首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Doxorubicin (Dox) is an effective chemotherapeutic agent, however, its use is limited by cardiotoxicity. The mechanisms causing cardiotoxicity have not been clearly elucidated, but known to involve, at least in part, oxidative stress, mitochondrial dysfunction and apoptosis. More recently, it has been suggested that dysregulation of autophagy may also play an important role in Dox-induced cardiotoxicity. Autophagy has dual functions. Under physiological conditions, autophagy is essential for optimal cellular function and survival by ridding the cell of damaged or unwanted proteins and organelles. Under pathological conditions, autophagy may be stimulated in order to protect the cell from stress stimuli or, alternatively, to contribute to cell death. Thus, appropriate regulation of autophagy can be a matter of life or death. The role of autophagy in Dox-induced cardiotoxicity has recently been explored, however, conflicting reports on the effects of Dox on autophagy and its role in cardiotoxicity exist. Most, but not all, of the studies conclude that Dox upregulates cardiac autophagy and contributes to the pathogenesis of Dox-induced toxicity. Dox may induce autophagy by suppressing the expression of GATA4 and/or S6K1, which may directly or indirectly regulate expression of essential autophagy genes such as Atg12, Atg5, Beclin1 and Bcl-2. Interestingly, the Dox-induced autophagic response may be species specific as Dox treatment has been shown to stimulate autophagy in rat models, but suppress autophagy in mouse models. Additional studies will elucidate this possibility.  相似文献   

2.
The effect of CardiPro, a polyherbal formulation, with an antioxidant property, has been studied on doxorubicin (DXR)-induced cardiotoxicity in mice. CardiPro (150 mg/kg b.w., twice daily was administered orally for 7 weeks along with four equal injections (each containing 4.0 mg/kg b.w., DXR) intraperitoneally, once weekly (cumulative dose 16 mg/kg). After a 3-week post DXR treatment period, cardiotoxicity was assessed by noting mortality, volume of ascites, liver congestion, changes in heart weight, myocardial lipid peroxidation, antioxidant enzymes and histology of heart. DXR-treated animals showed higher mortality (50%) and more ascites. Myocardial SOD and glutathione peroxidase activity were decreased and lipid peroxidation was increased. Histology of heart of DXR-treated animals showed loss of myofibrils and focal cytoplasmic vacuolization. CardiPro significantly protected the mice from DXR-induced cardiotoxic effects as evidenced by lower mortality (25%), less ascites, myocardial lipid peroxidation, normalization of antioxidant enzymes and minimal damage to the heart histologically. Our data confirm the earlier reports that DXR cardiotoxicity is associated with the free radical-induced tissue damage. Administration of CardiPro, with an antioxidant property, protected the DXR-induced cardiotoxicity in mice.  相似文献   

3.
The tumor suppressor breast cancer susceptibility gene 2 (BRCA2) plays an important role in the repair of DNA damage, and loss of BRCA2 predisposes carriers to breast and ovarian cancers. Doxorubicin (DOX) remains the cornerstone of chemotherapy in such individuals. However, it is often associated with cardiac failure, which once manifests carries a poor prognosis. Because BRCA2 regulates genome-wide stability and facilitates DNA damage repair, we hypothesized that loss of BRCA2 may increase susceptibility to DOX-induced cardiac failure. To this aim, we generated cardiomyocyte-specific BRCA2 knock-out (CM-BRCA2(-/-)) mice using the Cre-loxP technology and evaluated their basal and post-DOX treatment phenotypes. Although CM-BRCA2(-/-) mice exhibited no basal cardiac phenotype, DOX treatment resulted in markedly greater cardiac dysfunction and mortality in CM-BRCA2(-/-) mice compared with control mice. Apoptosis in left ventricular (LV) sections from CM-BRCA2(-/-) mice compared with that in corresponding sections from wild-type (WT) littermate controls was also significantly enhanced after DOX treatment. Microscopic examination of LV sections from DOX-treated CM-BRCA2(-/-) mice revealed a greater number of DNA double-stranded breaks and the absence of RAD51 focus formation, an essential marker of double-stranded break repair. The levels of p53 and the p53-related proapoptotic proteins p53-up-regulated modulator of apoptosis (PUMA) and Bax were significantly increased in samples from CM-BRCA2(-/-) mice. This corresponded with increased Bax to Bcl-2 ratios and elevated cytochrome c release in the LV sections of DOX-treated CM-BRCA2(-/-) mice. Taken together, these data suggest a critical and previously unrecognized role of BRCA2 as a gatekeeper of DOX-induced cardiomyocyte apoptosis and susceptibility to overt cardiac failure. Pharmacogenomic studies evaluating cardiac function in BRCA2 mutation carriers treated with doxorubicin are encouraged.  相似文献   

