首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 630 毫秒
1.
The ongoing destruction of tropical rainforests has increased the interest in the potential value of tropical agroforests for the conservation of biodiversity. Traditional, shaded agroforests may support high levels of biodiversity, for some groups even approaching that of undisturbed tropical forests. However, it is unclear to what extent forest fauna is represented in this diversity and how management affects forest fauna in agroforests. We studied lower canopy ant and beetle fauna in cacao agroforests and forests in Central Sulawesi, Indonesia, a region dominated by cacao agroforestry. We compared ant and beetle species richness and composition in forests and cacao agroforests and studied the impact of two aspects of management intensification (the decrease in shade tree diversity and in shade canopy cover) on ant and beetle diversity. The agroforests had three types of shade that represented a decrease in tree diversity (high, intermediate and low diversity). Species richness of ants and beetles in the canopies of the cacao trees was similar to that found in lower canopy forest trees. However, the composition of ant and beetle communities differed greatly between the agroforest and forest sites. Forest beetles suffered profoundly from the conversion to agroforests: only 12.5% of the beetle species recorded in the forest sites were also found in the agroforests and those species made up only 5% of all beetles collected from cacao. In contrast, forest ants were well represented in agroforests, with 75% of all species encountered in the forest sites also occurring on cacao. The reduction of shade tree diversity had no negative effect on ants and beetles on cacao trees. Beetle abundances and non-forest ant species richness even increased with decreasing shade tree diversity. Thinning of the shade canopy was related to a decrease in richness of forest ant species on cacao trees but not of beetles. The contrasting responses of ants and beetles to shade tree management emphasize that conservation plans that focus on one taxonomic group may not work for others. Overall ant and beetle diversity can remain high in shaded agroforests but the conservation of forest ants and beetles in particular depends primarily on the protection of natural forests, which for forest ants can be complemented by the conservation of adjacent shaded cacao agroforests.  相似文献   

2.
The forest‐like characteristics of agroforestry systems create a unique opportunity to combine agricultural production with biodiversity conservation in human‐modified tropical landscapes. The cacao‐growing region in southern Bahia, Brazil, encompasses Atlantic forest remnants and large extensions of agroforests, locally known as cabrucas, and harbors several endemic large mammals. Based on the differences between cabrucas and forests, we hypothesized that: (1) non‐native and non‐arboreal mammals are more frequent, whereas exclusively arboreal and hunted mammals are less frequent in cabrucas than forests; (2) the two systems differ in mammal assemblage structure, but not in species richness; and (3) mammal assemblage structure is more variable among cabrucas than forests. We used camera‐traps to sample mammals in nine pairs of cabruca‐forest sites. The high conservation value of agroforests was supported by the presence of species of conservation concern in cabrucas, and similar species richness and composition between forests and cabrucas. Arboreal species were less frequently recorded, however, and a non‐native and a terrestrial species adapted to open environments (Cerdocyon thous) were more frequently recorded in cabrucas. Factors that may overestimate the conservation value of cabrucas are: the high proportion of total forest cover in the study landscape, the impoverishment of large mammal fauna in forest, and uncertainty about the long‐term maintenance of agroforestry systems. Our results highlight the importance of agroforests and forest remnants for providing connectivity in human‐modified tropical forest landscapes, and the importance of controlling hunting and dogs to increase the value of agroforestry mosaics.  相似文献   

