首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Cell surface heparan sulfate (HS) is an essential regulator of cell signaling and development. HS traps signaling molecules, like Wnt in the glycosaminoglycan side chains of HS proteoglycans (HSPGs), and regulates their functions. Endosulfatases Sulf1 and Sulf2 are secreted at the cell surface to selectively remove 6-O-sulfate groups from HSPGs, thereby modifying the affinity of cell surface HSPGs for its ligands. This study provides molecular evidence for the functional roles of HSPG sulfation and desulfation in dentinogenesis. We show that odontogenic cells are highly sulfated on the cell surface and become desulfated during their differentiation to odontoblasts, which produce tooth dentin. Sulf1/Sulf2 double null mutant mice exhibit a thin dentin matrix and short roots combined with reduced expression of dentin sialophosphoprotein (Dspp) mRNA, encoding a dentin-specific extracellular matrix precursor protein, whereas single Sulf mutants do not show such defective phenotypes. In odontoblast cell lines, Dspp mRNA expression is potentiated by the activation of the Wnt canonical signaling pathway. In addition, pharmacological interference with HS sulfation promotes Dspp mRNA expression through activation of Wnt signaling. On the contrary, the silencing of Sulf suppresses the Wnt signaling pathway and subsequently Dspp mRNA expression. We also show that Wnt10a protein binds to cell surface HSPGs in odontoblasts, and interference with HS sulfation decreases the binding affinity of Wnt10a for HSPGs, which facilitates the binding of Wnt10a to its receptor and potentiates the Wnt signaling pathway, thereby up-regulating Dspp mRNA expression. These results demonstrate that Sulf-mediated desulfation of cellular HSPGs is an important modification that is critical for the activation of the Wnt signaling in odontoblasts and for production of the dentin matrix.  相似文献   

2.
3.
Dentin sialophosphoprotein (Dspp) is mainly expressed in teeth by the odontoblasts and preameloblasts. The Dspp mRNA is translated into a single protein, Dspp, and cleaved into two peptides, dentin sialoprotein and dentin phosphoprotein, that are localized within the dentin matrix. Recently, mutations in this gene were identified in human dentinogenesis imperfecta II (Online Mendelian Inheritance in Man (OMIM) accession number 125490) and in dentin dysplasia II (OMIM accession number 125420) syndromes. Herein, we report the generation of Dspp-null mice that develop tooth defects similar to human dentinogenesis imperfecta III with enlarged pulp chambers, increased width of predentin zone, hypomineralization, and pulp exposure. Electron microscopy revealed an irregular mineralization front and a lack of calcospherites coalescence in the dentin. Interestingly, the levels of biglycan and decorin, small leucine-rich proteoglycans, were increased in the widened predentin zone and in void spaces among the calcospherites in the dentin of null teeth. These enhanced levels correlate well with the defective regions in mineralization and further indicate that these molecules may adversely affect the dentin mineralization process by interfering with coalescence of calcospherites. Overall, our results identify a crucial role for Dspp in orchestrating the events essential during dentin mineralization, including potential regulation of proteoglycan levels.  相似文献   

4.
5.
6.
We herein describe a novel procedure for dentin regeneration that mimics the biological processes of tooth development in nature. The canonical Wnt signaling pathway is an important regulator of the Dentin sialophosphoprotein (Dspp) expression. Our approach mimics the biological processes underlying tooth development in nature and focuses on the activation of canonical Wnt signaling to trigger the natural process of dentinogenesis. The coronal portion of the dentin and the underlying pulp was removed from the first molars. We applied lithium chloride (LiCl), an activator of canonical Wnt signaling, on the amputated pulp surface to achieve transdifferentiation toward odontoblasts from the surrounding pulpal cells. MicroCT and microscopic analyses demonstrated that the topical application of LiCl induced dentin repair, including the formation of a complete dentin bridge. LiCl-induced dentin is a tubular dentin in which the pulp cells are not embedded within the matrix, as in primary dentin. In contrast, a dentin bridge was not induced in the control group treated with pulp capping with material carriers alone, although osteodentin without tubular formation was induced at a comparatively deeper position from the pulp exposure site. We also evaluated the influence of LiCl on differentiation toward odontoblasts in vitro. In the mDP odontoblast cell line, LiCl activated the mRNA expression of Dspp, Axin2 and Kallikrein 4 (Klk4) and downregulated the Osteopontin (Osp) expression. These results provide a scientific basis for the biomimetic regeneration of dentin using LiCl as a new capping material to activate dentine regeneration.  相似文献   