4.
5.
Doxorubicin (DOX) is an effective, broad-spectrum antineoplastic agent with serious cardiotoxic side effects, which may lead to the development of heart failure. Current strategies to diagnose, prevent, and treat DOX-induced cardiotoxicity (DIC) are inadequate. Recent evidence has linked the dysregulation and destruction of the vascular endothelium to the development of DIC. Autophagy is a conserved pro-survival mechanism that recycles and removes damaged sub-cellular components. Autophagy-related protein 7 (ATG7) catalyzes autophagosome formation, a critical step in autophagy. In this study, we used endothelial cell-specific Atg7 knockout (EC-Atg7?/?) mice to characterize the role of endothelial cell-specific autophagy in DIC. DOX-treated EC-Atg7?/? mice showed reduced survival and a greater decline in cardiac function compared to wild-type controls. Histological assessments revealed increased cardiac fibrosis in DOX-treated EC-Atg7?/? mice. Furthermore, DOX-treated EC-Atg7?/? mice had elevated serum levels of creatine kinase-myocardial band, a biomarker for cardiac damage. Thus, the lack of EC-specific autophagy exacerbated DIC. Future studies on the relationship between EC-specific autophagy and DIC could establish the importance of endothelium protection in preventing DIC.  相似文献   

6.
The natural polyphenol resveratrol (RSV) displays a wide spectrum of health beneficial activities, yet the precise mechanisms remain to be fully elucidated. Here we show that RSV promotes the multimerization and cellular levels of adiponectin in 3T3-L1 adipocytes. The stimulatory effect of RSV was not affected by knocking out Sirt1, but was diminished by suppressing the expression levels of DsbA-L, a recently identified adiponectin-interactive protein that promotes adiponectin multimerization. Suppression of the Akt signaling pathway resulted in an increase in the expression levels of DsbA-L and adiponectin. On the other hand, knocking out FOXO1 or suppressing the activity or expression levels of the AMP-activated protein kinase (AMPK) down-regulated DsbA-L and adiponectin. The stimulatory effect of RSV on adiponectin and DsbA-L expression was completely diminished in FOXO1-suppressed and AMPK-inactivated 3T3-L1 adipocytes. Taken together, our results demonstrate that RSV promotes adiponectin multimerization in 3T3-L1 adipocytes via a Sirt1-independent mechanism. In addition, we show that the stimulatory effect of RSV is regulated by both the Akt/FOXO1 and the AMPK signaling pathways. Last, we show that DsbA-L plays a critical role in the promoting effect of RSV on adiponectin multimerization and cellular levels.  相似文献   

7.
8.
Adiponectin is an adipokine playing an important role in regulating energy homeostasis and insulin sensitivity. However, the effect of adiponectin on bone metabolism shows contradictory results according to different research studies. In this study femurs were isolated from genetically double-labeled mBSP9.0Luc/β-ACT-EGFP transgenic mice and were transplanted into adiponectin knock-out mice or wild type mice to investigate the effect of temporary exposure to adiponectin deficiency on bone growth and metabolism. We found that the growth of bone explants in adiponectin knock-out mice was significantly retarded. Histological analysis, microcomputed tomography analysis, and tartrate-resistant acid phosphatase staining revealed reduced trabecular bone volume, decreased cortical bone, and increased osteoclast number in bone explants in adiponectin knock-out mice. We then found that adiponectin inhibits RANKL-induced osteoclastogenesis from RAW264.7 cells and down-regulates RANKL-enhanced expressions of osteoclastogenic regulators including NFAT2, TRAF6, cathepsin K, and tartrate-resistant acid phosphatase. Adiponectin also increases osteoclast apoptosis and decreases survival/proliferation of osteoclast precursor cells. Using siRNA specifically targeting APPL1, the first identified adaptor protein of adiponectin signaling, we found that the inhibitory effect of adiponectin on osteoclasts was induced by APPL1-mediated down-regulation of Akt1 activity. In addition, overexpression of Akt1 successfully reversed adiponectin-induced inhibition in RANKL-stimulated osteoclast differentiation. In conclusion, adiponectin is important in maintaining the balance of energy metabolism, inflammatory responses, and bone formation.  相似文献   

