首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
通过对水稻(Oryza sativa L.) 4号染色体一段323 kb 的序列测定和分析,在其中108 kb的区域内发现了一个由14个编码S位点相关的受体样蛋白激酶(SRK)基因组成的基因簇.RT-PCR实验证明了这14个基因中有9个基因表达,并且这9个基因有不同的表达模式: 其中2个基因主要在生殖器官中表达, 而另外7个基因在水稻的营养和生殖器官中均有表达.对这些基因的预测的氨基酸序列进行分析表明他们的细胞外受体部分均和甘蓝的SLG蛋白高度同源,而细胞内的激酶区都包含有丝氨酸/苏氨酸激酶中特异的氨基酸.  相似文献   

2.
Structure and function of the receptor-like protein kinases of higher plants   总被引:25,自引:0,他引:25  
Cell surface receptors located in the plasma membrane have a prominent role in the initiation of cellular signalling. Recent evidence strongly suggests that plant cells carry cell surface receptors with intrinsic protein kinase activity. The plant receptor-like protein kinases (RLKs) are structurally related to the polypeptide growth factor receptors of animals which consist of a large extracytoplasmic domain, a single membrane spanning segment and a cytoplasmic domain of the protein kinase gene family. Most of the animal growth factor receptor protein kinases are tyrosine kinases; however, the plant RLKs all appear to be serine/threonine protein kinases. Based on structural similarities in their extracellular domains the RLKs fall into three categories: the S-domain class, related to the self-incompatibility locus glycoproteins of Brassica; the leucine-rich repeat class, containing a tandemly repeated motif that has been found in numerous proteins from a variety of eukaryotes; and a third class that has epidermal growth factor-like repeats. Distinct members of these putative receptors have been found in both monocytyledonous plants such as maize and in members of the dicotyledonous Brassicaceae. The diversity among plant RLKs, reflected in their structural and functional properties, has opened up a broad new area of investigation into cellular signalling in plants with far-reaching implications for the mechanisms by which plant cells perceive and respond to extracellular signals.  相似文献   

3.
Despite the evidence in support, the extent of which is outlined in this review, the occurrence of cyclic AMP in tissues of higher plants has been doubted by a number of previous reviewers. Recent MS and other evidence vindicates earlier identification of an adenosine nucleotide from plant tissues as adenosine 3′:5′-cyclic monophosphate. The additional demonstration of 3′: 5′-cyclic nucleotide phosphodiesterases in higher plants, together with adenylate cyclase, a specific cyclic AMP binding protein, and calmodulin, means that plants possess all the necessary components for a functional cyclic AMP-regulated system. Whether such a system does function in plants is considered as are also the reported physiological effects of exogenously supplied cyclic AMP on plant tissues.  相似文献   

4.
The switch from an outcrossing mode of mating enforced by self-incompatibility to self-fertility in the Arabidopsis thaliana lineage was associated with mutations that inactivated one or both of the two genes that comprise the self-incompatibility (SI) specificity-determining S-locus haplotype, the S-locus receptor kinase (SRK) and the S-locus cysteine-rich (SCR) genes, as well as unlinked modifier loci required for SI. All analyzed A. thaliana S-locus haplotypes belong to the SA, SB, or SC haplotypic groups. Of these three, the SC haplotype is the least well characterized. Its SRKC gene can encode a complete open-reading frame, although no functional data are available, while its SCRC sequences have not been isolated. As a result, it is not known what mutations were associated with inactivation of this haplotype. Here, we report on our analysis of the Lz-0 accession and the characterization of its highly rearranged SC haplotype. We describe the isolation of its SCRC gene as well as the subsequent isolation of SCRC sequences from other SC-containing accessions and from the A. lyrata S36 haplotype, which is the functional equivalent of the A. thaliana SC haplotype. By performing transformation experiments using chimeric SRK and SCR genes constructed with SC- and S36-derived sequences, we show that the SRKC and SCRC genes of Lz-0 and at least a few other SC-containing accessions are nonfunctional, despite SCRC encoding a functional full-length protein. We identify the probable mutations that caused the inactivation of these genes and discuss our results in the context of mechanisms of S-locus inactivation in A. thaliana.  相似文献   