3.
Large‐scale forest restoration relies on approaches that are cost‐effective and economically attractive to farmers, and in this context agroforestry systems may be a valuable option. Here, we compared ecological outcomes among (1) 12–15‐year‐old coffee agroforests established with several native shade trees, (2) 12–15‐year‐old high‐diversity restoration plantations, and (3) reference old‐growth forests, within a landscape restoration project in the Pontal do Paranapanema region, in the Atlantic Forest of southeastern Brazil. We compared the aboveground biomass, canopy cover, and abundance, richness, and composition of trees, and the regenerating saplings in the three forest types. In addition, we investigated the landscape drivers of natural regeneration in the restoration plantations and coffee agroforests. Reference forests had a higher abundance of trees and regenerating saplings, but had similar levels of species richness compared to coffee agroforests. High‐diversity agroforests and restoration plantations did not differ in tree abundance. However, compared to restoration plantations, agroforests showed higher abundance and species richness of regenerating saplings, a higher proportion of animal‐dispersed species, and higher canopy cover. The abundance of regenerating saplings declined with increasing density of coffee plants, thus indicating a potential trade‐off between productivity and ecological benefits. High‐diversity coffee agroforests provide a cost‐effective and ecologically viable alternative to high‐diversity native tree plantations for large‐scale forest restoration within agricultural landscapes managed by local communities, and should be included as part of the portfolio of reforestation options used to promote the global agenda on forest and landscape restoration.  相似文献   

4.
Invasional 'meltdown' on an oceanic island   总被引:11,自引:0,他引:11  
Islands can serve as model systems for understanding how biological invasions affect community structure and ecosystem function. Here we show invasion by the alien crazy ant Anoplolepis gracilipes causes a rapid, catastrophic shift in the rain forest ecosystem of a tropical oceanic island, affecting at least three trophic levels. In invaded areas, crazy ants extirpate the red land crab, the dominant endemic consumer on the forest floor. In doing so, crazy ants indirectly release seedling recruitment, enhance species richness of seedlings, and slow litter breakdown. In the forest canopy, new associations between this invasive ant and honeydew‐secreting scale insects accelerate and diversify impacts. Sustained high densities of foraging ants on canopy trees result in high population densities of host‐generalist scale insects and growth of sooty moulds, leading to canopy dieback and even deaths of canopy trees. The indirect fallout from the displacement of a native ‘keystone’ species by an ant invader, itself abetted by introduced/cryptogenic mutualists, produces synergism in impacts to precipitate invasional ‘meltdown’ in this system.  相似文献   

5.
Aim Owing to their role as insect predators, web‐building spiders can be important biological control agents within agricultural systems. In complex tropical agroecosystems such as agroforests, management determines plant architecture, vegetation composition and associated ant density, but little is known on how these attributes, together with landscape context, determine spider web density. We hypothesized that all three spatial scales and the presence of Philidris ants significantly contribute to the explanation of spider web density with web types being differently affected. Location In 42 differently managed cacao agroforestry systems in Sulawesi, Indonesia. Methods We surveyed the distribution of five spider‐web types on 420 cacao trees to determine how these relate to habitat variables and a numerically dominant ant species at three different spatial scales, comparing tree, plot and landscape features. We fitted linear mixed‐effects model, selected the best model subset using information‐theoretic criteria and calculated the model‐averaged estimates. We used non‐metric multidimensional scaling (NMDS) to determine and visualize guild level responses to the effects of the tree, plot and landscape‐scale variables. Results The five spider guilds preferred different features of cacao tree architecture. Most frequently recorded webs belonged to the line‐ and orb‐web type. At the tree scale, overall web density was positively related to canopy openness. At the plot scale, a higher number of shade trees was related to a higher web density. At the landscape scale, the altitude determined the distribution patterns of web‐building spiders. Presence of Philidris ants was positively associated with density of orb webs, while no pattern was found for other web types. Main conclusions Results suggest spider web density could be increased by pruning of cacao trees while keeping shade trees at high density in cacao plots. The results emphasize the need to consider scale dependency of crop management and web‐guild‐specific responses that may be related to different functional roles of spiders as a high‐density predator group in agroforestry.  相似文献   

