首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
W Shao  J Wiegel 《Journal of bacteriology》1992,174(18):5848-5853
A highly thermostable beta-xylosidase, exhibiting similarly high activities for arylxylose and arylarabinose, was purified (72-fold) to gel electrophoretic homogeneity from the ethanologenic thermophilic anaerobe Thermoanaerobacter ethanolicus. The isoelectric point is pH 4.6; the apparent molecular weight is around 165,000 for the native enzyme (gel filtration and gradient polyacrylamide gel electrophoresis) and 85,000 for the two subunits (sodium dodecyl sulfate-polyacrylamide gel electrophoresis). The enzyme exhibited the highest affinity towards p-NO2-phenyl xyloside (pNPX) (substrate concentration for half-maximal activity = 0.018 mM at 82 degrees C and pH 5.0) but the highest specific activity with p-NO2-phenylarabinofuranoside. T(opt), 5 min, the temperature for the maximum initial activity in a 5-min assay of the purified enzyme, was observed around pH 5.9 and 93 degrees C; however at 65 and 82 degrees C, the pH optimum was 5.0 to 5.2, and at this pH the maximal initial activity was observed at 82 degrees C (pH 5.0 to 5.5). The pH curves and temperature curves for arylxylosides as substrates differed significantly from those for arylarabinosides as substrates. An incubation for 3 h at 82 degrees C in the absence of substrate reduced the activity to around 75%. At 86 degrees C the half-life was around 15 min. With pNPX as the substrate, an Arrhenius energy of 69 kJ/mol was determined. The N-terminal sequence did not reveal a high similarity to those from other published enzyme sequences.  相似文献   

2.
This paper experimentally verifies the idea presented earlier that the contact of nonpolar clusters located on the surface of protein molecules with water destabilizes proteins. It is demonstrated that protein stabilization can be achieved by artificial hydrophilization of the surface area of protein globules by chemical modification. Two experimental systems are studied for the verification of the hydrophilization approach. The surface tyrosine residues of trypsin are transformed to aminotyrosines using a two-step modification procedure: nitration by tetranitromethane followed by reduction with sodium dithionite. The modified enzyme is much more stable against irreversible thermoinactivation: the stabilizing effect increases with the number of aminotyrosine residues in trypsin and the modified enzyme can become even 100 times more stable than the native one. Alpha-chymotrypsin is covalently modified by treatment with anhydrides or chloroanhydrides of aromatic carboxylic acids. As a result, different numbers of additional carboxylic groups (up to five depending on the structure of the modifying reagent) are introduced into each Lys residue modified. Acylation of all available amino groups of alpha-chymotrypsin by cyclic anhydrides of pyromellitic and mellitic acids results in a substantial hydrophilization of the protein as estimated by partitioning in an aqueous Ficoll-400/Dextran-70 biphasic system. These modified enzyme preparations are extremely stable against irreversible thermal inactivation at elevated temperatures (65-98 degrees C); their thermostability is practically equal to the stability of proteolytic enzymes from extremely thermophilic bacteria, the most stable proteinases known to date.  相似文献   

3.
Alanine aminotransferase (ALT) is used in clinical diagnostics, amino acid synthesis and in biosensors. Here we describe the stabilization of soluble porcine ALT by chemical modification with mono- and bis-imidates. The apparent transition temperatures (‘Tm’, the temperature where 50% of initial activity was lost in 10 min) for native and DMS-modified ALT were 46 and 56 °C respectively. The effects of water-miscible organic solvents (methanol, dimethylformamide, dimethylsulphoxide and 1,4-dioxane) on the activity/stability of native and modified forms were determined. In all systems studied, an abrupt decrease in ALT catalytic activity was observed on reaching a certain threshold concentration of the organic solvent. The modified derivatives were more organotolerant than native enzyme. Comparison of the apparent Vmax and Km for 2-oxoglutarate as substrate, determined in 10% (v/v) organic solvent, with the results of thermal inactivation studies showed that the solvents have different effects on ALT's catalytic parameters and on its conformational stability. At 35 °C with no organic solvent the dimethylsuberimidate (DMS)-modified derivative's half-life was 16 times greater than that for native enzyme; in 30% (v/v) solvent at 35 °C, the DMS-modified ALT's half-life was up to 4.6 times greater than native enzyme's. DMS-modified ALT was also more stable in urea and guanidine HCl, and its refolding was more noticeable, than that of native enzyme.  相似文献   