5.
Considerable evidence indicates that neuroadaptations leading to addiction involve the same cellular processes that enable learning and memory, such as long-term potentiation (LTP), and that psychostimulants influence LTP through dopamine (DA)-dependent mechanisms. In hippocampal CA1 pyramidal neurons, LTP involves insertion of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptors into excitatory synapses. We used dissociated cultures to test the hypothesis that D1 family DA receptors influence synaptic plasticity in hippocampal neurons by modulating AMPA receptor trafficking. Brief exposure (5 min) to a D1 agonist increased surface expression of glutamate receptor (GluR)1-containing AMPA receptors by increasing their rate of externalization at extrasynaptic sites. This required the secretory pathway but not protein synthesis, and was mediated mainly by protein kinase A (PKA) with a smaller contribution from Ca2+-calmodulin-dependent protein kinase II (CaMKII). Prior D1 receptor stimulation facilitated synaptic insertion of GluR1 in response to subsequent stimulation of synaptic NMDA receptors with glycine. Our results support a model for synaptic GluR1 incorporation in which PKA is required for initial insertion into the extrasynaptic membrane whereas CaMKII mediates translocation into the synapse. By increasing the size of the extrasynaptic GluR1 pool, D1 receptors may promote LTP. Psychostimulants may usurp this mechanism, leading to inappropriate plasticity that contributes to addiction-related behaviors.  相似文献   

6.
A novel 67-kDa protein kinase (p67 cdpk ) was identified in the microsomal membrane fraction of apple (Malus domestica Borkh. cv. Braeburn) suspension cultures and subsequently found to be active in sink tissues. Microsomal proteins were blotted onto Nylon or polyvinylidenedifluoride membranes, and p67 cdpk assayed by in situ-labelling renatured proteins with [γ-32P]ATP; thin-layer electrophoresis/thin-layer chromatography of acid hydrolysates of the 32P-labelled protein band indicated that serine and threonine, but not tyrosine residues were phosphorylated. A detailed analysis of the ion-dependency of p67 cdpk revealed that it was a Ca2+-stimulated, Mg2+-dependent protein kinase. However, p67 cdpk was ten times more active in the presence of 10 mM Mn2+, and these assay conditions were used routinely to increase the sensitivity of the assay. Activity of p67 cdpk was found at high levels in the plasma membrane, and solubilisation experiments with a number of detergents suggested that p67 cdpk is an integral membrane protein. A homologous protein kinase with similar biochemical properties was also present in cell-suspension cultures of pear and maize. In maize (Zea mays L.) plants, sink tissues, such as young expanding leaves of both light-grown and etiolated plants, mature etiolated tissue and roots all had high levels of p67 cdpk activity. However, mature light-grown (source) tissues had barely detectable levels. In etiolated maize leaves and coleoptiles the kinase activity was highest in expanding tissue and decreased as the cells expanded. When etiolated maize plants were exposed to light, the activity of p67 cdpk was reduced to background levels after 8 h. Although p67 cdpk has biochemical properties similar to those of other plant calcium-dependent protein kinases, this is the first identification of a membrane-bound calcium-dependent protein kinase which is specifically active in sink tissues. Received: 14 July 1997 / Accepted: 25 September 1997  相似文献   

7.
Xu M  Zhao YT  Song Y  Hao TP  Lu ZZ  Han QD  Wang SQ  Zhang YY 《生理学报》2007,59(2):175-182
为了验证心脏腺苷酸活化蛋白激酶(AMP-activated protein kinase,AMPK)是否为肾上腺素受体(adrenergic receptor,AR)的下游信号分子,本实验在大鼠心室肌源细胞和大鼠心脏中观察了α-AR对AMPK的激活作用,利用Western blot检测了AMPK-α总蛋白表达量及其172位苏氨酸磷酸化水平。雄性Sprague-Dawley大鼠皮下植入去甲肾上腺素(norepinephrine,NE),苯肾上腺素(phenylephrine,PE)或者溶剂载体[0.01%(W/V)维生素C]的缓释微泵(osmotic minipump)。NE或PE以每小时0.2 mg/kg的速率持续输注,7 d后用AMPK-α抗体免疫沉淀处理样本并测定AMPK的活性。结果显示,在细胞水平,NE引起的AMPK磷酸化水平增高具有时间依赖和剂量依赖特点, NE处理细胞10 min后AMPK磷酸化水平达到最高峰;NE引起的这种效应对β-AR的拮抗剂普萘洛尔(propranolol)不敏感,但是可以被α1-AR拮抗剂哌唑嗪(prazosin)所阻断。结果提示,α1-AR介导AMPK的磷酸化,但β-AR无此作用。AR激动剂持续灌注7 d后,AMPK的活性在NE(7.4倍)和PE(6.0倍)灌注组较对照组显著增高(P〈0.05,H=6)。PE持续灌注组大鼠与对照组相比无明显的心肌肥厚和组织纤维化变化。本文证明α1-AR激动剂可以增强AMPK的活性,揭示了心脏中α1-AR激动在调控AMPK活性方面的重要作用。深入了解α1-AR介导的AMPK激活可能在心衰治疗中具有重要的临床意义。  相似文献   

