首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Variant pili produced by mutants of the Flac plasmid   总被引:2,自引:0,他引:2  
Transfer-proficient Flac mutants with reduced abilities to plate various F-specific phages were isolated, either by selection after mutagenesis, or as revertants of Flac traA mutants. In many of the mutants pilus-related properties were altered, including physical adsorption of R17 phage, the number of pili per cell and the outgrowth/retraction equilibrium. Complementation studies showed that the mutations were in traA, suggesting that specific alterations in the amino-acid sequence of the pilin subunit protein were responsible for the altered pilus properties. Complementation between the Flac traA mutants and the derepressed plasmid R100-1 restored phage sensitivity in some cases, suggesting that the incorporation of both mutant and R100-1 subunits into the pilus structure may result in conformational changes which increase the capacity of the pilus to interact with phages.  相似文献   

2.
Characterization of the F-plasmid conjugative transfer gene traU.   总被引:5,自引:4,他引:1       下载免费PDF全文
We characterized the traU gene of the Escherichia coli K-12 conjugative plasmid F. Plasmids carrying segments of the F transfer operon were tested for their capacity to complement F lac traU526. The protein products of TraU+ clones were identified, and the nucleotide sequence of traU was determined. traU mapped between traW and trbC. It encodes a 330-amino-acid, Mr36,786 polypeptide that is processed. Ethanol caused accumulation of a precursor polypeptide; removal of ethanol permitted processing of the protein to occur. Because F lac traU526 strains appear to be resistant to F-pilus-specific phages, traU has been considered an F-pilus assembly gene. However, electron microscopic analysis indicated that the traU526 amber mutation caused only a 50% reduction in F-piliation. Since F lac traU526 strains also retain considerable transfer proficiency, new traU mutations were constructed by replacing a segment of traU with a kanamycin resistance gene. Introduction of these mutations into a transfer-proficient plasmid caused a drastic reduction in transfer proficiency, but pilus filaments remained visible at approximately 20% of the wild-type frequency. Like traU526 strains, such mutants were unable to plaque F-pilus-specific phages but exhibited a slight sensitivity on spot tests. Complementation with a TraU+ plasmid restored the wild-type transfer and phage sensitivity phenotypes. Thus, an intact traU product appears to be more essential to conjugal DNA transfer than to assembly of pilus filaments.  相似文献   

3.
P1 transduction has been used to perform a complementation analysis of a series of transfer-deficient mutants of Flac. The results define ten cistrons and are consistent with the results of a conjugational analysis presented in an accompanying report. Both sets of results are summarized here. Between them, they define eleven cistrons, traA through traK, necessary for conjugational deoxyribonucleic acid (DNA) transfer. Mutants in traI and traD and some in traG still make F-pili, although traD mutants are resistant to f2 phage; their products may be involved in conjugational DNA metabolism. Other mutants in traG and all mutants in the remaining eight cistrons do not make F-pili. One of these, traJ, may be a control cistron, and the others may specify a biosynthetic pathway responsible for synthesis and modification of the F-pilin subunit protein and its assembly into the F-pilus.  相似文献   

4.
An F lac pro mutant which was temperature sensitive for infection by the filamentous bacteriophage f1 but resistant to the F-specific icosahedral RNA phage f2 was isolated. Cells carrying the F' mutation failed to elaborate F pili at all temperatures. Mutant cells were able to pair with recipient cells during bacterial conjugation, but transfer of conjugal DNA occurred at a greatly reduced frequency. Complementation analyses showed the F' mutation to be in the traC gene. When a plasmid carrying traC was introduced into hosts harboring the F' mutation, phage sensitivity, the ability to elaborate F pili, and conjugation efficiency were restored. The mutation was named traC1044. The F lac pro traC1044 mutant appears to be unique among traC mutants in retaining host sensitivity to the filamentous phage f1 in the absence of expression of extended F pili. Phage f1 attachment sites appeared to be present at the cell surface in traC1044 mutants. The reduced accessibility of these sites may account for the reduced efficiency of phage f1 infection of traC1044 hosts, although the possibility that a defect was present in the receptor site itself was not eliminated. Membranes of hosts carrying the F' mutation contained a full complement of mature F-pilin subunits, so the product of traC is presumably required for pilus assembly but not for pilin processing. This, together with the deficiency in conjugal DNA transfer, suggests that traC may be part of a membrane-spanning tra protein complex responsible for pilus assembly and disassembly and conjugal DNA transmission.  相似文献   