4.
In a general approach to the understanding of protein adaptation to high temperature, molecular models of the closely related mesophilic Streptomyces sp. S38 Xyl1 and thermophilic Thermomonospora fusca TfxA family 11 xylanases were built and compared with the three-dimensional (3D) structures of homologous enzymes. Some of the structural features identified as potential contributors to the higher thermostability of TfxA were introduced in Xyl1 by site-directed mutagenesis in an attempt to improve its thermostability and thermophilicity. A new Y11-Y16 aromatic interaction, similar to that present in TfxA and created in Xyl1 by the T11Y mutation, improved both the thermophilicity and thermostability. Indeed, the optimum activity temperature (70 vs. 60 degrees C) and the apparent Tm were increased by about 9 degrees C, and the mutant was sixfold more stable at 57 degrees C. The combined mutations A82R/F168H/N169D/delta170 potentially creating a R82-D169 salt bridge homologous to that present in TfxA improved the thermostability but not the thermophilicity. Mutations R82/D170 and S33P seemed to be slightly destabilizing and devoid of influence on the optimal activity temperature of Xyl1. Structural analysis revealed that residues Y11 and Y16 were located on beta-strands B1 and B2, respectively. This interaction should increase the stability of the N-terminal part of Xyl1. Moreover, Y11 and Y16 seem to form an aromatic continuum with five other residues forming putative subsites involved in the binding of xylan (+3, +2, +1, -1, -2). Y11 and Y16 might represent two additional binding subsites (-3, -4) and the T11Y mutation could thus improve substrate binding to the enzyme at higher temperature and thus the thermophilicity of Xyl1.  相似文献   

5.
The uptake and degradation of 125I-labeled (a) native aldolase, (b) cathepsin D-inactivated aldolase, and (c) aldolase inactivated by oxidized glutathione were studied in perfused rat liver. All three forms of aldolase were removed from the perfusion medium and degraded by the liver, but the uptake of the glutathione-inactivated enzyme (half-life in perfusate = 10 min) was much faster than that of the native enzyme (half-life = 30 min) or the cathepsin-inactivated enzyme (half-life = 42 min). The degradation of the enzyme was almost totally inhibited by leupeptin, indicating that thiol proteinases in lysosomes play an important role in the digestion process. Degradation of native and cathepsin D-inactivated aldolase appeared to be slower than that of the glutathione-inactivated enzyme but studies in which liver was preloaded with aldolase by perfusion at 19 degrees C and then warming to 37 degrees C indicated that the rate of degradation of all three forms was similar. It is concluded that the liver is capable of distinguishing between the glutathione-altered aldolase and native or partially degraded aldolase with regard to endocytosis, but that all three forms are degraded at similar rates once within lysosomes.  相似文献   

6.
Tyrosine hydroxylase was purified from bovine corpus striatum. The native enzyme had a half-life of 15 +/- 3 min at 50 degrees C. Phosphorylation of tyrosine hydroxylase with protein kinase purified from both corpus striatum and heart activated the enzyme, but activity was rapidly lost with additional preincubation of the enzyme at 30 degrees C. Thermal denaturation studies indicated that phosphorylated tyrosine hydroxylase had a half-life of 5 +/- 2 min at 50 degrees C  相似文献   