8.
Eph receptors and their cell membrane-bound ephrin ligands regulate cell positioning and thereby establish or stabilize patterns of cellular organization. Although it is recognized that ephrin clustering is essential for Eph function, mechanisms that relay information of ephrin density into cell biological responses are poorly understood. We demonstrate by confocal time-lapse and fluorescence resonance energy transfer microscopy that within minutes of binding ephrin-A5-coated beads, EphA3 receptors assemble into large clusters. While remaining positioned around the site of ephrin contact, Eph clusters exceed the size of the interacting ephrin surface severalfold. EphA3 mutants with compromised ephrin-binding capacity, which alone are incapable of cluster formation or phosphorylation, are recruited effectively and become phosphorylated when coexpressed with a functional receptor. Our findings reveal consecutive initiation of ephrin-facilitated Eph clustering and cluster propagation, the latter of which is independent of ephrin contacts and cytosolic Eph signaling functions but involves direct Eph-Eph interactions.  相似文献   

9.
郑凯迪  杜永均 《昆虫学报》2012,55(9):1093-1102
蛾类昆虫性信息素受体首先从烟芽夜蛾Heliothis virescens和家蚕Bombyx mori中鉴定出来, 到目前为止已经克隆得到了19种蛾类昆虫的几十种性信息素受体基因, 并且这些基因在系统发育树中聚成一个亚群。性信息素受体从蛾类蛹期开始表达, 主要表达在雄性触角的毛形感器中, 少部分受体在雌性触角、 雄性触角其他感器以及身体其他部位中也有表达。大部分蛾类性信息素受体的配体并不是单一的, 而是能够对多种性信息素组分有反应, 部分性信息素受体还能够识别性信息素以外的其他物质, 还有一部分性信息素受体的识别配体目前尚不清楚。另外发现在雌性蛾类触角中也存在一些嗅觉受体能够识别雄性分泌的性信息素。在蛾类性信息素受体与性信息素识别的过程中, 性信息素结合蛋白不仅能够特异性地运送配体到嗅觉神经元树状突上, 还能够提高性信息素与性信息素受体之间的结合效率。另外, OrCo类受体与性信息素受体共表达在嗅觉神经元中, 在蛾类性信息素受体与配体的识别过程中扮演了重要角色。但是蛾类信息素对神经元刺激的终止并非由性信息素受体控制, 而是由细胞中的气味降解酶等其他因子调控。蛾类性信息素受体研究中还有很多疑问需要解答, 其过程可能比我们想象的更为复杂。  相似文献   

10.
11.
Self-incompatibility is a phenomenon that involves recognition of self versus non-self pollen, leading to the rejection of self-related pollen and preventing self-fertilization. In this study, we used a baculovirus-infected insect cell culture system to express two Brassica oleracea stigma-specific proteins required for self-incompatibility: the S-locus glycoprotein, a soluble cell wall-localized glycosylated protein, and the S-locus receptor kinase, a receptor-like integral plasma membrane glycoprotein with serine/threonine kinase activity. Insect cells expressing the S-locus receptor kinase were used in conjunction with immunofluorescence and a whole cell enzyme-linked immunosorbant assay to demonstrate that the receptor is targeted to the cell surface and is oriented with its N-terminal S domain towards the outside of the cell. Received: 20 January 1999 / Revision accepted: 13 April 1999  相似文献   