5.
6.
The minor coat protein pIII at one end of the filamentous bacteriophage fd, mediates the infection of Escherichia coli cells displaying an F-pilus. pIII has three domains (D1, D2 and D3), terminating with a short hydrophobic segment at the C-terminal end. Domain D2 binds to the tip of F-pilus, which is followed by retraction of the pilus and penetration of the E. coli cell membrane, the latter involving an interaction between domain D1 and the TolA protein in the membrane. Surface residues on the D2 domain of pIII were replaced systematically with alanine. Mutant virions were screened for D2-pilus interaction in vivo by measuring the release of infectious virions from E. coli F(+) cells infected with the mutants. A competitive ELISA was developed to measure in vitro the ability of mutant phages to bind to purified pili. This allowed the identification of amino acid residues involved in binding to F and to EDP208 pili. These residues were found to cluster on the outer rim of the 3D structure of the D2 domain, unexpectedly identifying this as the F-pilus binding region on the pIII protein.  相似文献   

7.
Mutants resistant to the donor-specific bacteriophage R17 were isolated from Hfr and Flac-containing strains of Escherichia coli K-12. Thirty-five mutants were examined for the presence of F pili by electron microscopy. The pilus morphology was studied, as were the abilities of the cells to retract their pili and to synthesize new pili. Measurements were made of the efficiency of the conjugal deoxyribonucleic acid transfer and of M13 and R17 phage infection. All mutants had noticeable defects in pilus production, structure, or function. Mutants were found which produced unusually long pili, displayed wide variations in the number of pili per cell, and were deficient in pilus retraction and synthesis. Evidence is presented that there may be two pathways of pilus retraction.  相似文献   

8.
Summary Six missense point mutations in traA (WPFL43,44,45,46,47 and 51), the gene encoding F pilin in the transfer region of the F plasmid, have been characterized for their effect on the transfer ability, bacteriophage (R17, QB and fl) sensitivity and levels of piliation expressed by the plasmid. The sequence analysis of the first five of these mutations revealed two domains in the F pilin subunit exposed on the surface of the F pilus which mediate phage attachment. These two domains include residues 14–17 (approximately) and the last few residues at the carboxy-terminus of the pilin protein. One of these mutants had a pleiotropic affect on pilus function and was thought to have affected pilus assembly. The sixthe point mutant (WPFL51), previously thought to be in traA, was complemented by chimeric plasmids carrying the traG gene of the F transfer region, which may be involved in the acetylation of the pilin subunit. A traA nonsense mutant (JCFL1) carried an amber mutation near the amino-terminus which is well suppressed in SuI+ (supD) and SuIII+ (supF) strains. Neither the antigenicity of the pilin nor the efficiency of plating of F-specific bacteriophages were affected when this plasmid was harbored by either suppressor strain. A second amber mutant (JCFL25) which is not suppressible, carried its mutation in the codon for the single tryptophan in F pilin, suggesting that this residue is important in subunit interactions during pilus assembly. Two other point mutants (JCFL32 and 44) carried missense mutations in the leader sequence (positions 9 and 13) which affected the number of pili per cell presumably by altering the processing of propilin to pilin.  相似文献   

