首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
2.
We previously showed that phosphorylation of Ser(10) of the N terminus domain of the type VI adenylyl cyclase (ACVI) partly mediated protein kinase C (PKC)-induced inhibition of ACVI. We now report that phosphorylation of the other two cytosolic domains (C1 and C2), which form the catalytic core complex of ACVI, also contributes to PKC-mediated inhibition. In vitro phosphorylation by PKC of the recombinant C1a and C2 domains, and of the synthetic peptides representing potential PKC phosphorylation sites, suggests that Ser(568) and Ser(674) of the C1 domain and Thr(931) of the C2 domain might act as substrates for PKC. We next created several full-length ACVI mutants in which one or more of the four likely PKC phosphorylation sites (Ser(10), Ser(568), Ser(674), and Thr(931)) were mutated to alanine. Simultaneous mutation of at least two of the three likely residues located in the N and C1 domains (Ser(10), Ser(568), and Ser(674)) was required to render ACVI variants completely insensitive to PKC treatment. In contrast, a single mutation of Thr(931) was sufficient to create a functional ACVI mutant that exhibited no detectable PKC-mediated inhibition, demonstrating the essentiality of Thr(931) to PKC-mediated regulation. Based on these results, we propose that the three cytosolic domains of ACVI might form a regulatory complex. Phosphorylation of this regulatory complex at different sites might induce a fine-tuning of the catalytic core complex and subsequently lead to alternation in the catalytic activity of ACVI.  相似文献   

3.
The IRS-1 PH and PTB domains are essential for insulin-stimulated IRS-1 Tyr phosphorylation and insulin signaling, while Ser/Thr phosphorylation of IRS-1 disrupts these signaling events. To investigate consensus PKC phosphorylation sites in the PH-PTB domains of human IRS-1, we changed Ser24, Ser58, and Thr191 to Ala (3A) or Glu (3E), to block or mimic phosphorylation, respectively. The 3A mutant abrogated the inhibitory effect of PKCdelta on insulin-stimulated IRS-1 Tyr phosphorylation, while reductions in insulin-stimulated IRS-1 Tyr phosphorylation, cellular proliferation, and Akt activation were observed with the 3E mutant. When single Glu mutants were tested, the Ser24 to Glu mutant had the greatest inhibitory effect on insulin-stimulated IRS-1 Tyr phosphorylation. PKCdelta-mediated IRS-1 Ser24 phosphorylation was confirmed in cells with PKCdelta catalytic domain mutants and by an RNAi method. Mechanistic studies revealed that IRS-1 with Ala and Glu point mutations at Ser24 impaired phosphatidylinositol-4,5-bisphosphate binding. In summary, our data are consistent with the hypothesis that Ser24 is a negative regulatory phosphorylation site in IRS-1.  相似文献   

4.
Productive infection of oligodendrocytes, which are responsible for the formation of myelin sheath in the central nervous system, with the human neurotropic virus JC virus (JCV) causes the fatal demyelinating disease progressive multifocal leukoencephalopathy (PML). In addition to encoding T antigen and the capsid proteins, which are produced at the early and late phases of the infection cycle, respectively, JCV encodes a small regulatory protein named agnoprotein that is important for successful completion of the virus life cycle. Here we used bipotential CG-4 cells to examine the impact of agnoprotein on oligodendrocyte differentiation and survival in the absence of JCV lytic infection. We demonstrate that the expression of agnoprotein delayed the formation of complex outgrowth networks of the cells during oligodendrocyte differentiation. These alterations were accompanied by high levels of DNA damage, induction of proapoptotic proteins, and suppression of prosurvival signaling. Accordingly, apoptosis was significantly increased upon the induction of CG-4 cells toward differentiation in cells expressing agnoprotein. These observations provide the first evidence for the possible involvement of agnoprotein, independent from its role in viral replication, in a series of biological events that may contribute to the pathological features seen in PML lesions.  相似文献   