7.
-Chymotrypsin was covalently modified with cellobiose by chemical means. After adsorption on to a porous polyamide support, both the native and the glycosylated immobilized derivatives were used to synthesize a kyotorphin derivative (N-benzoyl-l-tyrosyl-l-argininamide) in acetonitrile/water. Glycosylated chymotrypsin gave a 125% increase in product formation (750 nmol mg–1 catalyst in 3 h) at 60% (v/v) acetonitrile/water. Maximal protective effect of this glycosylation process was at 70% (v/v) acetonitrile/water, at which concentration the half-life of the glycosylated enzyme was 20-times longer than that of the native form (52 min and 2.8 min, respectively).  相似文献   

8.
The carboxyl groups of purified carboxymethylcellulase (CMCase) from Aspergillus niger NIAB280 were modified by 1-ethyl-3(3-dimethylaminopropyl) carbodiimide (EDC) in the presence of glycinamide for 15 min (GAM15) and glycinamide plus cellobiose for 75 min (GAM75). The half-lives of GAM15 at different temperatures were significantly enhanced whereas those of GAM75 were reduced as compared with the native CMCase. The activation energies of denaturation of native, GAM15 and GAM75 were 40, 35 and 59kJ mol respectively. Native CMCase and GAM15 showed no compensation effect, whereas native and GAM75 gave temperature of compensation of 44¡C. Gibb's free energy of activation for denaturation (DG*) of GAM15 was increased as compared with native CMCase. Surprisingly the entropies (DS*) of activation for denaturation were negative for native and GAM75 and decreased further for GAM15 between the temperature range of 45 to 65¡C. A possible explanation for the thermal inactivation of native and increased thermal stability of GAM15 is also discussed.  相似文献   

9.
Hydrogenase from the hyperthermophilic archaeon, Pyrococcus furiosus, catalyzes the reversible activation of H(2) gas and the reduction of elemental sulfur (S degrees ) at 90 degrees C and above. The pure enzyme, modified with polyethylene glycol (PEG), was soluble (> 5 mg/mL) in toluene and benzene with t(1/2) values of more than 6 h at 25 degrees C. At 100 degrees C the PEG-modified enzyme was less stable in aqueous solution (t(1/2) approximately 10 min) than the native (unmodified) enzyme (t(1/2) approximately 1 h), but they exhibited comparable H(2) evolution, H(2) oxidation, and S degrees reduction activities at 80 degrees C. The H(2) evolution activity of the modified enzyme was twice that of the unmodified enzyme at 25 degrees C. The PEG-modified enzyme did not catalyze S degrees reduction (at 80 degrees C) in pure toluene unless H(2)O was added. The mechanism by which hydrogenase produces H(2)S appears to involve H(2)O as the proton source and H(2) as the electron source. The inability of the modified hydrogenase to catalyze S degrees reduction in a homogeneous non-aqueous phase complicates potential applications of this enzyme.  相似文献   

10.
A simple, sensitive, accurate and more informative assay for determining the number of modified groups during the course of carboxyl group modification is described. Monomeric carboxymethylcellulase (CMCase) from Aspergillus niger was modified by 1-ethyl-3(3-dimethylaminopropyl)carbodiimide (EDC) in the presence of glycinamide. The different time-course aliquots were subjected to non-denaturing PAGE and the gel stained for CMCase activity. The number of carboxyl groups modified are directly read from the ladder of the enzyme bands developed at given time. This method showed that after 75 min of modification reaction there were five major species of modified CMCases in which 6 to 10 carboxyls were modified.  相似文献   

11.
We have successfully engineered a disulphide bridge into the N-terminal region of Trichoderma reesei endo-1,4-beta-xylanase II (XYNII) by substituting Thr-2 and Thr-28 with cysteine. The T2C:T28C mutational changes increased the half-life in thermal inactivation of this mesophilic enzyme from approximately 40 s to approximately 20 min at 65 degrees C, and from less than 10 s to approximately 6 min at 70 degrees C. Therefore, the N-terminal disulphide bridge enables the use of XYNII at substantially higher temperatures than permitted by its native mesophilic counterpart. Altogether, thermostability increased by about 15 degrees C. The kinetic properties of the mutant XYNII were maintained at the level of the wild type enzyme. Our findings demonstrated that a properly designed disulphide bridge, here within the N-terminal region of XYNII, can be very effective in resisting thermal inactivation.  相似文献   

