首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The expression patterns of plant defense genes encoding osmotin and osmotin-like proteins imply a dual function in osmotic stress and plant pathogen defense. We have produced transgenic potato (Solanum commersonii Dun.) plants constitutively expressing sense or antisense RNAs from chimeric gene constructs consisting of the cauliflower mosaic virus 35S promoter and a cDNA (pA13) for an osmotin-like protein. Transgenic potato plants expressing high levels of the pA13 osmotin-like protein showed an increased tolerance to the late-blight fungus Phytophthora infestans at various phases of infection, with a greater resistance at an early phase of fungal infection. There was a decrease in the accumulation of osmotin-like mRNAs and proteins when antisense transformants were challenged by fungal infection, although the antisense transformants did not exhibit any alterations in disease susceptibility. Expression of pA13 sense and antisense RNAs had no effect on the development of freezing tolerance in transgenic plants when assayed under a variety of conditions including treatments with abscisic acid or low temperature. These results provide evidence of antifungal activity for a potato osmotin-like protein against the fungus P. infestans, but do not indicate that pA13 osmotin-like protein is a major determinant of freezing tolerance.  相似文献   

2.
3.
4.
A cDNA encoding a putative RNA-binding glycine-rich protein, SCRGP-1, was isolated from the wild potato species Solanum commersonii. The amino acid sequence of the deduced protein revealed that the protein contains a consensus RNA-binding domain and has a glycine-rich carboxy-terminal domain. The corresponding gene is induced by low temperature, ABA, wounding, and drought in both Solanum commersonii and Solanum tuberosum. The response of this putative RNA-binding protein gene to low temperature and ABA treatments in Solanum sp. suggests that the SCRGP-1 protein might participate in the adaptation process leading to increased freezing tolerance.  相似文献   

5.
Mechanical wounding or infection of potatoes with Phytophthora infestans caused an accumulation of only serine protease inhibitors in exudates of potato tubers. Among them, proteins prevailed that are structurally similar to those present in healthy tubers: a 22-kDa trypsin inhibitor, a 21-kDa serine protease inhibitor consisting of two polypeptide chains, and a 8-kDa potato chymotrypsin I inhibitor produced de novo. The accumulated proteins inhibited the growth of hyphae and germination of zoospores of P. infestans. Treatment with elicitors, jasmonic and arachidonic acids, intensified the accumulation of these inhibitors in tubers in response to the wound stress, whereas salicylic acid blocked this process. These results suggest that lipoxygenase metabolism plays a substantial role in signal transduction of the protective system of resting potato tubers.  相似文献   

6.
Previous studies have identified a set of highly phosphorylated proteins of 23–25 kDa accumulated during normal embryogenesis of Zea mays L. and which disappear in early germination. They can be induced precociously in embryos by abscisic acid (ABA) treatment. Here the synthesis and accumulation of this group of proteins and their corresponding mRNAs were examined in ABA-deficient viviparous embryos at different developmental stages whether treated or not with ABA, and in water-stressed leaves of both wild-type and viviparous mutants.During embryogenesis and precocious germination of viviparous embryos the pattern of expression of the 23–25 kDa proteins and mRNAs closely resembles that found in non-mutant embryo development. They are also induced in young viviparous embryos by ABA treatment. In contrast, leaves of ABA-deficient mutants fail to accumulate mRNA in water stress, yet do respond to applied ABA. In water-stressed leaves of wild type plants the mRNAs are induced and translated into 4 proteins with a molecular weight and isoelectric point identical to those found in embryos.These results indicate that the 23–25 kDa protein set is a new member of the recently described class or proteins involved in generalized plant ABA responses.The different pattern of expression for the ABA-regulated 23–25 kDa proteins and mRNAs found in embryo and in vegetative tissues of viviparous mutants is discussed.  相似文献   