9.
Adiponectin is an adipocyte-specific adipocytokine that possesses anti-atherogenic and anti-diabetic properties. It has been shown to have a beneficial effect on the cardiovascular system, but it remains to be elucidated whether adiponectin has a therapeutic effect on vascular damage induced by the potential vasoactive substance angiotensin II (Ang II). In this study, the effects of adiponectin on Ang II-induced vascular endothelial damage were investigated. In cultured human umbilical vein endothelium cells, Ang II stimulation increased generation of ROS and 4-hydroxy-2-nonenal, both of which were clearly restored by administration of adiponectin. In addition, administration of adiponectin was found to increase cell viability and prevent apoptosis. Our results also demonstrate that the protective effects of adiponectin against Ang II-induced vascular endothelial damage are dependent on the binding of adiponectin to its cell surface receptor 1. Importantly, we found that adiponectin treatment modulates the apoptotic pathway by reducing the expression of LOX-1, up-regulating both cIAP-1 and the ratio of Bcl-2/Bax. Finally, our data displayed that the protective effects of adiponectin against Ang II cytotoxicity depend on AMPK activation mediated by the endosomal adaptor protein, adaptor protein with phosphotyrosine binding, pleckstrin homology domains, and leucine zipper motif.  相似文献   

10.
Tumorigenesis involves constant communication between tumor cells and neighboring normal cells such as adipocytes. The canonical function of adipocytes is to store triglyceride and release fatty acids for other tissues. This study was aimed to find out if adipocytes promoted melanoma cell growth and to investigate the underlying mechanism. Here we isolated adipocytes from inguinal adipose tissue in mice and co-cultured with melanoma cells. We found that the co-cultured melanoma had higher lipid accumulation compared with mono-cultured melanoma. In addition, fluorescently labeled fatty acid BODIPY® FLC16 signal was detected in melanoma co-cultured with the adipocytes that had been loaded with the fluorescent dye, suggesting that the adipocytes provide fatty acids to melanoma cells. Compared with mono-cultured melanoma, co-cultured melanoma cells had a higher proliferation and phospho-Akt (Ser-473 and Thr-450) expression. Overexpression of Akt mutants in melanoma cells reduced the co-culture-enhanced proliferation. A lipidomic study showed that the co-cultured melanoma had an elevated palmitic acid level. Interestingly, we found that palmitic acid stimulated melanoma cell proliferation, changed the cell cycle distribution, and increased phospho-Akt (Ser-473 and Thr-450) and PI3K but not phospho-PTEN (phosphophosphatase and tensin homolog) expressions. More importantly, the palmitic acid-stimulated proliferation was further enhanced in the Akt-overexpressed melanoma cells and was reduced by LY294002 or knockdown of endogenous Akt or overexpression of Akt mutants. We also found that palmitic acid-pretreated B16F10 cells were grown to a significantly larger tumor in mice compared with control cells. Taken together, we suggest that adipocytes may serve as an exogenous source of palmitic acid that promotes melanoma cell growth by activating Akt.  相似文献   

11.
The therapeutic value of doxorubicin as an effective antineoplastic agent is limited by its cardiotoxic side-effects. The administration of doxorubicin (10 mg/kg) to male Wistar rats induced necrosis and apoptosis in heart tissues. It also caused oxidative stress damage as evidenced by the elevation of malondialdehyde and protein carbonyl levels and catalase activity, accompanied by the concurrent depletion of total antioxidant capacity and of superoxide dismutase level in cardiac tissues. The doxorubicin-induced cardiotoxicity and oxidative stress damage were also accompanied by increases of myeloperoxidase activity, total calcium content, and the expression of Bcl-2 protein in heart tissues. Most of these doxorubicin-induced biochemical and histological alterations were effectively attenuated by prior administration of purified standardized extract (1.5% withanolides; manufactured by Idea Sphere Inc., American Fork, UT, USA) of Withania somnifera (300 mg/kg). Thus, Withania may play a role in the protection against cardiotoxicity and thus might be a useful adjuvant therapy where doxorubicin is the cancer-treating drug.  相似文献   

12.
13.
The dual signal hypothesis of apoptosis holds that a common signal can activate both apoptotic and proliferative pathways. The fate of a cell is dependent on which of these two pathways predominates. In the MAPK family of kinases, ERK and JNK have been proposed to mediate apoptosis whereas the PI3K-stimulated kinase, Akt/PKB, has been shown to inhibit apoptosis. The object of this study was to determine the role of these kinases in a glioma model of apoptosis. We have previously shown that K252a induces apoptosis and inhibits kinase activity. In this study we confirm these results and shown that the protein tyrosine phosphatase inhibitor sodium vanadate activates ERK, JNK and Akt/PKB, but does not stimulate proliferation. Vanadate did protect T98G cells from K252a-induced apoptosis, an effect that was abolished by addition of the PI3K inhibitor wortmannin. This suggests that PI3K and Akt/PKB may be responsible for mediating vanadate's protective effect on glioma cells. We conclude that the intracellular balance between protein phosphorylation pathways is a critical determinant of both cell proliferation and cell death.  相似文献   