6.
In the current deforestation context, agroforestry is increasingly considered in the tropical zone for its potential contribution to biodiversity conservation. In Guinée Forestière (Guinea, West Africa), coffee-based species rich agroforests are currently expanding on agricultural land around most villages. To assess the role these agroforests play with respect to biodiversity conservation, we compared their tree structure and diversity with those of a neighbouring natural forest. Eighty plots were sampled using a variable area transect method (60 plots distributed into 3 village agroforests, 20 natural forest plots). The structure of coffee-based agroforests showed obvious signs of farmers’ management: density of mature trees was significantly lower than in natural forest and most juvenile trees were eliminated and replaced by coffee trees. However, tree seedling density was not significantly different than in natural forest. Tree species richness and diversity were also lower than in natural forest but much higher than in any other agricultural or agroforestry land use system. These results are close to those obtained in the coffee-based agroforests of Central America, confirming that coffee-based agroforests retain many forest species that play a key role in the conservation of regional forest tree diversity.  相似文献   

7.
In many tropical landscapes, agroforestry systems are the last forested ecosystems, providing shade, having higher humidity, mitigating potential droughts, and possessing more species than any other crop system. Here, we tested the hypothesis that higher levels of shade and associated humidity in agroforestry enhance coffee ant richness more during the dry than rainy season, comparing ant richness in 22 plots of three coffee agroforestry types in coastal Ecuador: simple-shade agroforests (intensively managed with low tree species diversity), complex-shade agroforests (extensively managed with intermediate tree species diversity) and abandoned coffee agroforests (abandoned for 10-15 yr and resembling secondary forests). Seasonality affected responses of ant richness but not composition to agroforestry management, in that most species were observed in abandoned coffee agroforests in the dry season. In the rainy season, however, most species were found in simple-shade agroforests, and complex agroforestry being intermediate. Foraging coffee ants species composition did not change differently according to agroforestry type and season. Results show that shade appears to be most important in the dry seasons, while a mosaic of different land-use types may provide adequate environmental conditions to ant species, maximizing landscape-wide richness throughout the year.  相似文献   

8.
To assess the contributions of rustic shade cacao plantations to vascular epiphyte conservation, we compared epiphyte species richness, abundance, composition, and vertical distributions on shade trees and in the understories of six plantations and adjacent natural forests. On three phorophytes and three 10 × 10 m understory plots in each of the agroforestry plantations and natural forests, 54 and 77 species were observed, respectively. Individual-based rarefaction curves revealed that epiphyte species richness was significantly higher on forest phorophytes than on cacao farm shade trees; detailed analyses showed that the differences were confined to the inner and outer crown zones of the phorophytes. No differences in epiphyte species richness were found in understories. Araceae, Piperaceae, and Pteridophyta were less species-rich in plantations than in forests, while there were no differences in Orchidaceae and Bromeliaceae. Regression analysis revealed that epiphyte species richness on trunks varied with canopy cover, while abundance was more closely related to soil pH, canopy cover, and phorophyte height. For crown epiphytes, phorophyte diameter at breast height (dbh) explained much of the variation in species richness and abundance. There were also pronounced downward shifts in the vertical distributions of epiphyte species in agroforests relative to natural forests. The results confirm that epiphyte diversity, composition, and vertical distributions are useful indicators of human disturbance and showed that while the studied plantations serve to preserve portions of epiphyte diversity in the landscape, their presence does not fully compensate for the loss of forests.  相似文献   