12.
Bovine pancreatic trypsin was treated with ethylene glycol bis(succinic acid N-hydroxysuccinimide ester). Approximately 8 of 14 lysines per trypsin molecule were modified. This derivative (EG trypsin) was more stable than native between 30 degrees and 70 degrees C: T50 values were 59 degrees C and 46 degrees C, respective. EG trypsin's half-life of 25 min at 55 degrees C was fivefold greater than native's. EG trypsin had a decreased rate of autolysis and retained more activity in aqueous mixtures of 1,4-dioxan, dimethylformamide, dimethylsulfoxide, and acetonitrile. EG trypsin had lower Km values for both amide and ester substrates; its kcat values for two amides (benzoyl-L-arginine p-nitroanilide and benzyloxycarbonyl glycyl-glycyl-arginyl-7-amino-4-methyl coumarin) increased, whereas its kcat value for an ester (thiobenzoyl benzoyloxycarbonyl-L-lysinate) decreased slightly. The specific activity (kcat/Km) of EG trypsin was increased for both amide and ester substrates. EG trypsin gave higher yields and reaction rates than native in kinetically controlled synthesis of benzoyl argininyl-leucinamide in acetonitrile and in t-butanol. Highest peptide yields occurred with EG trypsin in 95% acetonitrile, where 90% of the substrate was converted to product. No peptide synthesis occurred in 95% DMF with either form of trypsin.  相似文献   

13.
S Blumberg  B L Vallee 《Biochemistry》1975,14(11):2410-2419
Synthesis of a series of active N-hydroxysuccinimide esters of aliphatic and aromatic amino acids has yielded a new class of reagents for the covalent modification of proteolytic enzymes such as thermolysin. The activities of aliphatic acyl amino acid thermolysins are from 1.7 to 3.6 times greater than that of the native enzyme when hydrolyzing durylacryloyl-Gly-Leu-NH2, the substrate employed most widely. By comparison, the aromatic acylamino acid derivatives are "superactive," their activities being as much as 70-fold greater. Apparently, the aromatic character of the amino acid introduced is a critical variable in the determination of the functional response. The increased activity is completely restored to that of the native enzyme by deacylation with nucleophiles, such as hydroxylamine, and the rate of restoration of native activity is a function of the particular acyl group incorporated. Preliminary evidence regarding the chemical properties of the modified enzyme suggests that tyrosine, rather than lysine, histidine, or arginine, may be the residue modified. The functional consequences of successive modification with different reagents, moreover, indicate that each of them reacts with the same protein residue. The competitive inhibitors beta-phenyl-propionyl-Phe and Zn-2+ do not prevent modification with these active esters. Hence, the site(s) of their inhibitory action differ(s) from that at which modification occurs. The structure of the substrate is also a significant variable which determines the rate at which each acyl amino acid thermolysin hydrolyzes peptides. Depending on the particular substrate, the activity of aromatic derivatives can be as much as 400-fold greater than that of the native enzyme, and the resultant activity patterns can be ordered in a series characteristic for each enzyme derivative.  相似文献   