7.
Vacuolar processing enzyme (VPE) is a cysteine protease responsible for the maturation of various vacuolar proteins in higher plants. The Arabidopsis thaliana (L.) Heynh. VPE gene, encoding a VPE homologue, is slowly up-regulated in both local and systemic leaves in response to wounding. To clarify the activation mechanism of VPE, we examined the accumulation of VPE mRNA after hormone treatments or after wounding in wild-type and various mutant plants of Arabidopsis. Both ethylene and jasmonic acid (JA) are known as signal molecules that activate the wound-responsive genes. However, treatment with exogenous JA had little effect on the VPE response, although JA activated the vegetative storage protein (VSP) gene, a typical wound-responsive gene. Wounding activated VPE even in two ethylene-insensitive plants (etr1-1 and ein2-1). Thus, the wound-induced expression of VPE was independent of ethylene and JA. We found that the wound-induced expression of VPE was reduced in two SA-deficient plants (pad4-1 and NahG), while the wound-induced expression of VSP increased in these mutants. Appreciable accumulation of SA was not observed in either the local or systemic leaves after wounding. These results suggest that endogenous SA enhances the wound-induced expression of VPE and attenuates the wound-induced expression of VSP, although SA is not a wound-signal that directly activates these genes.Abbreviations ABA abscisic acid - GST glutathione S-transferase - INA 2,6-dichloroisonicotinic acid - JA jasmonic acid - MeJA methyl jasmonate - PR pathogenesis-related - RBCS Rubisco small subunit - SA salicylic acid - VPE vacuolar processing enzyme - VSP vegetative storage protein  相似文献   

8.
Infection of potato leaves (Solanum tuberosum L. cv. Datura) by the late blight fungus Phytophthora infestans, or treatment with fungal elicitor leads to a strong increase in chitinase and 1,3--glucanase activities. Both enzymes have been implicated in the plant's defence against potential pathogens. In an effort to characterize the corresponding genes, we isolated complementary DNAs encoding the basic forms (class I) of both chitinase and 1,3--glucanase, which are the most abundant isoforms in infected leaves. Sequence analysis revealed that at least four genes each are expressed in elicitor-treated leaves. The structural features of the potato chitinases include a hydrophobic signal peptide at the N-terminus, a hevein domain which is characteristic of class I chitinases, a proline- and glycine-rich linker region which varies among all potato chitinases, a catalytic domain, and a C-terminal extension. The potato 1,3--glucanases also contain a N-terminal hydrophobic signal peptide and a C-terminal extension, the latter comprising a potential glycosylation site. RNA blot hybridization experiments showed that basic chitinase and 1,3--glucanase are strongly and coordinately induced in leaves in response to infection, elicitor treatment, ethylene treatment, or wounding. In addition to their activation by stress, both types of genes are regulated by endogenous factors in a developmental and organ-specific manner. Appreciable amounts of chitinase and 1,3--glucanase mRNAs were found in old leaves, stems, and roots, as well as in sepals of healthy, untreated plants, whereas tubers, root tips, and all other flower organs (petals, stamen, carpels) contained very low levels of both mRNAs. In young leaves and stems, chitinase and 1,3--glucanase were differentially expressed. While chitinase mRNA was abundant in these parts of the plant, 1,3--glucanase mRNA was absent. DNA blot analysis indicated that in potato, chitinase and 1,3--glucanase are encoded by gene families of considerable complexity.  相似文献   

9.
10.
11.
Many TFIIIA‐type zinc finger proteins (ZFPs) play important roles in stress responses in plants. In the present study, a novel zinc finger protein gene, StZFP1, was cloned from potato. StZFP1 is a typical TFIIIA‐type two‐finger zinc finger gene with one B‐box domain, one L‐box domain and a DLN‐box/EAR motif. The StZFP1 genes belong to a small gene family with an estimated copy number of four or five, located on chromosome I. StZFP1 is constitutively expressed in leaves, stems, roots, tubers and flowers of adult plants. Expression of StZFP1 can be induced by salt, dehydration and exogenously applied ABA. StZFP1 expression is also responsive to infection by the late blight pathogen Phytophthora infestans. Transient expression analysis of StZFP1:GFP fusion protein revealed that StZFP1 is preferentially localised in the nucleus. Ectopic expression of StZFP1, driven by the Arabidopsis rd29A promoter in transgenic tobacco, increased plant tolerance to salt stress. These results demonstrate that StZFP1 might be involved in potato responses to salt and dehydration stresses through an ABA‐dependent pathway.  相似文献   