7.
The dentin matrix protein-1 (DMP-1) gene is identified in odontoblasts during both embryonic and postnatal development. In vitro study suggests that this noncollagen acidic phosphoprotein plays a role in mineralization. However, deletion of the Dmp-1 gene has little effect on tooth development during embryogenesis. To address the role of DMP-1 in tooth during postnatal development, we analyzed changes of dentinogenesis in Dmp-1 null mice from 3 days after birth to 1 year. Here we show that Dmp-1 null mice postnatally develop a profound tooth phenotype characterized by a partial failure of maturation of predentin into dentin, enlarged pulp chambers, increased width of predentin zone with reduced dentin wall, and hypomineralization. The tooth phenotype of these mice is strikingly similar to that in dentin sialophosphoprotein (Dspp) null mice and shares some features of the human disease dentinogenesis imperfecta III. We have also demonstrated that DSPP levels are reduced in Dmp-1 null mice, suggesting that DSPP is probably regulated by DMP-1 during dentinogenesis. Finally, we show the absence or delayed development of the third molar in Dmp-1 null mice, which is probably secondary to defects in Dmp-1 null bone. Taken together, these studies suggest that DMP-1 is essential for later dentinogenesis during postnatal development.  相似文献   

8.
Wnt/ß-catenin signaling plays an important role in morphogenesis and cellular differentiation during development. Essential roles of Wnt/ß-catenin signaling in tooth morphogenesis have been well known, but the involvement of Wnt/ß-catenin signaling in the dental hard tissue formation remains undefined. To understand roles of Wnt/ß-catenin signaling in dentin and cementum formation, we generated and analyzed the conditional ß-catenin stabilized mice in the dental mesenchyme. The OC-Cre;Catnblox(ex3)/+ mice exhibited malformed teeth characterized by aberrantly formed dentin and excessively deposited cementum. Large amount of dentin was rapidly formed with widened predentin and numerous globular calcifications in the crown. Whereas roots of molars were short and covered with the excessively formed cellular cementum. With age, the coronal pulp chamber and periodontal space were narrowed by the excessively formed dentin and cementum, respectively. To compare the changes of gene expression in the mutant mice, Col1a1 expression was increased but that of Dspp was decreased in the odontoblasts. However, both of Col1a1 and Bsp expression was increased in the cementoblasts. The gene expression changes were consistent with the localization of matrix proteins. Biglycan and PC-1 was increased but Phex was decreased in the odontoblasts and dentin matrix, respectively. TNAP was increased but Dmp1 and FGF23 was decreased in the cementoblasts and cementum matrix, respectively. Our results indicate that persistent stabilization of ß-catenin in the dental mesenchyme leads to premature differentiation of odontoblasts and differentiation of cementoblasts, and induces excessive dentin and cementum formation in vivo. These results suggest that temporospatial regulation of Wnt/ß-catenin signaling plays critical roles in the differentiation of odontoblasts and cementoblasts, and that inhibition of Wnt/ß-catenin signaling may be important for the formation of dentin and cementum during tooth development. Local modulation of Wnt/ß-catenin signaling has therapeutic potential to improve the regeneration of dentin and periodontium.  相似文献   

9.
Tooth enamel is formed by epithelially-derived cells called ameloblasts, while the pulp dentin complex is formed by the dental mesenchyme. These tissues differentiate with reciprocal signaling interactions to form a mature tooth. In this study we have characterized ameloblast differentiation in human developing incisors, and have further investigated the role of extracellular matrix proteins on ameloblast differentiation. Histological and immunohistochemical analyses showed that in the human tooth, the basement membrane separating the early developing dental epithelium and mesenchyme was lost shortly before dentin deposition was initiated, prior to enamel matrix secretion. Presecretary ameloblasts elongated as they came into contact with the dentin matrix, and then shortened to become secretory ameloblasts. In situ hybridization showed that the presecretory stage of odontoblasts started to express type I collagen mRNA, and also briefly expressed amelogenin mRNA. This was followed by upregulation of amelogenin mRNA expression in secretory ameloblasts. In vitro, amelogenin expression was upregulated in ameloblast lineage cells cultured in Matrigel, and was further up-regulated when these cells/Matrigel were co-cultured with dental pulp cells. Co-culture also up-regulated type I collagen expression by the dental pulp cells. Type I collagen coated culture dishes promoted a more elongated ameloblast lineage cell morphology and enhanced cell adhesion via integrin α2β1. Taken together, these results suggest that the basement membrane proteins and signals from underlying mesenchymal cells coordinate to initiate differentiation of preameloblasts and regulate type I collagen expression by odontoblasts. Type I collagen in the dentin matrix then anchors the presecretary ameloblasts as they further differentiate to secretory cells. These studies show the critical roles of the extracellular matrix proteins in ameloblast differentiation.  相似文献   