9.
In Brazil, cacao is mostly planted beneath shade trees. The diversity of shade trees varies from monospecific to highly diverse canopies, characteristic of pristine Atlantic Forest. This study evaluates the relationships between family richness of Hymenoptera-Parasitica and Chrysidoidea, and tree species richness and density, the species richness of herbaceous understorey, and the area and age of the cacao agroforestry system. We sampled 16 cacao agroforestry systems, with canopy diversity ranging from one to 22 tree species per hectare, in three seasons: summer (March), winter (August) and spring (November). Parasitoids were sampled using eight Malaise-Townes traps per site. Tree species richness and density were enumerated within 1 ha at each site, and herbaceous plant species richness was calculated in eight 1 m2 plots, within the hectare. The number of parasitoid families increased with tree species richness and density in spring and summer, but decreased in winter. Neither species richness of herbaceous plants nor area and age of the system affected parasitoid family richness. We suggest that the increase of parasitoid diversity with tree species richness and density in warmer seasons reflects increasing heterogeneity and availability of resources. The decrease in parasitoid family number with tree density in winter may be due to local impoverishment of resources, leading to parasitoid emigration to neighbouring forest remnants. This result implies that a higher diversity of shade trees will help to maintain high parasitoid levels and, in consequence, higher levels of natural enemies of cacao pests, particularly in the warmer seasons. This prediction is borne out in the experience of cacao producers. The proper management of shade tree diversity will play a vital role in maintaining the sustainability of cacao agroforestry production systems in the tropics and, concurrently, will maintain high biodiversity values in these locations.  相似文献   

10.
In tropical rain forests, the ant community can be divided into ground and arboreal faunas. Here, we report a thorough sampling of the arboreal ant fauna of La Selva Biological Station, a Neotropical rain forest site. Forty-five canopy fogging samples were centered around large trees. Individual samples harbored an average of 35 ant species, with up to 55 species in a single sample. The fogging samples yielded 163 observed species total, out of a statistically estimated 199 species. We found no relationship between within-sample ant richness and focal tree species, nor were the ant faunas of nearby trees more similar to each other than the faunas of widely spaced trees. Species density was high, and beta diversity was low: A single column of vegetation typically harbors at least a fifth of the entire arboreal ant fauna. Considering the entire fauna, based on 23,326 species occurrence records using a wide variety of collecting methods, 182 of 539 observed species (196 of 605, estimated statistically) were entirely arboreal. The arboreal ant fauna is thus about a third of the total La Selva ant fauna, a robust result because inventory completeness was similar for ground and arboreal ants. The taxonomic history of discovery of the species that make up the La Selva fauna reveals no disproportionately large pool of undiscovered ant species in the canopy. The "last biotic frontier" for tropical ants has been the rotten wood, leaf litter, and soil of the forest floor.  相似文献   

11.
The ant fauna of oak forest canopies in Northern Bavaria was studied by canopy fogging on 45 trees in August 2000 and May 2001. The study focused on a comparison of several different forestry management practices resulting in several types of canopy cover. Forests surveyed were: (1) high forest (high canopy cover), (2) coppice with standards (low canopy cover), (3) forest pasture with mostly solitary trees (very low canopy cover) and (4) transitional forest from former coppice with standards to high forest (approaching high canopy cover). This comprised a full gradient of canopy coverage. On the 45 oak trees sampled, a total of 17 ant species were found. Species composition was dependent on the different forestry management practices. The total number of species and the number of species listed in the Red Data Books of both Germany and Bavaria were much higher in the forest pasture and the coppice with standards, as compared to the high forest. The transitional forest was at an intermediate level. The highest number of ant species was found in the forest pasture. This can be explained by the occurrence of species of open habitats and thermophilous species. In the coppice with standards, forest dwelling and arboricolous species dominated, whereas the high forest showed much lower frequencies of arboricolous species like Temnothorax corticalis, Dolichoderus quadripunctatus and Temnothorax affinis. A multivariate analysis revealed that canopy cover (measured as “shade”, in percentage intervals of canopy cover) was the best parameter for explaining species distribution and dataset variation, and to a lesser extent the amount of dead wood, canopy and trunk diameter. Thus ant fauna composition was mostly driven by structural differences associated to the different forestry management practices. Many ant species clearly preferred the more open and light forest stands of the coppice with standards as compared to the dense and shady high forest.  相似文献   