5.
Our experiments investigated associations of specific isoforms of protein kinase C (PKC) with individual proteins in the cardiac troponin complex. Troponin I (cTnI) associated with PKCepsilon and zeta and troponin T (cTnT) associated with PKC alpha, delta, and epsilon. Based on its association with cTnI, we hypothesized that PKCzeta is a major regulator of myofilament protein phosphorylation. To test this, we infected adult cardiac myocytes with adenoviral constructs containing DsRed monomer-tagged wild type (WT) and the following constitutively active forms of PKCzeta: the pseudo-substrate region (A119E), 3'-phospho-inositide-dependent kinase-1 (T410E), and auto-phosphorylation (T560E). The A119E and T410E mutants displayed increased localization to the Z-discs compared with WT and T560E. Immunoprecipitations were performed in myocytes expressing PKCzeta using PKC phospho-motif antibodies to determine the phosphorylation of cTnI, cTnT, tropomyosin, myosin-binding protein C, and desmin. We did not find serine (Ser) phosphorylation of cTnI or cTnT. However, we observed a significant decrease in threonine (Thr) phosphorylation of cTnI and cTnT notably by PKCzeta T560E. Ser phosphorylation of tropomyosin was increased by all three active mutants of PKCzeta. Ser/Thr phosphorylation of myosin-binding protein C increased primarily by PKCzeta A119E. Both PKCzeta A119E and T410E mutants increased desmin Ser/Thr phosphorylation. To explain the apparent Thr dephosphorylation of cTnI and cTnT, we hypothesized that PKCzeta exists as a complex with p21-activated kinase-1 (Pak1) and protein phosphatase 2A (PP2A), and this was confirmed by immunoprecipitation Western blot. Our data demonstrate that PKCzeta is a novel regulator of myofilament protein phosphorylation.  相似文献   

6.
The HBV (hepatitis B virus) core is a phosphoprotein whose assembly, replication, encapsidation and localization are regulated by phosphorylation. It is known that PKC (protein kinase C) regulates pgRNA (pregenomic RNA) encapsidation by phosphorylation of the C-terminus of core, which is a component packaged into capsid. Neither the N-terminal residue phosphorylated by PKC nor the role of the C-terminal phosphorylation have been cleary defined. In the present study we found that HBV Cp149 (core protein C-terminally truncated at amino acid 149) expressed in Escherichia coli was phosphorylated by PKC at Ser(106). PKC-mediated phosphorylation increased core affinity, as well as assembly and capsid stability. In vitro phosphorylation with core mutants (S26A, T70A, S106A and T114A) revealed that the Ser(106) mutation inhibited phosphorylation of core by PKC. CD analysis also revealed that PKC-mediated phosphorylation stabilized the secondary structure of capsid. When either pCMV/FLAG-Cp149[WT (wild-type)] or pCMV/FLAG-S106A Cp149 was transfected into Huh7 human hepatoma cells, mutant capsid level was decreased by 2.06-fold with the S106A mutant when compared with WT, although the same level of total protein was expressed in both cases. In addition, when pUC1.2x and pUC1.2x/S106A were transfected, mutant virus titre was decreased 2.31-fold compared with WT virus titre. In conclusion, PKC-mediated phosphorylation increased capsid assembly, stability and structural stability.  相似文献   

7.
The agnoprotein of polyomaviruses: a multifunctional auxiliary protein   总被引:3,自引:0,他引:3  
The late region of the three primate polyomaviruses (JCV, BKV, and SV40) encodes a small, highly basic protein known as agnoprotein. While much attention during the last two decades has focused on the transforming proteins encoded by the early region (small and large T-antigens), it has become increasingly evident that agnoprotein has a critical role in the regulation of viral gene expression and replication, and in the modulation of certain important host cell functions including cell cycle progression and DNA repair. The importance of agnoprotein is underscored by its expression during lytic infection of glial cells by JCV that occurs in progressive multifocal leukoencephalopathy (PML), and also in some JCV-associated human neural tumors particularly medulloblastoma. In this review, we will discuss the structure and function of agnoprotein in the viral life cycle during the course of lytic infection and the consequences of agnoprotein expression for the host cell.  相似文献   