10.
Sonic hedgehog regulates growth and morphogenesis of the tooth   总被引:28,自引:0,他引:28  
During mammalian tooth development, the oral ectoderm and mesenchyme coordinate their growth and differentiation to give rise to organs with precise shapes, sizes and functions. The initial ingrowth of the dental epithelium and its associated dental mesenchyme gives rise to the tooth bud. Next, the epithelial component folds to give the tooth its shape. Coincident with this process, adjacent epithelial and mesenchymal cells differentiate into enamel-secreting ameloblasts and dentin-secreting odontoblasts, respectively. Growth, morphogenesis and differentiation of the epithelium and mesenchyme are coordinated by secreted signaling proteins. Sonic hedgehog (Shh) encodes a signaling peptide which is present in the oral epithelium prior to invagination and in the tooth epithelium throughout its development. We have addressed the role of Shh in the developing tooth in mouse by using a conditional allele to remove Shh activity shortly after ingrowth of the dental epithelium. Reduction and then loss of Shh function results in a cap stage tooth rudiment in which the morphology is severely disrupted. The overall size of the tooth is reduced and both the lingual epithelial invagination and the dental cord are absent. However, the enamel knot, a putative organizer of crown formation, is present and expresses Fgf4, Wnt10b, Bmp2 and Lef1, as in the wild type. At birth, the size and the shape of the teeth are severely affected and the polarity and organization of the ameloblast and odontoblast layers is disrupted. However, both dentin- and enamel-specific markers are expressed and a large amount of tooth-specific extracellular matrix is produced. This observation was confirmed by grafting studies in which tooth rudiments were cultured for several days under kidney capsules. Under these conditions, both enamel and dentin were deposited even though the enamel and dentin layers remained disorganized. These studies demonstrate that Shh regulates growth and determines the shape of the tooth. However, Shh signaling is not essential for differentiation of ameloblasts or odontoblasts.  相似文献   

11.
Wnt/beta-catenin signaling plays key roles in tooth development, but how this pathway intersects with the complex interplay of signaling factors regulating dental morphogenesis has been unclear. We demonstrate that Wnt/beta-catenin signaling is active at multiple stages of tooth development. Mutation of beta-catenin to a constitutively active form in oral epithelium causes formation of large, misshapen tooth buds and ectopic teeth, and expanded expression of signaling molecules important for tooth development. Conversely, expression of key morphogenetic regulators including Bmp4, Msx1, and Msx2 is downregulated in embryos expressing the secreted Wnt inhibitor Dkk1 which blocks signaling in epithelial and underlying mesenchymal cells. Similar phenotypes are observed in embryos lacking epithelial beta-catenin, demonstrating a requirement for Wnt signaling within the epithelium. Inducible Dkk1 expression after the bud stage causes formation of blunted molar cusps, downregulation of the enamel knot marker p21, and loss of restricted ectodin expression, revealing requirements for Wnt activity in maintaining secondary enamel knots. These data place Wnt/beta-catenin signaling upstream of key morphogenetic signaling pathways at multiple stages of tooth development and indicate that tight regulation of this pathway is essential both for patterning tooth development in the dental lamina, and for controlling the shape of individual teeth.  相似文献   