12.
1.?Species diversity of arboreal arthropods tends to increase during rainforest succession so that primary forest communities comprise more species than those from secondary vegetation, but it is not well understood why. Primary forests differ from secondary forests in a wide array of factors whose relative impacts on arthropod diversity have not yet been quantified. 2.?We assessed the effects of succession-related determinants on a keystone ecological group, arboreal ants, by conducting a complete census of 1332 ant nests from all trees with diameter at breast height?≥?5?cm occurring within two (unreplicated) 0·32-ha plots, one in primary and one in secondary lowland forest in New Guinea. Specifically, we used a novel rarefaction-based approach to match number, size distribution and taxonomic structure of trees in primary forest communities to those in secondary forest and compared the resulting numbers of ant species. 3.?In total, we recorded 80 nesting ant species from 389 trees in primary forest but only 42 species from 295 trees in secondary forest. The two habitats did not differ in the mean number of ant species per tree or in the relationship between ant diversity and tree size. However, the between-tree similarity of ant communities was higher in secondary forest than in primary forest, as was the between-tree nest site similarity, suggesting that secondary trees were more uniform in providing nesting microhabitats. 4.?Using our rarefaction method, the difference in ant species richness between two forest types was partitioned according to the effects of higher tree density (22·6%), larger tree size (15·5%) and higher taxonomic diversity of trees (14·3%) in primary than in secondary forest. The remaining difference (47·6%) was because of higher beta diversity of ant communities between primary forest trees. In contrast, difference in nest density was explained solely by difference in tree density. 5.?Our study shows that reduction in plant taxonomic diversity in secondary forests is not the main driver of the reduction in canopy ant species richness. We suggest that the majority of arboreal species losses in secondary tropical forests are attributable to simpler vegetation structure, combined with lower turnover of nesting microhabitats between trees.  相似文献   

13.
Vegetation surveys were carried out at 24 sampling stations distributed over four land use types, namely near-primary forest, secondary forest, agroforestry systems and annual crop lands in the northeastern part of the Korup region, Cameroon, to assess the impact of forest conversion on trees and understorey plants. Tree species richness decreased significantly with increasing level of habitat modification, being highest and almost equal in secondary and near-primary forests. Understorey plant species richness was significantly higher in annual crop lands than in other land use types. The four land use types differed in tree and understorey plant species composition, the difference being smaller among natural forests. Tree and understorey plant density differed significantly between habitat types. Density was strongly correlated with species richness, both for trees and understorey plants. Five tree and 15 understorey plant species showed significant responses to habitat. A 90% average drop in tree basal area from forest to farmland was registered. Our findings support the view that agroforestry systems with natural shade trees can serve to protect many forest species, but that especially annual crop lands could be redesigned to improve biodiversity conservation in agricultural landscapes of tropical rainforest regions.  相似文献   

14.
We used a highly replicated study to examine vegetation characteristics between patches of intervened forest, abandoned agroforestry systems with coffee and actively managed agroforestry systems with coffee in a tropical landscape. In all habitats, plant structural characteristics, individual abundance, species richness and composition were recorded for the three plant size classes: adult trees, saplings and seedlings. Furthermore, bird species richness and composition, and seeds dispersed by birds were recorded. Tree abundance was higher in forest habitats while saplings and seedlings were more abundant in abandoned coffee sites. Although species richness of adult trees was similar in the three habitats, species richness of saplings and seedlings was much higher in forest and abandoned coffee than in managed coffee sites. However, in spite of their relatively low species richness, managed coffee sites are an important refuge for tree species common to the almost disappeared mature forest in the area. Floristic similarity for adult trees was relatively low between land use types, but clearly higher for seedlings, indicating homogenizing processes at the landscape level. More than half of the saplings and seedling were not represented by adults in the canopy layer, suggesting the importance of seed dispersal by birds between habitats. Our results show that each of the studied ecosystems plays a unique and complementary role as seed source and as habitat for tree recovery and tree diversity.  相似文献   

