin arrested neurite outgrowth in a significant percentage of elongating neurites in a dose-dependent manner. Furthermore, analysis of neurons with stable, nonelongating neurites revealed a novel response. Serotonin caused the reinitiation of neurite outgrowth in a significant percentage of nonelongating neurites. The arrestment of outgrowth and reinitiation of outgrowth occurred in similar percentages of elongating and nonelongating neurites, respectively. Parallel experiments on cultures of dissociated adult neurons were carried out to determine whether serotonin could also induce both inhibitory and stimulatory responses in adult cells. Serotonin arrested neurite outgrowth in a similar percentage of neurites to that observed in cultures of embryonic neurons. In contrast, serotonin did not reinitiate neurite outgrowth in a significant percentage of adult neurites. These data support the hypothesis that serotonin regulates neurite outgrowth in developing embryonic neurons. Furthermore, only some of these regulatory effects appear to be conserved from embryonic to adult neurons.  相似文献   

15.
Porton B  Kao HT 《Neuro-Signals》2003,12(1):45-52
Intracellular signaling pathways involved in neurite outgrowth have been extensively studied in a variety of cell systems. While most of these studies utilized continuous neuronal-like cell lines, fewer studies have been conducted in primary neuronal culture. One primary culture system that has recently been used to dissect the signaling pathways involved in axon guidance consists of spinal neurons derived from embryonic Xenopus laevis. In this study, we used Xenopus to study neurite outgrowth by treating neuronal cultures with pharmacological agents that activate or inhibit various protein kinases or that inhibit protein phosphatases. We found that agents which affected signaling via cAMP-dependent protein kinase, calmodulin, cyclin-dependent kinase 5, or protein phosphatases had effects on Xenopus neurite outgrowth that were similar to those reported in other primary neurons or in neuronal-like cell lines. However, agents which affected protein kinase C signaling had effects on Xenopus neurite outgrowth that were distinct from those reported in neuronal-like cell lines. Although continuous cell lines have several advantages for the dissection of signaling pathways involved in neurodevelopment, these observations underscore the importance of also using primary neurons to examine these pathways.  相似文献   

16.
Receptor for advanced glycation end products (RAGE) has been proposed as a signal transduction receptor to promote neurite outgrowth and cell migration, by its interaction with a neurite outgrowth promoting protein, Amphoterin. Amphoterin has been shown to interact with sulfoglucuronyl carbohydrate (SGC). The developmental expression of RAGE, Amphoterin and SGC was studied in pre-natal and post-natal mouse cerebellum to establish their cellular and subcellular localization and function. The amount of RAGE in the cerebellum increased with age. RAGE was expressed pre-natally in the external germinal layer and post-natally in the plasma membranes of the granule neurons of the external and internal granule cell layers and in Purkinje cells. Immunocytochemical analysis by high magnification confocal microscopy showed that RAGE was co-expressed with Amphoterin and SGC in the cell surfaces of granule neurons. This co-localization of RAGE, Amphoterin, and SGC was confirmed in isolated and cultured granule neurons and in migrating granule neurons in explant cultures. Anti-RAGE antibodies inhibited neurite outgrowth and cell migration in explant and slice cultures, similar to anti-Amphoterin and anti-SGC antibodies shown previously. The results suggest that RAGE could act as a signaling molecule for neurite outgrowth and cell migration by its interaction with Amphoterin and that of Amphoterin with SGC.  相似文献   

17.
Epidermal growth factor (EGF)–responsive stem cells from both developing and adult central nervous system (CNS) can be expanded and induced to differentiate into neurons and glia in vitro. Because of their self‐renewal and multipotent properties, these cells can potentially provide an unlimited tissue source for neural grafting in neurodegenerative disorders. However, the capability of neurons derived from these stem cells to project axons to distant targets following grafting, thereby enabling the restoration of damaged CNS circuitry, remains unknown. We hypothesize that grafted EGF‐responsive stem cells and their progeny are not competent to project axons into distant target sites unless exposed to specific neurotrophic factors. We compared neurite outgrowth between gestation day 14 primary mouse hippocampal cells and EGF‐generated secondary neurospheres of postnatal mouse hippocampal stem cells, following grafting onto the CA3 region of organotypic hippocampal slice cultures prepared from postnatal rats. Neurite outgrowth from grafted cells was visualized using immunohistochemical staining for the mouse specific antigen M6. Fetal hippocampal cells showed extensive and specific neurite outgrowth into many regions of the slice, including the CA1 region and distant subiculum, by 7 days after grafting. In contrast, neurite outgrowth from neurosphere cells was nonspecific and restricted to the immediate surrounding region after either 7 or even 15 days following grafting. Application of brain‐derived neurotrophic factor (BDNF) (5 ng in 0.5 μL) to slices on day 1 after grafting significantly enhanced neurite outgrowth from neurosphere cells, but overall neurite outgrowth from neurosphere cells remained decreased compared to that from fetal hippocampal cells. These results underscore that EGF‐responsive stem cell‐derived neurons possess limited intrinsic capability for long‐distance neurite outgrowth compared to fetal neurons. However, neurite outgrowth from EGF‐responsive stem cell–derived neurons can be enhanced by treating with specific neurotrophic factors such as BDNF. © 1999 John Wiley & Sons, Inc. J Neurobiol 38: 391–413, 1999  相似文献   

18.
19.
We have identified a synthetic peptide derived from the B2-chain of mouse laminin, Arg-Asn-Ile-Ala-Glu-Ile-Ile-Lys-Asp-Ile (p20), which stimulates the neurite outgrowth-promoting activity of the native molecule. In organotypic cultures, neurons from newborn mouse brain or embryonic peripheral nervous system responded by extensive neurite outgrowth for native laminin or the peptide p20 in the culture medium. If rat cerebellar neurons were grown on laminin, 1-5 microM (1-5 micrograms/ml) of peptide p20 in the culture medium competed with laminin and inhibited neuronal attachment and neurite outgrowth, whereas higher concentrations (greater than 50 microM; greater than 50 micrograms/ml) had a specific neurotoxic effect. When peptide p20 was used as the culture substratum, neurite outgrowth in cerebellar cultures was up to 60% of that seen on native laminin. Our results indicate that a neurite outgrowth-promoting domain of laminin is located in the alpha-helical region of the B2-chain, and is active for both central and peripheral neurons.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号