12.
Markers and signals associated with nitrogen assimilation in higher plants   总被引:19,自引:0,他引:19  
A key concept underpinning current understanding of the carbon/nitrogen (C/N) interaction in plants is that the capacity for N assimilation is aligned to nutrient availability and requirements by the integrated perception of signals from hormones, nitrate, sugars, organic acids, and amino acids. Studies on the nature and integration of these signals over the last ten years has revealed a complex network of controls brokered by an interplay of C and N signals. These controls not only act to orchestrate the relative rates of C and N assimilation and carbohydrate and amino acid production, but they also have a significant influence on plant development. Amino acids are the hub around which the processes of N assimilation, associated C metabolism, photorespiration, export of organic N from the leaf, and the synthesis of nitrogenous end-products revolve. Since specific major amino acids or their relative ratios are modulated differentially by photorespiration and N assimilation, even though these processes are tightly intermeshed, they are potentially powerful markers for metabolite profiling and metabolomics approaches to the study of plant biology. Moreover, while minor amino acids show marked diurnal rhythms, their contents fluctuate in a co-ordinated manner. It is probable that factors associated with early events and processes in C and N assimilation influence the relative composition of minor amino acids.  相似文献   

13.
Development of drug addiction involves complex molecular changes in the CNS. The mitogen-activated protein kinase (MAPK) signaling pathway plays a key role in mediating neuronal activation induced by dopamine, glutamate, and drugs of abuse. We previously showed that dopamine D(1) and D(3) receptors play different roles in regulating cocaine-induced MAPK activation. Although there are functional and physical interactions between dopamine and glutamate receptors, little is known regarding the involvement of D(1) and D(3) receptors in modulating glutamate-induced MAPK activation and underlying mechanisms. In this study, we show that D(1) and D(3) receptors play opposite roles in regulating N-methyl-d-aspartate (NMDA) -induced activation of extracellular signal-regulated kinase (ERK) in the caudate putamen (CPu). D(3) receptors also inhibit NMDA-induced activation of the c-Jun N-terminal kinase and p38 kinase in the CPu. NMDA-induced activation of the NMDA-receptor R1 subunit (NR1), Ca(2+)/calmodulin-dependent protein kinase II and the cAMP-response element binding protein (CREB), and cocaine-induced CREB activation in the CPu are also oppositely regulated by dopamine D(1) and D(3) receptors. Finally, the blockade of NMDA-receptor reduces cocaine-induced ERK activation, and inhibits phosphorylation of NR1, Ca(2+)/calmodulin-dependent protein kinase II, and CREB, while inhibiting ERK activation attenuates cocaine-induced CREB phosphorylation in the CPu. These results suggest that dopamine D(1) and D(3) receptors oppositely regulate NMDA- and cocaine-induced MAPK signaling via phosphorylation of NR1.  相似文献   

14.
Electrical signals and their physiological significance in plants   总被引:1,自引:0,他引:1  
Electrical excitability and signalling, frequently associated with rapid responses to environmental stimuli, are well known in some algae and higher plants. The presence of electrical signals, such as action potentials (AP), in both animal and plant cells suggested that plant cells, too, make use of ion channels to transmit information over long distances. In the light of rapid progress in plant biology during the past decade, the assumption that electrical signals do not only trigger rapid leaf movements in 'sensitive' plants such as Mimosa pudica or Dionaea muscipula, but also physiological processes in ordinary plants proved to be correct. Summarizing recent progress in the field of electrical signalling in plants, the present review will focus on the generation and propagation of various electrical signals, their ways of transmission within the plant body and various physiological effects.  相似文献   

15.
Ionotropic glutamate receptors function in animals as glutamate-gated non-selective cation channels. Numerous glutamate receptor-like (GLR) genes have been identified in plant genomes, and plant GLRs are predicted, on the basis of sequence homology, to retain ligand-binding and ion channel activity. Non-selective cation channels are ubiquitous in plant membranes and may function in nutrient uptake, signalling and intra-plant transport. However, there is little evidence for amino acid gating of plant ion channels. Recent evidence suggests that plant GLRs do encode non-selective cation channels, but that these channels are not gated by amino acids. The functional properties of these proteins and their roles in plant physiology remain a mystery. The problems surrounding characterization and assignation of function to plant GLRs are discussed in this Botanical Briefing, and potential roles for GLR proteins as non-selective cation channels involved in metabolic signalling are described.  相似文献   