14.
Constitutive activation of the PI3 kinase/Akt pathway is associated with the neoplastic phenotype of a large number of human tumor cells. As the anti-apoptotic role of the PI3 kinase/Akt pathway has been established, we have examined whether specific blockade of this pathway sensitizes tumor cells to DNA-damaging agent-induced cytotoxicity by enhancing apoptotic cell death. Although a PI3 kinase inhibitor, LY294002, by itself does not induce apoptotic cell death, LY294002 selectively and markedly enhances the apoptosis-inducing efficacy of doxorubicin: such an enhanced cell death is only detected in tumor cells in which the PI3 kinase/Akt pathway is constitutively activated, and it is totally dependent on the functional p53 pathway. These results suggest that the combination of a PI3 kinase/Akt pathway inhibitor and doxorubicin provides an efficient chemotherapeutic strategy for the treatment of tumor cells in which the PI3 kinase/Akt pathway is constitutively activated and the p53 pathway is functional.  相似文献   

15.
Doxorubicin (DOX) is one of the most effective chemotherapeutic drugs; however, its incidence of cardiotoxicity compromises its therapeutic index. DOX-induced heart failure is thought to be caused by reduction/oxidation cycling of DOX to generate oxidative stress and cardiomyocyte cell death. Resveratrol (RV), a stilbene found in red wine, has been reported to play a cardioprotective role in diseases associated with oxidative stress. The objective of this study was to test the ability of RV to protect against DOX-induced cardiomyocyte death. We hypothesized that RV protects cardiomyocytes from DOX-induced oxidative stress and subsequent cell death through changes in mitochondrial function. DOX induced a rapid increase in reactive oxygen species (ROS) production in cardiac cell mitochondria, which was inhibited by pretreatment with RV, most likely owing to an increase in MnSOD activity. This effect of RV caused additional polarization of the mitochondria in the absence and presence of DOX to increase mitochondrial function. RV pretreatment also prevented DOX-induced cardiomyocyte death. The protective ability of RV against DOX was abolished when Sirt1 was inhibited by nicotinamide. Our data suggest that RV protects against DOX-induced oxidative stress through changes in mitochondrial function, specifically the Sirt1 pathway leading to cardiac cell survival.  相似文献   

16.
Doxorubicin (Dox) is an anthracycline antibiotic that has been used to treat different cancers. Dox-induced cardiotoxicity is common in clinical practice, while its mechanism is unknown. It has been proved that lncRNA FOXC2-AS1 may promote doxorubicin resistance and WNT1-inducible signaling pathway protein-1 (WISP1) blocks doxorubicin-induced cardiomyocyte death. Our study aimed to investigate the involvement of lncRNA FOXC2-AS1 and WISP1 in doxorubicin-induced cardiotoxicity and to explore their interactions. In our study we observed that FOXC2-AS1 and WISP1 mRNA were downregulated in heart tissues of mice with Dox-induced cardiotoxicity. FOXC2-AS1 and WISP1 mRNA expression were positively correlated in mice with Dox-induced cardiotoxicity but not in healthy mice. Overexpression of FOXC2-AS1 promoted to viability of mice cardiomyocytes under Dox treatment and also increased the expression level of WISP1. In contrast, WISP1 overexpression showed no significant effect on FOXC2-AS1. We therefore conclude that lncRNA FOXC2-AS1 may upregulate WISP1 to protect cardiomyocytes from doxorubicin-induced cardiotoxicity.  相似文献   