9.
Three methods have been successful in the isolation of transfer-deficient mutants of the narrow-host-range R plasmid R91-5 of Pseudomonas aeruginosa: (i) selection for donor-specific phage resistance; (ii) direct screening after mutagenic treatment with either ethyl methane sulfonate or N-methyl-N'-nitro-N-nitrosoguanidine; (iii) in vitro mutagenesis of plasmid DNA by hydroxylamine followed by transformation and direct screening. The majority of transfer-deficient mutants were donor-specific phage resistant, supporting the view that sex pili and other surface components are essential for conjugal transfer (since the phages PRD1 and PR4 adsorb to these sites). Some of the transfer-deficient mutants were also unable to inhibit the replication of phage G101 or lost entry exclusion or both phenotypes. The ability to revert these pleiotropic mutants to wild type implicates the latter two functions in R91-5 transfer. Suppressor mutations in P. aeruginosa enabled the detection of suppressor-sensitive, transfer-deficient mutants. Such mutants should prove useful in conjugational complementation tests for the identification of the transfer cistrons of R91-5.  相似文献   

10.
The phages HP1c1 and S2 and a defective phage of Haemophilus influenzae have been compared. The morphology of the phages and the mol wt of their DNAs are similar, although the defective phage appears to have a different tail plate region. Electron microscope observation indicates that the defective phage does not attach to the cell surface, and its DNA appears to lack cohesive ends. The homology of the DNAs of the phages has been measured by hydridization. DNA from the defective phage shows little or no homology with the other phage DNAs. HP1c1 and S2 DNAs show a high level of homology. Each of these phages can form plaques on lawns of the lysogen of the other phage but at reduced plating efficiencies, suggesting that the two phages have related but not identical immunity systems.  相似文献   

11.
Summary A large number of Caulobacter mutants resistant to DNA or RNA phages were isolated. These phage-resistant mutants exhibited phenotypic variations with respect to cell motility and sensitivity to other phages.The majority of the mutants was resistant to both DNA and RNA phages tested. In addition, these mutants were either motile or non-motile. The analysis of spontaneous revertants from these mutants indicated that a single mutation is involved in these phenotypic variations. Other mutants were resistant to RNA phages and only to a certain DNA phage tested, and were also motile or non-motile.Several temperature-sensitive phage-resistant mutants were also isolated. One of them, CB13 ple-801, exhibited the wild type phenotype when grown at 25°C. However, at a higher temperature (35°C), the mutant cells became non-motile and resistant to both DNA and RNA phages. These phenotypes seem to be attributed to the concommitant loss of flagella, pili and phage receptors. In other respects (cell growth and morphology, and asymmetric stalk formation), CB13 ple-801 was normal at 35°C. The spontaneous revertants from CB13 ple-801 simultaneously regained the wild type phenotypes in all respects.It is suggested that a single mutation pleiotropically affects the formation of flagella, pili and phage receptors.  相似文献   

12.
P Kathir  K Ippen-Ihler 《Plasmid》1991,26(1):40-54
We devised a method for construction of insertion mutations in F plasmid tra region genes as a means of investigating the functions associated with previously uncharacterized loci. First, we constructed mutations in vitro, by insertion of a kanamycin resistance gene into a unique restriction site within a tra region fragment carried by a small, chimeric plasmid. Second, we crossed the insertion mutations, in vivo, onto a plasmid containing the complete F tra region sequence (either F lac, or pOX38, a Tra+ F plasmid derivative). Using this method, we obtained F lac mutant derivatives carrying KmR gene insertions in traQ, and a set of pOX38 mutant derivatives carrying a KmR gene insertion in trbA, artA, traQ, or trbB. Analysis of these derivatives showed that insertion of a kan gene at the NsiI site of traQ resulted in transfer deficiency, F-pilus-specific-phage resistance and an absence of detectable F-pilin subunit synthesis. Since the traQ mutants regained a wild-type phenotype when complemented with a traQ+ plasmid clone, we concluded that traQ expression is essential to transfer and F-pilus synthesis. However, pOX38 derivatives carrying kan gene inserts in genes trbA, artA, or trbB retained F-pilus-specific phage sensitivity and transferred at normal levels. Thus, these three gene products may not be essential for F-transfer from Escherichia coli K-12 under standard mating conditions.  相似文献   