12.
Expression of Wnt signalling pathway genes during tooth development.   总被引:13,自引:0,他引:13  
We have carried out comparative in situ hybridisation analysis of six Wnt genes Wnts-3, -4, -5a, -6, -7b, and 10b together with Wnt receptor MFz6 and receptor agonist/antagonists MFrzb1 and Mfrp2 during murine odontogenesis from the earliest formation of the epithelial thickening to the early bell stage. Expression of Wnt-4, Wnt-6, and one Wnt receptor MFz6 was observed in the facial, oral and dental epithelium. Wnt10b was localised specifically to the presumptive dental epithelium. Wnts-3 and -7b were expressed in oral epithelium but showed no expression in the presumptive dental epithelium. Wnt-3 also showed no expression in the epithelial cells of the molar bud stage tooth germs, but showed restricted expression in the enamel knots which are signalling centres believed to be involved in regulating tooth shape. Wnts -6, -10b and MFz6 were also detected in the primary and secondary enamel knots. Wnt-5a and agonist/antagonists MFrzb1 and Mfrp2 were expressed in a graded proximo-distal (P-D) manner in mesenchymal cells during the early stages of tooth development with no overlying expression in the oral or dental epithelium. Wnt-5a and MFrzb1 show strong expression in the dental papilla mesenchyme.  相似文献   

13.
Laminin alpha2 is subunit of laminin-2 (alpha2beta1gamma1), which is a major component of the muscle basement membrane. Although the laminin alpha2 chain is expressed in the early stage of dental mesenchyme development and localized in the tooth germ basement membrane, its expression pattern in the late stage of tooth germ development and molecular roles are not clearly understood. We analyzed the role of laminin alpha2 in tooth development by using targeted mice with a disrupted lama2 gene. Laminin alpha2 is expressed in dental mesenchymal cells, especially in odontoblasts and during the maturation stage of ameloblasts, but not in the pre-secretory or secretory stages of ameloblasts. Lama2 mutant mice have thin dentin and a widely opened dentinal tube, as compared with wild-type and heterozygote mice, which is similar to the phenotype of dentinogenesis imperfecta. During dentin formation, the expression of dentin sialoprotein, a marker of odontoblast differentiation, was found to be decreased in odontoblasts from mutant mice. Furthermore, in primary cultures of dental mesenchymal cells, dentin matrix protein, and dentin sialophosphoprotein, mRNA expression was increased in laminin-2 coated dishes but not in those coated with other matrices, fibronectin, or type I collagen. Our results suggest that laminin alpha2 is essential for odontoblast differentiation and regulates the expression of dentin matrix proteins.  相似文献   

14.
15.
Transforming growth factor (TGF)-beta1 is expressed in developing tooth from the initiation stage through adulthood. Odontoblast-specific expression of TGF-beta1 in the tooth continues throughout life; however, the precise biological functions of this growth factor in the odontoblasts are not clearly understood. Herein, we describe the generation of transgenic mice that overexpress active TGF-beta1 predominantly in the odontoblasts. Teeth of these mice show a significant reduction in the tooth mineralization, defective dentin formation, and a relatively high branching of dentinal tubules. Dentin extracellular matrix components such as type I and III collagens are increased and deposited abnormally in the dental pulp, similar to the hereditary human tooth disorders such as dentin dysplasia and dentinogenesis imperfecta. Calcium, one of the crucial inorganic components of mineralization, is also apparently increased in the transgenic mouse teeth. Most importantly, the expression of dentin sialophosphoprotein (dspp), a candidate gene implicated in dentinogenesis imperfecta II (MIM 125420), is significantly down-regulated in the transgenic teeth. Our results provide in vivo evidence suggesting that TGF-beta1 mediated expression of dspp is crucial for dentin mineralization. These findings also provide for the first time a direct experimental evidence indicating that decreased dspp gene expression along with the other cellular changes in odontoblasts may result in human hereditary dental disorders like dentinogenesis imperfecta II (MIM 125420) and dentin dysplasia (MIM 125400 and 125420).  相似文献   

16.
17.
Dentin sialoprotein and dentin phosphoprotein are non-collagenous proteins that are cleavage products of dentin sialophosphoprotein (DSPP). Although these two protein products are believed to have a crucial role in the process of tooth mineralization, their precise biological functions and the molecular mechanisms of gene regulation are not clearly understood. To understand such functions, we have developed a transgenic mouse model expressing a reporter gene (lacZ) under the control of approximately 6 kb upstream sequences of Dspp. The transgenic fusion protein was designed to reside within the cells to facilitate the precise identification of cell type and developmental stages at which the Dspp-lacZ gene is expressed. The results presented in this report demonstrate: (a) the 6 kb upstream sequences of Dspp have the necessary regulatory elements to direct the tissue specific expression of the transgene similar to endogenous Dspp, (b) both odontoblasts and ameloblasts exhibit transgene expression in a differentiation dependent manner, and (c) a differential regulation of the transgene in odontoblasts and ameloblasts occurs during tooth development and mineralization.  相似文献   