12.
13.
14.
The time courses of sesquiterpenoid phytoalexin accumulation were examined in compatible and incompatible interactions of leaves and tubers from five different R genotypes of potato (Solanum tuberosum) with corresponding pathotypes of Phytophthora infestans, as well as in non-host interactions of all five potato cultivars with Phytophthora megasperma f. sp. glycinea and in elicitor-treated tubers from five, and cell suspension cultures from two, of the cultivars. In tubers, rishitin and several structurally related sesquiterpene derivatives accumulated rapidly in non-host incompatible interactions, less rapidly in host incompatible interactions, and more slowly in compatible interactions. Treatment of tubers or cell cultures with fungal culture filtrate or arachidonic acid elicited in most cases a transient accumulation of the sesquiterpenoid phytoalexins. None of these compounds was detectable under any of the applied conditions either in infected or in elicitortreated leaves. Sesquiterpenoid phytoalexins might therefore be helpful, but appear not to be essential, in disease resistance of potato.Abbreviations CF concentrated culture filtrate of Pi - cv. cultivar - Pi Phytophthora infestans (numbering indicates pathotypes corresponding to R genes in potato) - Pmg Phytophthora megasperma f. sp. glycinea  相似文献   

15.
Accumulation of messenger RNAs in potato tuber discs was analysed during the hypersensitive response induced by treatment with the biotic elicitor arachidonic acid. In vitro translation of polysomal poly(A)+ RNAs indicated that the accumulation of some sixteen mRNAs varied following treatment with arachidonic acid, and that the level of thirteen of these was increased. Two cDNA closes (pSTH-1 and-2) were isolated from a library of elicitor-treated tissue cDNAs. Northern blot analysis using these clones as molecular probes indicated that the levels of at least two mRNAs were markedly increased after elicitor treatment. In hybrid-released translation experiments, each of the cDNA clones selected more than one mRNA. Translation of these mRNAs yielded two polypeptides of Mr 45 000 (for the pSTH-1 clone), and three polypeptides of Me 17 000 (for the pSTH-2 clone). The low molecular weight polypeptides may correspond to potato pathogenesis-related (PR) proteins.  相似文献   

16.
Tomato and potato leucine aminopeptidase (LAP) mRNAs are induced in response to mechanical wounding and the wound signal molecules, ABA and jasmonic acid. Here, we report the isolation of two LAP genes, LAP17.1A and LAP17.2, from tomato. Functional analysis in transgenic tomato and potato plants show that fusions of the corresponding 5 non-coding regions to the gusA gene are constitutively expressed in flowers and induced in leaves upon wounding or by treatment with methyl jasmonate (MeJA). Comparison of the 5 non-coding regions of the two genes revealed a region from –317 to –3 relative to the ATG, which is strongly conserved in both promoters. This 0.3 kb proximal promoter fragment is sufficient to direct flower-specific and MeJA-inducible GUS activity in transgenic potato plants, and thus contains a MeJA-responsive element that mediates induction by MeJA. Dimeric TGACG motifs or G-box elements similar to those found in other MeJA-inducible genes are not observed in this region, which suggests that a different DNA sequence is involved in MeJA induction of the LAP genes.  相似文献   