13.
DNA was isolated from lytic phages of two strains, Bacillus licheniformis, a producer of bacitracin, and Bacillus thuringiensis forming protein paracrystals with pronounced insecticidal effects. Its sensitivity to Eco R1 restriction endonuclease was determined. It was the aim of the work to find out whether these phages could serve as vectors in the transfer and possible amplification of genes of the two important industrial species of bacilli. Approximate values of the molecular weight of DNA of the two phages were determined after degradation of the phage DNA by Eco R1, followed by comparison of electrophoretic mobility of individual fragments with that of the Eco R1-degraded DNA of phage lambdab2.  相似文献   

14.
KSF-1phi, a novel filamentous phage of Vibrio cholerae, supports morphogenesis of the RS1 satellite phage by heterologous DNA packaging and facilitates horizontal gene transfer. We analyzed the genomic sequence, morphology, and receptor for KSF-1phi infection, as well as its phylogenetic relationships with other filamentous vibriophages. While strains carrying the mshA gene encoding mannose-sensitive hemagglutinin (MSHA) type IV pilus were susceptible to KSF-1phi infection, naturally occurring MSHA-negative strains and an mshA deletion mutant were resistant. Furthermore, d-mannose as well as a monoclonal antibody against MSHA inhibited infection of MSHA-positive strains by the phage, suggesting that MSHA is the receptor for KSF-1phi. The phage genome comprises 7,107 nucleotides, containing 14 open reading frames, 4 of which have predicted protein products homologous to those of other filamentous phages. Although the overall genetic organization of filamentous phages appears to be preserved in KSF-1phi, the genomic sequence of the phage does not have a high level of identity with that of other filamentous phages and reveals a highly mosaic structure. Separate phylogenetic analysis of genomic sequences encoding putative replication proteins, receptor-binding proteins, and Zot-like proteins of 10 different filamentous vibriophages showed different results, suggesting that the evolution of these phages involved extensive horizontal exchange of genetic material. Filamentous phages which use type IV pili as receptors were found to belong to different branches. While one of these branches is represented by CTXphi, which uses the toxin-coregulated pilus as its receptor, at least four evolutionarily diverged phages share a common receptor MSHA, and most of these phages mediate horizontal gene transfer. Since MSHA is present in a wide variety of V. cholerae strains and is presumed to express in the environment, diverse filamentous phages using this receptor are likely to contribute significantly to V. cholerae evolution.  相似文献   

15.
A group of 12 Pseudomonas aeruginosa virulent bacteriophages of different origin scored with regard to the plaque phenotype are assigned to PB1-like species based on the similarity in respect to morphology of particles and high DNA homology. Phages differ in restriction profile and the set of capsid major proteins. For the purpose of studying adsorption properties of these phages, 20 random spontaneous mutants of P. aeruginosa PAO1 with the disturbed adsorption placed in two groups were isolated. Mutants of the first group completely lost the ability to adsorb all phages of this species. It is assumed that their adsorption receptors are functionally inactive or lost at all, because the attempt to isolate phage mutants or detect natural phages of PB1 species capable of overcoming resistance of these bacteria failed. The second group includes five bacterial mutants resistant to the majority of phages belonging to species PB1, These mutants maintain the vigorous growth of phage SN and poor growth of phage 9/3, which forms turbid plaques with low efficiency of plating. In the background of weak growth, phage 9/3 yields plaques that grew well. The examination of the progeny of phage 9/3, which can grow on these bacteria, showed that its DNA differed from DNA of the original phage 9/3 by restriction profile and is identical to DNA of phage PB1 with regard to this trait. Data supported a suggestion that this phage variant resulted from recombination of phage 9/3 DNA with the locus of P. aeruginosa PAO1 genome encoding the bacteriocinogenic factor R. However, this variant of phage 9/3 did not manifest the ability to grow on phage-resistant mutants of the first group. Possible reasons for the difference between phages 9/3 or SN and the remaining phages of PB1 species are discussed. A preliminary formal scheme of the modular structure for adsorption receptors on the surface of P. aeruginosa PAO1 bacteria was constructed based on the analysis of growth of some other phage species on adsorption mutants of the first type.  相似文献   