8.
9.
MCM4, a subunit of a putative replicative helicase, is phosphorylated during the cell cycle, at least in part by cyclin-dependent kinases (CDK), which play a central role in the regulation of DNA replication. However, detailed characterization of the phosphorylation of MCM4 remains to be performed. We examined the phosphorylation of human MCM4 at Ser3, Thr7, Thr19, Ser32, Ser54, Ser88 and Thr110 using anti-phosphoMCM4 sera. Western blot analysis of HeLa cells indicated that phosphorylation of MCM4 at these seven sites can be classified into two groups: (a) phosphorylation that is greatly enhanced in the G2 and M phases (Thr7, Thr19, Ser32, Ser54, Ser88 and Thr110), and (b) phosphorylation that is firmly detected during interphase (Ser3). We present data indicating that phosphorylation at Thr7, Thr19, Ser32, Ser88 and Thr110 in the M phase requires CDK1, using a temperature-sensitive mutant of mouse CDK1, and phosphorylation at sites 3 and 32 during interphase requires CDK2, using a dominant-negative mutant of human CDK2. Based on these results and those from in vitro phosphorylation of MCM4 with CDK2/cyclin A, we discuss the kinases responsible for MCM4 phosphorylation. Phosphorylated MCM4 detected using anti-phospho sera exhibited different affinities for chromatin. Studies on the nuclear localization of chromatin-bound MCM4 phosphorylated at sites 3 and 32 suggested that they are not generally colocalized with replicating DNA. Unexpectedly, MCM4 phosphorylated at site 32 was enriched in the nucleolus through the cell cycle. These results suggest that phosphorylation of MCM4 has several distinct and site-specific roles in the function of MCM during the mammalian cell cycle.  相似文献   

10.
Phosphorylation of SNARE proteins may provide a critical link between cell activation and secretory processes. Platelets contain all three members of the SNAP-23/25/29 gene family, but by comparison to brain tissue, SNAP-23 is the most highly enriched of these proteins in platelets. SNAP-23 function is required for exocytosis from platelet alpha, dense, and lysosomal granules. SNAP-23 was phosphorylated largely on serine residues in platelets activated with thrombin. Phosphorylation kinetics paralleled or preceded granule secretion. Inhibition studies suggested that SNAP-23 phosphorylation proceeds largely through a protein kinase C (PKC) mechanism and purified PKC directly phosphorylated recombinant (r-) SNAP-23 (up to 0.3 mol of phosphate/mol of protein). Five major tryptic phosphopeptides were identified in cellular SNAP-23 isolated from activated platelets; three phosphopeptides co-migrated with those identified in PKC-phosphorylated r-SNAP-23. In contrast, only one major phosphopeptide was identified when SNAP-23, engaged in a ternary SNARE complex, was phosphorylated by PKC. Ion trap mass spectrometry revealed that platelet SNAP-23 was phosphorylated at Ser23/Thr24 and Ser161, after cell activation by thrombin; these sites were also identified in PKC-phosphorylated r-SNAP-23. SNAP-23 mutants that mimic phosphorylation at Ser23/Thr24 inhibited syntaxin 4 interactions, whereas a phosphorylation mutant of Ser161 had only minor effects. Taken together these studies show that SNAP-23 is phosphorylated in platelets during cell activation through a PKC-related mechanism at two or more sites with kinetics that parallel or precede granule secretion. Because mutants that mimic SNAP-23 phosphorylation affect syntaxin 4 interactions, we hypothesize that SNAP-23 phosphorylation may be important for modulating SNARE-complex interactions during membrane trafficking and fusion.  相似文献   

11.
JC virus (JCV) belongs to the polyomavirus family of double-stranded DNA viruses and causes progressive multifocal leukoencephalopathy in humans. JCV encodes early proteins (large T antigen, small T antigen, and T' antigen) and four late proteins (agnoprotein, and three viral capsid proteins, VP1, VP2, and VP3). In the current study, a novel function for JCV agnoprotein in the morphogenesis of JC virion particles was identified. It was found that mature virions of agnoprotein-negative JCV are irregularly shaped. Sucrose gradient sedimentation and cesium chloride gradient ultracentrifugation analyses revealed that the particles of virus lacking agnoprotein assemble into irregularly sized virions, and that agnoprotein alters the efficiency of formation of VP1 virus-like particles. An in vitro binding assay and immunocytochemistry revealed that agnoprotein binds to glutathione S-transferase fusion proteins of VP1 and that some fractions of agnoprotein colocalize with VP1 in the nucleus. In addition, gel filtration analysis of formation of VP1-pentamers revealed that agnoprotein enhances formation of these pentamers by interacting with VP1. The present findings suggest that JCV agnoprotein plays a role, similar to that of SV40 agnoprotein, in facilitating virion assembly.  相似文献   