14.
Carboxymethylcellulase (CMCase) from Aspergillus niger NIAB280 was purified by a combination of ammonium sulphate precipitation, ion-exchange, hydrophobic interaction and gel filtration chromatography on FPLC with 9-folds increase in specific activity. Native and subunit molecular weights were found to be 36 kDa each. The purified CMCase was modified by 1-ethyl-3(3-dimethylaminopropyl) carbodiimide (EDC) in the presence of glycinamide for 15 min (GAM15) and glycinamide plus cellobiose for 75 min (GAM75). Similarly, the enzyme was modified by EDC in the presence of ethylenediamine dihydrochloride plus cellobiose for 75 min (EDAM75). The neutralization (GAM15 and GAM75) and reversal (EDAM75) of negative charges of carboxyl groups of CMCase had profound effect on the specificity constant (k(cat)/K(m)), pH optima, pK(a)'s of the active-site residues and thermodynamic parameters of activation. The specificity constants of native, GAM15, GAM75, and EDAM75 were 143, 340, 804, and 48, respectively. The enthalpy of activation (DeltaH(#)) of Carboxymethylcellulose (CMC) hydrolysis of native (50 and 15 kJ mol(-1)) and GAM15 (41 and 16 kJ mol(-1)) were biphasic whereas those of GAM75 (43 kJ mol(-1)) and EDAM75 (41 k J mol(-1)) were monophasic. Similarly, the entropy of activation (DeltaS(#)) of CMC hydrolysis of native (-61 and -173 J mol(-1) K(-1)) and GAM15 (-91 and -171 J mol(-1) K(-1)) were biphasic whereas those of GAM75 (-82 J mol(-1) K(-1)) and EDAM75 (-106 J mol(-1) K(-1)) were monophasic. The pH optima/pK(a)'s of both acidic and basic limbs of charge neutralized CMCases increased compared with those of native enzyme. The CMCase modification in the presence of glycinamide and absence of cellobiose at different pH's periodically activated and inhibited the enzyme activity indicating conformational changes. We believe that the alteration of the surface charges resulted in gross movement of loops that surround the catalytic pocket, thereby inducing changes in the vicinity of active site residues with concomitant alteration in kinetic and thermodynamic properties of the modified CMCases.  相似文献   

15.
16.
Horseradish peroxidase (HRP) is an important heme enzyme with enormous medical diagnostic, biosensing, and biotechnological applications. Thus, any improvement in the applicability and stability of the enzyme is potentially interesting. We previously reported that covalent attachment of an electron relay (anthraquinone 2-carboxylic acid) to the surface-exposed Lys residues successfully improves electron transfer properties of HRP. Here we investigated structural and functional consequences of this modification, which alters three accessible charged lysines (Lys-174, Lys-232, and Lys-241) to the hydrophobic anthraquinolysine residues. Thermal denaturation and thermoinactivation studies demonstrated that this kind of modification enhances the conformational and operational stability of HRP. The melting temperature increased 3 degrees C and the catalytic efficiency enhanced by 80%. Fluorescence and circular dichroism investigations suggest that the modified HRP benefits from enhanced aromatic packing and more buried hydrophobic patches as compared to the native one. Molecular dynamics simulations showed that modification improves the accessibility of His-42 and the heme prosthetic group to the peroxide and aromatic substrates, respectively. Additionally, the hydrophobic patch, which functions as a binding site or trap for reducing aromatic substrates, is more extended in the modified enzyme. In summary, this modification produces a new derivative of HRP with enhanced electron transfer properties, catalytic efficiency, and stability for biotechnological applications.  相似文献   

17.
Uracil-DNA glycosylase of thermophilic Thermothrix thiopara.   总被引:1,自引:1,他引:0  
An activity which released free uracil from dUMP-containing DNA was purified approximately 1,700-fold from extracts of Thermothrix thiopara, the first such activity to be isolated from extremely thermophilic bacteria. The enzyme appeared homogeneous, according to the results of sodium dodecyl sulfate-polyacrylamide gel electrophoresis. It had a native molecular weight of 26,000 and existed as a monomer protein in water solution. The enzyme had an optimal activity at 70 degrees C, between pH 7.5 and 9.0, and in the presence of 0.2% Triton X-100. It had no cofactor requirement and was not inhibited by EDTA, but it was sensitive to N-ethylmaleimide. The purified enzyme did not contain any nuclease that acted on native or depurinated DNA. The Arrhenius activation energy was 76 kJ/mol between 30 and 50 degrees C and 11 kJ/mol between 50 and 70 degrees C. The rate of heat inactivation of the enzyme followed first-order kinetics with a half-life of 2 min at 70 degrees C. Ammonium sulfate and bovine serum albumin protected the enzyme from heat inactivation. One T. thiopara cell contains enough activity to release about 2 X 10(8) uracil residues from DNA during one generation time at 70 degrees C.  相似文献   