17.
The Akt pathway is frequently hyperactivated in human cancer and functions as a cardinal nodal point for transducing extracellular and intracellular oncogenic signals and, thus, presents an exciting target for molecular therapeutics. Here we report the identification of a small molecule Akt/protein kinase B inhibitor, API-1. Although API-1 is neither an ATP competitor nor substrate mimetic, it binds to pleckstrin homology domain of Akt and blocks Akt membrane translocation. Furthermore, API-1 treatment of cancer cells results in inhibition of the kinase activities and phosphorylation levels of the three members of the Akt family. In contrast, API-1 had no effects on the activities of the upstream Akt activators, phosphatidylinositol 3-kinase, phosphatidylinositol-dependent kinase-1, and mTORC2. Notably, the kinase activity and phosphorylation (e.g. Thr(P)308 and Ser(P)473) levels of constitutively active Akt, including a naturally occurring mutant AKT1-E17K, were inhibited by API-1. API-1 is selective for Akt and does not inhibit the activation of protein kinase C, serum and glucocorticoid-inducible kinase, protein kinase A, STAT3, ERK1/2, or JNK. The inhibition of Akt by API-1 resulted in induction of cell growth arrest and apoptosis selectively in human cancer cells that harbor constitutively activated Akt. Furthermore, API-1 inhibited tumor growth in nude mice of human cancer cells in which Akt is elevated but not of those cancer cells in which it is not. These data indicate that API-1 directly inhibits Akt through binding to the Akt pleckstrin homology domain and blocking Akt membrane translocation and that API-1 has anti-tumor activity in vitro and in vivo and could be a potential anti-cancer agent for patients whose tumors express hyperactivated Akt.  相似文献   

18.
Oxidative stress has been shown to induce apoptosis in a variety of tissues, while insulin-like growth factor-I (IGF-I) can oppose this effect. We found that H2O2 promoted cell death and apoptosis in C2C12 myoblasts, an effect that was completely prevented by exogenous IGF-I. One downstream mediator of IGF-I survival signaling is the serine/threonine kinase Akt, of which three isoforms have been identified in mammals. We found that Akt1 and Akt3 act on pro-apoptotic target molecules in an isoform-specific manner. Both Akt1 and Akt3 were responsible for phosphorylating FoxO3a at S253 and FoxO1 at T24, while Akt1 alone phosphorylated Bad at S136 and FoxO3a at T32. Our results provide evidence for IGF-I-stimulated isoform-specific actions of Akt on molecules involved in promoting apoptosis.  相似文献   

19.
The functional impact of adiponectin on pancreatic beta cells is so far poorly understood. Although adiponectin receptors (AdipoR1/2) were identified, their involvement in adiponectin-induced signaling and other molecules involved is not clearly defined. Therefore, we investigated the role of adiponectin in beta cells and the signaling mediators involved. MIN6 beta cells and mouse islets were stimulated with globular (2.5 μg/ml) or full-length (5 μg/ml) adiponectin under serum starvation, and cell viability, proliferation, apoptosis, insulin gene expression, and secretion were measured. Lysates were subjected to Western blot analysis to determine phosphorylation of AMP-activated protein kinase (AMPK), Akt, or ERK. Functional significance of signaling was confirmed using dominant negative mutants or pharmacological inhibitors. Participation of AdipoRs was assessed by overexpression or siRNA. Adiponectin failed to activate AMPK after 10 min or 1- and 24-h stimulation. ERK was significantly phosphorylated after 24-h treatment with adiponectin, whereas Akt was activated at all time points examined. 24-h stimulation with adiponectin significantly increased cell viability by decreasing cellular apoptosis, and this was prevented by dominant negative Akt, wortmannin (PI3K inhibitor), and U0126 (MEK inhibitor). Moreover, adiponectin regulated insulin gene expression and glucose-stimulated insulin secretion, which was also prevented by wortmannin and U0126 treatment. Interestingly, the data also suggest adiponectin-induced changes in Akt and ERK phosphorylation and caspase-3 may occur independent of the level of AdipoR expression. This study demonstrates a lack of AMPK involvement and implicates Akt and ERK in adiponectin signaling, leading to protection against apoptosis and stimulation of insulin gene expression and secretion in pancreatic beta cells.  相似文献   

20.
Akt plays a major role in insulin regulation of metabolism in muscle, fat, and liver. Here, we show that in 3T3-L1 adipocytes, Akt operates optimally over a limited dynamic range. This indicates that Akt is a highly sensitive amplification step in the pathway. With robust insulin stimulation, substantial changes in Akt phosphorylation using either pharmacologic or genetic manipulations had relatively little effect on Akt activity. By integrating these data we observed that half-maximal Akt activity was achieved at a threshold level of Akt phosphorylation corresponding to 5-22% of its full dynamic range. This behavior was also associated with lack of concordance or demultiplexing in the behavior of downstream components. Most notably, FoxO1 phosphorylation was more sensitive to insulin and did not exhibit a change in its rate of phosphorylation between 1 and 100 nm insulin compared with other substrates (AS160, TSC2, GSK3). Similar differences were observed between various insulin-regulated pathways such as GLUT4 translocation and protein synthesis. These data indicate that Akt itself is a major amplification switch in the insulin signaling pathway and that features of the pathway enable the insulin signal to be split or demultiplexed into discrete outputs. This has important implications for the role of this pathway in disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号