12.
13.
Studies were performed to verify the physiological significance of attenuation in the life cycle of simian virus 40 and the role of agnoprotein in this process. For these purposes, nuclei were isolated at various times after infection and incubated in vitro in the presence of [alpha-32P]UTP under the standard conditions which lead to attenuation. Attenuation was evident by the production of a 94-nucleotide attenuator RNA, revealed by gel electrophoresis. In parallel, the synthesis of agnoprotein was studied at various times after infection by labeling the cells for 3 h with [14C]arginine, lysing them, and analyzing the labeled proteins by gel electrophoresis. Both attenuation and the synthesis of agnoprotein were predominant towards the end of the infectious cycle. At earlier times, there was almost no attenuation and no synthesis of agnoprotein. Moreover, there was almost no attenuation even at the latest times after infection in nuclei isolated from cells infected with simian virus 40 deletion mutants that do not synthesize agnoprotein. Finally, analysis by dot blot hybridization showed higher amounts of cytoplasmic viral RNA in cells infected with an agnoprotein gene insertion mutant, delta 79, that does not produce agnoprotein, compared with cells infected with wild-type virus. The present studies indicate that attenuation is temporally regulated and suggest that agnoprotein enhances attenuation in isolated nuclei and that may also enhance it in vivo.  相似文献   

14.
Yueh A  Goff SP 《Journal of virology》2003,77(3):1820-1829
Mutational analyses of the p12 Gag phosphoprotein of Moloney murine leukemia virus have demonstrated its participation in both virus assembly and the early stages of infection. The molecular mechanisms by which p12 functions in these events are still poorly understood. We performed studies to examine the significance of p12 phosphorylation in the viral life cycle. Alanine substitutions were introduced at the potential phosphorylation sites in p12, and the resulting mutants were tested for replication. Mutant viruses with changes at S61 and S78 were severely impaired, whereas the other mutant viruses were viable. S61 was shown to be required for normal levels of phosphorylation of p12 in vivo. These defective mutant viruses showed no apparent alteration to Gag protein processing or reduction in the yield of virions after transient transfection, but the mutants failed to form circular viral DNAs in acutely infected cells. Sequence analysis of revertant clones derived from S(61,65)A mutant virus revealed two classes: one group with a single mutation at a residue adjacent to S61 and another group with mutations introducing new positive charges surrounding S61. In vivo [32P]orthophosphate labeling indicated that the rescue of the S(61,65)A mutant virus did not result in a significant increase in the phosphorylation level of p12. Alanine substitutions of an arginine-rich stretch near S61 (at R-66, -68, -70, and -71) resulted in the same phenotype as the S(61,65)A mutant virus. The restored function of S(61,65)A mutant virus by second or third site mutations may result from a structural change or the addition of positively charged residues in the arginine-rich region.  相似文献   