16.
Brassica self-incompatibility, a highly discriminating outbreeding mechanism, has become a paradigm for the study of plant cell-cell communications. When self-pollen lands on a stigma, the male ligand S cysteine-rich (SCR), which is present in the pollen coat, is transmitted to the female receptor, S-locus receptor kinase (SRK). SRK is a membrane-spanning serine/threonine receptor kinase present in the stigmatic papillar cell membrane. Haplotype-specific binding of SCR to SRK brings about pollen rejection. The extracellular receptor domain of SRK (eSRK) is responsible for binding SCR. Based on sequence homology, eSRK can be divided into three subdomains: B lectin-like, hypervariable, and PAN. Biochemical analysis of these subdomains showed that the hypervariable subdomain is responsible for most of the SCR binding capacity of eSRK, whereas the B lectin-like and PAN domains have little, if any, affinity for SCR. Fine mapping of the SCR binding region of SRK using a peptide array revealed a region of the hypervariable subdomain that plays a key role in binding the SCR molecule. We show that residues within the hypervariable subdomain define SRK binding and are likely to be involved in defining haplotype specificity.  相似文献   

17.
Histamine is an important mediator of immediate hypersensitivity for both animals and humans. The action of histamine on target tissues is believed to be mediated by specific cell surface receptors, especially H1 and H2 receptors for hypersensitivity and inflammatory reactions, which involve stimulation of smooth muscle contractility, alterations in vascular permeability, and modifications in the activities of macrophages and lymphocytes. Although the nature of histamine receptors in the brain and peripheral tissues has been studied extensively by many laboratories, the molecular mechanism of histamine receptor-mediated reactions is not fully understood, mainly because histamine receptors are incompletely characterized from the biochemical point of view. In previous studies, we have found that the cultured smooth muscle cell line DDT1MF-2, derived from hamster vas deferens, expresses low-affinity histamine H1 receptors and responds biochemically and functionally to H1-specific stimulation (Mitsuhashi and Payan, J Cell Physiol 134:367, 1988). This cell line provides a model for analyzing the biochemical responses of H1 receptor-mediated reactions in peripheral tissues. In this review, we summarized our recent progress in the study of low-affinity H1 receptors on DDT1MF-2 cells.  相似文献   

18.
Lysine metabolism in higher plants   总被引:4,自引:0,他引:4  
Azevedo RA  Lea PJ 《Amino acids》2001,20(3):261-279
Summary. The essential amino acid lysine is synthesised in higher plants via a pathway starting with aspartate, that also leads to the formation of threonine, methionine and isoleucine. Enzyme kinetic studies and the analysis of mutants and transgenic plants that overaccumulate lysine, have indicated that the major site of the regulation of lysine synthesis is at the enzyme dihydrodipicolinate synthase. Despite this tight regulation, there is strong evidence that lysine is also subject to catabolism in plants, specifically in the seed. The two enzymes involved in lysine breakdown, lysine 2-oxoglutarate reductase (also known as lysine α-ketoglutarate reductase) and saccharopine dehydrogenase exist as a single bifunctional protein, with the former activity being regulated by lysine availability, calcium and phosphorylation/dephosphorylation. Received December 21, 1999 Accepted February 7, 2000  相似文献   

19.
Photoreceptors of higher plants   总被引:21,自引:0,他引:21  
Alfred Batschauer 《Planta》1998,206(4):479-492
  相似文献   

20.
Antifreeze proteins in higher plants   总被引:12,自引:0,他引:12  
Atici O  Nalbantoglu B 《Phytochemistry》2003,64(7):1187-1196
Overwintering plants produce antifreeze proteins (AFPs) having the ability to adsorb onto the surface of ice crystals and modify their growth. Recently, several AFPs have been isolated and characterized and five full-length AFP cDNAs have been cloned and characterized in higher plants. The derived amino acid sequences have shown low homology for identical residues. Theoretical and experimental models for structure of Lolium perenne AFP have been proposed. In addition, it was found that the hormone ethylene is involved in regulating antifreeze activity in response to cold. In this review, it is seen that the physiological and biochemical roles of AFPs may be important to protect the plant tissues from mechanical stress caused by ice formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号