18.
TGF-β subtypes are expressed in tissues derived from cranial neural crest cells during early mouse craniofacial development. TGF-β signaling is critical for mediating epithelial-mesenchymal interactions, including those vital for tooth morphogenesis. However, it remains unclear how TGF-β signaling contributes to the terminal differentiation of odontoblast and dentin formation during tooth morphogenesis. Towards this end, we generated mice with conditional inactivation of the Tgfbr2 gene in cranial neural crest derived cells. Odontoblast differentiation was substantially delayed in the Tgfbr2fl/fl;Wnt1-Cre mutant mice at E18.5. Following kidney capsule transplantation, Tgfbr2 mutant tooth germs expressed a reduced level of Col1a1 and Dspp and exhibited defects including decreased dentin thickness and absent dentinal tubules. In addition, the expression of the intermediate filament nestin was decreased in the Tgfbr2 mutant samples. Significantly, exogenous TGF-β2 induced nestin and Dspp expression in dental pulp cells in the developing tooth organ. Our data suggest that TGF-β signaling controls odontoblast maturation and dentin formation during tooth morphogenesis.  相似文献   

19.
Notch signaling is essential for the appropriate differentiation of many cell types during development and, furthermore, is implicated in a variety of human diseases. Previous studies have shown that although the Notch1, -2, and -3 receptors are expressed in developing and injured rodent teeth, Notch2 expression was predominant after a lesion. To pursue the role of the Notch pathway in tooth development and disease, we have analyzed the expression of the Notch2 protein in embryonic and adult wounded human teeth. During the earlier stages of tooth development, the Notch2 protein was expressed in the epithelium, but was absent from proliferating cells of the inner enamel epithelium. At more advanced stages, Notch2 was expressed in the enamel-producing ameloblasts, while it was absent in mesenchyme-derived odontoblasts that synthesize the dentin matrix. Although Notch2 was not expressed in the pulp of adult intact teeth, it was reexpressed during dentin repair processes in odontoblasts and subodontoblastic cells. Transforming growth factor beta-1, which stimulates odontoblast differentiation and hard tissue formation after dental injury, downregulated Notch2 expression in cultured human dental slices, in vitro. These observations are consistent with the notion that Notch signaling is an important element in dental physiological and pathogenic conditions.  相似文献   

20.
Reiterative signaling and patterning during mammalian tooth morphogenesis   总被引:47,自引:0,他引:47  
Mammalian dentition consists of teeth that develop as discrete organs. From anterior to posterior, the dentition is divided into regions of incisor, canine, premolar and molar tooth types. Particularly teeth in the molar region are very diverse in shape. The development of individual teeth involves epithelial-mesenchymal interactions that are mediated by signals shared with other organs. Parts of the molecular details of signaling networks have been established, particularly in the signal families BMP, FGF, Hh and Wnt, mostly by the analysis of gene expression and signaling responses in knockout mice with arrested tooth development. Recent evidence suggests that largely the same signaling cascade is used reiteratively throughout tooth development. The successional determination of tooth region, tooth type, tooth crown base and individual cusps involves signals that regulate tissue growth and differentiation. Tooth type appears to be determined by epithelial signals and to involve differential activation of homeobox genes in the mesenchyme. This differential signaling could have allowed the evolutionary divergence of tooth shapes among the four tooth types. The advancing tooth morphogenesis is punctuated by transient signaling centers in the epithelium corresponding to the initiation of tooth buds, tooth crowns and individual cusps. The latter two signaling centers, the primary enamel knot and the secondary enamel knot, have been well characterized and are thought to direct the differential growth and subsequent folding of the dental epithelium. Several members of the FGF signal family have been implicated in the control of cell proliferation around the non-dividing enamel knots. Spatiotemporal induction of the secondary enamel knots determines the cusp patterns of individual teeth and is likely to involve repeated activation and inhibition of signaling as suggested for patterning of other epithelial organs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号