15.
Tropical secondary forest and agroforestry systems have been identified as important refuges for the local species diversity of birds and other animal groups, but little is known about the importance of these systems for terrestrial herbs. In particular, few studies report how the conversion from tropical forest to technified cacao plantation affects the species richness and the community structure of herbs. We conducted surveys in 43 cacao plantations along the border of the Lore Lindu National Park in Central Sulawesi, ranging from agroforests to technified cacao, categorizing the plantations as rustic cacao, planted shade cacao, and technified cacao. We recorded 91 herb species. Of the 74 species determined to species level, 21 were also found in natural forests, while 53 were recorded only in agricultural habitats. Araceae was the most forest‐dependent plant family while Asteraceae included the highest number of nonforest species. Overall, the presence of forest species was confined to moderately intensively managed rustic and planted shaded plantations. Distance from the forest, which has been identified as a crucial parameter for the diversity and composition of other taxa in cacao agroforests, only played a minimal role for herbs. Our study suggests that native forest herbs maybe more vulnerable to forest conversion than animal groups. The intensification of cacao plantation management increases the presence of weedy species to the detriment of native forest species.  相似文献   

16.
Litter-nesting ants are diverse and abundant in tropical forests, but the factors structuring their communities are poorly known. Here we present results of the first study to examine the impact of natural variation in flooding on a highly diverse (21 genera, 77 species) litter-nesting ant community in a primary Amazonian forest. Fifty-six 3 × 3 m plots experiencing strong variation in flooding and twenty-eight 3 × 3 m terra firme plots were exhaustively searched for litter-nesting ants to determine patterns of density, species richness and species composition. In each plot, flooding, litter depth, twig availability, canopy cover, plant density, percent soil nitrogen, carbon, and phosphorus were measured. Degree of flooding, measured as flood frequency and flood interval, had the strongest impact on ant density in flooded forest. Flooding caused a linear decrease in ant abundance, potentially due to a reduction of suitable nesting sites. However, its influence on species richness varied: low-disturbance habitat had species richness equal to terra firme forest after adjusting for differences in density. The composition of ant genera and species varied among flood categories; some groups known to contain specialist predators were particularly intolerant to flooding. Hypoponera STD10 appeared to be well-adapted to highly flooded habitat. Although flooding did not appear to increase species richness or abundance at the habitat scale, low-flooding habitat contained a mixture of species found in the significantly distinct ant communities of terra firme and highly flooded habitat.
  相似文献   

17.
Theobroma cacao plantings, when managed under the shade of rainforest trees, provide habitat for many resident and migratory bird species. We compared the bird diversity and community structure in organic cacao farms and nearby forest fragments throughout mainland Bocas del Toro, Panama. We used this dataset to ask the following questions: (1) How do bird communities using cacao habitat compare to communities of nearby forest fragments? (2) To what extent do Northern migratory birds use shaded cacao farms, and do communities of resident birds shift their abundances in cacao farms seasonally? (3) Do small scale changes in shade management of cacao farms affect bird diversity? Using fixed radius point counts and additional observations, we recorded 234 landbird species, with 102 species that were observed in both cacao and forest fragments, 86 species that were only observed in cacao farms, and 46 species that were restricted to forest fragments. Cacao farms were rich in canopy and edge species such as tanagers, flycatchers and migratory warblers, but understory insectivores were nearly absent from cacao farms. We observed 27 migratory species, with 18 species in cacao farms only, two species in forest only, and seven species that occurred in both habitats. In cacao farms, the diversity of birds was significantly greater where there was less intensive management of the canopy shade trees. Shade tree species richness was most important for explaining variance in bird diversity. Our study shows that shaded cacao farms in western Panama provide habitat for a wide variety of resident and migratory bird species. Considering current land use trends in the region, we suggest that action must be taken to prevent conversion away from shaded cacao farms to land uses with lower biodiversity conservation value.  相似文献   