15.
16.
Cardiac Troponin T (cTnT) is one prominent substrate through which protein kinase C (PKC) exerts its effect on cardiomyocyte function. To determine the specific functional effects of the cTnT PKC-dependent phosphorylation sites (Thr197, Ser201, Thr206, and Thr287) we first mutated these residues to glutamate (E) or alanine (A). cTnT was selectively mutated to generate single, double, triple, and quadruple mutants. Bacterially expressed mutants were evaluated in detergent-treated mouse left ventricular papillary muscle fiber bundles where the endogenous troponin was replaced with a recombinant troponin complex containing either cTnT phosphorylated by PKC-alpha or a mutant cTnT. We simultaneously determined isometric tension development and actomyosin Mg-ATPase activity of the exchanged fiber bundles as a function of Ca2+ concentration. Our systematic analysis of the functional role of the multiple PKC phosphorylation sites on cTnT identified a localized region that controls maximum tension, ATPase activity, and Ca2+ sensitivity of the myofilaments. An important and novel finding of our study was that Thr206 is a functionally critical cTnT PKC phosphorylation residue. Its exclusive phosphorylation by PKC-alpha or replacement by Glu (mimicking phosphorylation) significantly decreased maximum tension, actomyosin Mg-ATPase activity, myofilament Ca2+ sensitivity, and cooperativity. On the other hand the charge modification of the other three residues together (T197/S201/T287-E) had no functional effect. Fibers bundles containing phosphorylated cTnT-wt (but not the T197/S201/T206/T287-E) exhibited a significant decrease of tension cost as compared with cTnT-wt.  相似文献   

17.
BACKGROUND: A growing number of kinases are now known to be controlled by two phosphorylation switches, one on a loop near the entrance to the active site and a second on the carboxyl terminus. For the protein kinase C (PKC) family of enzymes, phosphorylation at the activation loop is mediated by another kinase but the mechanism for carboxy-terminal phosphorylation is still unclear. The latter switch contains two phosphorylation sites - one on a 'turn' motif and the second on a conserved hydrophobic phosphorylation motif - that are found separately or together in a number of other kinases. RESULTS: Here, we investigated whether the carboxy-terminal phosphorylation sites of a conventional PKC are controlled by autophosphorylation or by another kinase. First, kinetic analyses revealed that a purified construct of the kinase domain of PKC betaII autophosphorylated on the Ser660 residue of the hydrophobic phosphorylation motif in an apparently concentration-independent manner. Second, kinase-inactive mutants of PKC did not incorporate phosphate at either of the carboxy-terminal sites, Thr641 or Ser660, when expressed in COS-7 cells. The inability to incorporate phosphate on the hydrophobic site was unrelated to the phosphorylation state of the other key phosphorylation sites: kinase-inactive mutants with negative charge at Thr641 and/or the activation-loop position were also not phosphorylated in vivo. CONCLUSIONS: PKC betaII autophosphorylates at its conserved carboxy-terminal hydrophobic phosphorylation site by an apparently intramolecular mechanism. Expression studies with kinase-inactive mutants revealed that this mechanism is the only one responsible for phosphorylating this motif in vivo. Thus, conventional PKC autoregulates the carboxy-terminal phosphorylation switch following phosphorylation by another kinase at the activation loop switch.  相似文献   

18.
Prolonged activation of opioid receptors leads to their phosphorylation, desensitization, internalization, and down-regulation. To elucidate the relationship between mu-opioid receptor (MOR) phosphorylation and the regulation of receptor activity, a series of receptor mutants was constructed in which the 12 Ser/Thr residues of the COOH-terminal portion of the receptor were substituted to Ala, either individually or in combination. All these mutant constructs were stably expressed in human embryonic kidney 293 cells and exhibited similar expression levels and ligand binding properties. Among those 12 Ser/Thr residues, Ser(363), Thr(370), and Ser(375) have been identified as phosphorylation sites. In the absence of the agonist, a basal phosphorylation of Ser(363) and Thr(370) was observed, whereas [d-Ala(2),Me-Phe(4),Gly(5)-ol]enkephalin (DAMGO)-induced receptor phosphorylation occurs at Thr(370) and Ser(375) residues. Furthermore, the role of these phosphorylation sites in regulating the internalization of MOR was investigated. The mutation of Ser(375) to Ala reduced the rate and extent of receptor internalization, whereas mutation of Ser(363) and Thr(370) to Ala accelerated MOR internalization kinetics. The present data show that the basal phosphorylation of MOR could play a role in modulating agonist-induced receptor internalization kinetics. Furthermore, even though mu-receptors and delta-opioid receptors have the same motif encompassing agonist-induced phosphorylation sites, the different agonist-induced internalization properties controlled by these sites suggest differential cellular regulation of these two receptor subtypes.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号