18.
Soluble preparations of horse radish peroxidase are obtained by means of its amino groups modification with glutaric aldehyde, maleic anhydride and inert proteins including albumin. The enzyme activity is found to decrease under the modification with glutaric aldehyde and to be unchanged at all other cases. Thermal stability of the enzyme preparations obtained is studied within the temperature range from 56 to 80 degrees C. Thermostability of glutaric aldehyde-modified peroxidase is approximately 2.5-fold decreased at 56 degrees C. Thermostability of other preparations exceeds the stability of native peroxidase in 25--90 times at 56 degrees C. Thermodynamic parameters of activation for the process of irreversible thermoinactivation of native and modified enzyme are calculated. A strong compensation effect between activation enthalpy and entropy values is observed, which were changed in 1.5--2 times, while the free activation energy is changed by 2--3 kcal/mol only. Possible mechanism of the change of the enzyme thermal stability under its chemical modification is discussed.  相似文献   

19.
An extracellular lipase was isolated from the cell-free broth of Bacillus sp. GK 8. The enzyme was purified to 53-fold with a specific activity of 75.7 U mg(-1) of protein and a yield of 31% activity. The apparent molecular mass of the monomeric protein was 108 kDa as estimated by molecular sieving and 112 kDa by SDS-PAGE. The proteolysis of the native molecule yields a low molecular weight component of 11.5 kDa that still retains the active site. It was stable at the pH range of 7.0-10.0 with optimum pH 8.0. The enzyme was stable at 50 degrees C for 1 h with a half life of 2 h, 40 min, and 18 min at 60, 65, and 70 degrees C, respectively. With p-nitrophenyl laurate as substrate the enzyme exhibited a K(m) and V(max) of 3.63 mM and 0.26 microM/min/ml, respectively. Activity was stimulated by Mg(2+) (10 mM), Ba(2+) (10 mM), and SDS (0.1 mM), but inhibited by EDTA (10 mM), phenylmethane sulfonyl fluoride (100 mM), diethylphenylcarbonate (10 mM), and eserine (10 mM). It hydrolyzes triolein at all positions. The fatty acid specificity of lipase is broad with little preference for C(4) and C(18:1). Thermostability of the proteolytic fragment at 60 degrees C was observed to be 37% of the native protein. The native enzyme was completely stable in ethylene glycol and glycerol (30% v/v each) for 60 min at 65 degrees C.  相似文献   

20.
G W Chen  C F Hung  S H Chang  J G Lin  J G Chung 《Microbios》1999,98(391):159-174
N-acetyltransferase from Lactobacillus acidophilus was purified by ultrafiltration, DEAE-Sephacel, gel filtration chromatography on Sephadex G-100, and DEAE-5pw on high performance liquid chromatography, as judged by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) on a 12% (w/v) slab gel. The purified enzyme was thermostable at 37 degrees C for 1 h with a half-life of 32 min at 37 degrees C, and displayed optimum activity at 37 degrees C and pH 7.0. The K(m) and Vmax values for 2-aminofluorene were 0.842 mM and 2.406 nmol/min/mg protein, respectively. Among a series of divalent cations and salts, Zn2+, Ca2+, Fe2+, Mg2+, and Cu2+ were demonstrated to be the most potent inhibitors. The enzyme had a molecular mass of 44.9 kD. The three chemical modification agents, iodoacetamide, phenylglyoxal, and diethylpyrocarbonate, all exhibited dose-, time-, and temperature-dependent inhibition effects. Preincubation of purified N-acetyltransferase with acetyl coenzyme A (AcCoA) provided significant protection against the inhibition of iodoacetamide and diethylpyrocarbonate, but only partial protection against the inhibition of phenylglyoxal. These results indicate that cysteine, histidine, and arginine residues are essential for this bacterial activity, and the first two are likely to reside on the AcCoA binding site, but the arginine residue may be located close to the AcCoA binding site. This report is the first demonstration of acetyl CoA:arylamine N-acetyltransferase in L. acidophilus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号