18.
In southern Bahia, Brazil, cabrucas are the traditional agroforests in which cacao trees are planted under thinned-out native forests. To analyze the role of cabrucas in tree species conservation, we inventoried the non-cocoa trees in 1.0 ha plots of cabruca in 16 cocoa farms and compared our results with a similar survey undertaken in the early 1960s in the same region to analyze the long term changes. We also interviewed 160 cocoa farmers to investigate their preferences for species and the main practices used in managing shade trees. The cabrucas showed high levels of tree diversity for an agroforestry system (Shannon index ranging from 2.21 to 3.52) and also high variation in structure and composition among the different farms. Forest specialist trees accounted for most species (63.9%) in the survey and were among the species most preferred by the farmers, although we found evidence that some of these trees are gradually being replaced by other species. Our results indicate that cabrucas are poor substitutes for undisturbed forests in terms of tree species richness, but their presence in human-altered landscapes is of utmost importance to the conservation of forest tree species as they increase overall heterogeneity and may serve as ecological corridors, additional habitats, and buffer zones.  相似文献   

19.
Habitat heterogeneity contributes to the maintenance of diversity, but the extent that landscape-scale rather than local-scale heterogeneity influences the diversity of soil invertebrates—species with small range sizes—is less clear. Using a Scottish habitat heterogeneity gradient we correlated Collembola and lumbricid worm species richness and abundance with different elements (forest cover, habitat richness and patchiness) and qualities (plant species richness, soil variables) of habitat heterogeneity, at landscape (1 km2) and local (up to 200 m2) scales. Soil fauna assemblages showed considerable turnover in species composition along this habitat heterogeneity gradient. Soil fauna species richness and turnover was greatest in landscapes that were a mosaic of habitats. Soil fauna diversity was hump-shaped along a gradient of forest cover, peaking where there was a mixture of forest and open habitats in the landscape. Landscape-scale habitat richness was positively correlated with lumbricid diversity, while Collembola and lumbricid abundances were negatively and positively related to landscape spatial patchiness. Furthermore, soil fauna diversity was positively correlated with plant diversity, which in turn peaked in the sites that were a mosaic of forest and open habitat patches. There was less evidence that local-scale habitat variables (habitat richness, tree cover, plant species richness, litter cover, soil pH, depth of organic horizon) affected soil fauna diversity: Collembola diversity was independent of all these measures, while lumbricid diversity positively and negatively correlated with vascular plant species richness and tree canopy density. Landscape-scale habitat heterogeneity affects soil diversity regardless of taxon, while the influence of habitat heterogeneity at local scales is dependent on taxon identity, and hence ecological traits, e.g. body size. Landscape-scale habitat heterogeneity by providing different niches and refuges, together with passive dispersal and population patch dynamics, positively contributes to soil faunal diversity. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
Almost half of lowland tropical forests are at various stages of regeneration following deforestation or fragmentation. Changes in tree communities along successional gradients have predictable bottom‐up effects on consumers. Liana (woody vine) assemblages also change with succession, but their effects on animal succession remain unexplored. Here we used a large‐scale liana removal experiment across a forest successional chronosequence (7–31 years) to determine the importance of lianas to ant community structure. We conducted 1,088 surveys of ants foraging on and living in trees using tree trunk baiting and hand‐collecting techniques at 34 paired forest plots, half of which had all lianas removed. Ant species composition, β‐diversity, and species richness were not affected by liana removal; however, ant species co‐occurrence (the coexistence of two or more species in a single tree) was more frequent in control plots, where lianas were present, versus removal plots. Forest stand age had a larger effect on ant community structure than the presence of lianas. Mean ant species richness in a forest plot increased by ca. 10% with increasing forest age across the 31‐year chronosequence. Ant surveys from forest >20 years old included more canopy specialists and fewer ground‐nesting ant species versus those from forests <20 years old. Consequently, lianas had a minimal effect on arboreal ant communities in this early successional forest, where rapidly changing tree community structure was more important to ant species richness and composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号