16.
Escherichia coli mutants have been isolated that are permissive for the infection by T4 phage with deletion in the cistron for the phage lysozyme, the e gene. Some, but not all, of these mutants are simultaneously permissive for the infection by T4 phage defective in the t gene, the product of which has also been implicated in the release of progeny phages. Most of these mutants shared the following properties: temperature sensitivity in growth and cell division, increased sensitivity towards a number of unrelated antibiotics and colicins, and increased sensitivity towards anionic detergents (sodium dodecyl sulfate and sodium deoxycholate). The possible biochemical basis for these phenotypes is discussed.  相似文献   

17.
Expression of human immunodeficiency virus-1 integrase in Escherichia coli, at levels that had no effect on bacterial cell growth, blocked plaque formation by bacteriophages having single-stranded genomic DNA (M13) or RNA (R17, Q, PRR1). Plaque formation by phages having double-stranded genomic DNA (T4, PR4) was unaffected. Integrase also inhibited infection by the phagemid M13KO7, but it had no effect on production of phage once infection by M13KO7 was established. This result indicated that integrase affects an early stage in infection. Integrase also inhibited phage production following transfection by either single-stranded or double-stranded (replicative form) M13 DNA, it blocked M13 DNA replication, as assayed by incorporation of radioactive nucleotides into DNA, and it failed to affect bacterial pilus function. These data suggest that integrase interacts in vivo with phage nucleic acid, a conclusion supported by studies in which integrase was shown to have a DNA-binding activity in its C-terminal portion. This portion of integrase was both necessary and sufficient for interference of plaque formation by M13 in the present study. Expression of the N-terminal portion of integrase at the same level as intact integrase had little effect on phage growth, indicating that expression of foreign protein in general was not responsible for the inhibitory effect. The simple bacteriophage assay described is potentially useful for identifying integrase mutants that lack single-stranded DNA binding activity.  相似文献   

18.
Pseudomonas aeruginosa transposable bacteriophages D3112 and B3 were found to require pili for infection. Seventy mutants of P. aeruginosa PAO selected by resistance to D3112 or B3 were also resistant to the phage not used in the selection and suggested that the receptors of these two phages are identical. Of five resistant mutants examined, all were defective in the production of pili and did not adsorb either phage. P. aeruginosa PAK strains altered in pilus expression, such as hyperpiliated or nonpiliated mutants, adsorbed the phage but were not productively infected, implying that an additional host function was required for infection. The cell-associated lipopolysaccharide was not required for D3112 or B3 infection, since mutants deficient in O side-chain and core biosynthesis were still capable of adsorption and productive infection. This is in contrast to Escherichia coli mutator phages Mu and D108, which are dependent on lipopolysaccharide for adsorption. The P. aeruginosa phages adsorbed only to cells grown on solid media or in liquid media supplemented with agents that increase the macroviscosity, such as polyvinylpyrrolidone. Adsorption time course studies of D3112 and B3 using cells grown in solid media revealed similar but not identical adsorption patterns. These studies suggested that expression of the D3112 and B3 cell receptor is induced by growth on solid media.  相似文献   

19.
IN recent years, many episomes other than the F factor of E. coli K12 have been discovered, such as the colicinogenic factors and the drug resistance transfer factors. Some of these seem to be related to F since they determine a pilus similar to the F pilus in serological properties and male specific phage sensitivity1. These F-like plasmids frequently inhibit their own transfer and of F when present in the same cell, but mutants have been obtained which do not produce the inhibiting substance and which allow transfer at a high rate1,2. One such mutant, R100-1, was used in the work to be described here.  相似文献   

20.
Coordination of Sex Pili with their Specifying R Factors   总被引:2,自引:0,他引:2  
A single bacterial cell can simultaneously carry both F-like (fi+) and I-like (fi?) R factors and, when the R factors are de-repressed, most cells produce both F-like and I-like sex pili. These pili can be distinguished immunologically and by their capacity to adsorb different phages1. The F pilus is the receptor for RNA phages such as MS2 and filamentous DNA phages such as M13. The I pilus is the receptor for other filamentous DNA phages such as If1 and If2. Electron microscopy suggests that these filamentous DNA phages, both F-specific and I-specific, adsorb to the tip of the pilus2,3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号