17.
B. G. Smith  P. H. Rubery 《Planta》1981,151(6):535-540
During the first 24 h of in vitro incubation of excised potato tuber (Solanum tuberosum L.) discs, the appearance of phenylalanine ammonia-lyase (PAL; EC 3.4.1.5) and the accumulation of chlorogenic acid are both stimulated by infection with Phytophthora infestans (Mont.) de Bary. Whereas in control tissue the level of PAL reached a stable plateau value after 40 h, in infected tissue it subsequently rose again, in one experiment, as the fungal mycelium developed. In the infected but not the control tissue, the level of chlorogenic acid subsequently fell to about to about 20% of its maximum after 50 h. The time courses of increases in cinnamic acid 4-hydroxylase (CA4H; EC 1.14.13.11; 0–60 h) and of caffeic acid acid o-methyltransferase (COMT; EC 2.1.1.42; 0–160 h) are not altered by fungal infection. If the discs are restored to the tuber environment immediately after excision, by placing them inside a host tuber, the activity of PAL as well as those of CA4H and COMT remained at the constant low endogenous level for at least 60 h, irrespective of whether the discs had first been inoculated with P. infestans. The increase in PAL may not be an obligatory feature of the P. infestans/potato compatible interaction but dependent on an underlying wound response. The experiments provide further evidence that PAL is the rate limiting step of chlorogenic acid biosynthesis in potato tuber discs.Abbreviations PAL phenylalanine ammonia-lyase - CA4H cinnamic acid 4-hydroxylase - COMT caffeic acid o-methyltransferase - CGA chlrogenic acid (5-o-caffeoylquinic acid) - gfwt gram fresh weight  相似文献   

18.
The influence of the early stages of fungal infection on chloroplast metabolism was studied in cultivar/race-specific interactions between potato (Solanum tuberosum L. cv. Datura) and the late-blight fungusPhytophthora infestans. The accumulation of several mRNAs encoding components of the photosynthetic apparatus was not affected, either in compatible or in incompatible interactions. However, within 3 h after inoculation of potato leaves with fungal spores, a change in the photochemistry of photosystem II was detectable by measuring chlorophylla fluorescence. Characteristic fluorescence parameters, such as maximum fluorescence yield (Fm), variable fluorescence yield (Fv) and photochemical efficiency (Fv/Fm), were specifically reduced in the compatible host/pathogen interaction. Analyses of photochemical and nonphotochemical fluorescence quenching showed an increase in the photochemical fraction. The amounts of two selected thylakoid membrane proteins and of total chlorophyll remained unchanged during this process, suggesting that the functional modification of the electron-transport system was not correlated with a change in the composition of the photosynthetic apparatus. The alterations of photosynthetic electron transport represent a rapidly detectable and sensitive physiological marker for compatible interactions in the potato/Phytophthora infestans pathosystem.  相似文献   

19.
20.
Immature embryos of Brassica napus were cultured in vitro with and without various concentrations of germination inhibitors, and the progress of embryogeny was monitored by comparing accumulation of storage proteins in culture with the normal accumulation in seeds. The two major B. napus storage proteins (12S and 1.7S) were purified from seed extracts and analyzed by rocket immunoelectrophoresis (12S protein) or by sodium lauryl sulfate polyacrylamide gel electrophoresis (1.7S protein). During embryo development within seeds both the 12S and 1.7S proteins were first detected when the cotyledons were well developed (embryo dry weight, 0.4 mg), and each storage protein accumulated at an average rate of 26 g d-1 during maximum deposition. Accumulation of the 1.7S protein stopped when the water content of the embryo began to decline (embryo DW, 2.7 mg), but accumulation of the 12S protein continued until seed maturity (embryo DW, 3.6 mg). At the end of embryo development the 12S and the 1.7S proteins comprised approx. 60 and 20% of the total salt-soluble protein, respectively. When embryos were removed from seeds at day 27, just as storage protein was starting to accumulate, and placed in culture on a basal medium, they precociously germinated within 3d, and incorporation of amino acids into the 12S storage protein dropped from 3% of total incorporation to less than 1%. If 10-6 M abscisic acid (ABA) was included in the medium, amino-acid incorporation into the 12S protein increased from 3% of total incorporation when embryos were placed into culture to 18%, 5d later, and the accumulation rate (27.1±2.6 g embryo-1 d-1) matched the maximum rate observed in the seed. High osmotica, such as 0.29 M sucrose or mannitol, added to the basal medium, also inhibited precocious germination, but there was a lag period before 12S-protein synthesis rates equaled the rates on ABA media. These results indicate that some factor in the seed environment is necessary for storage-protein synthesis to proceed, and that ABA is a possible candidate.Abbreviations ABA abscisic acid - PAGE polyacrylamide gel electrophoresis - PMSF phenylmethylsulfonylfluoride - SDS sodium lauryl sulfate  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号