首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Despite previous developmental studies on basally branching wingless insects and crustaceans, the evolutionary origin of insect wings remains controversial. Knowledge regarding genetic regulation of tissues hypothesized to have given rise to wings would help to elucidate how ancestral development changed to allow the evolution of true wings. However, genetic tools available for basally branching wingless species are limited. The firebrat Thermobia domestica is an apterygote species, phylogenetically related to winged insects. T. domestica presents a suitable morphology to investigate the origin of wings, as it forms the tergal paranotum, from which wings are hypothesized to have originated. Here we report the first successful CRISPR/Cas9-based germline genome editing in T. domestica. We provide a technological platform to understand the development of tissues hypothesized to have given rise to wings in an insect with a pre-wing evolution body plan.  相似文献   

2.
3.
Although the asymmetry in the upward and downward bending of insect wings is well known, the structural origin of this asymmetry is not yet clearly understood. Some researchers have suggested that based on experimental results, the bending asymmetry of insect wings appears to be a consequence of the camber inherent in the wings. Although an experimental approach can reveal this phenomenon, another method is required to reveal the underlying theory behind the experimental results. The finite element method (FEM) is a powerful tool for evaluating experimental measurements and is useful for studying the bending asymmetry of insect wings. Therefore, in this study, the asymmetric bending of the Allomyrina dichotoma beetle''s hind wing was investigated through FEM analyses rather than through an experimental approach. The results demonstrated that both the stressed stiffening of the membrane and the camber of the wing affect the bending asymmetry of insect wings. In particular, the chordwise camber increased the rigidity of the wing when a load was applied to the ventral side, while the spanwise camber increased the rigidity of the wing when a load was applied to the dorsal side. These results provide an appropriate explanation of the mechanical behavior of cambered insect wings, including the bending asymmetry behavior, and suggest an appropriate approach for analyzing the structural behavior of insect wings.  相似文献   

4.
The cockroach, Periplaneta americana represents a basal insect lineage that undergoes the ancestral hemimetabolous mode of development. Here, we examine the embryonic and post-embryonic functions of the hox gene Scr in Periplaneta as a way of better understanding the roles of this gene in the evolution of insect body plans. During embryogenesis, Scr function is strictly limited to the head with no role in the prothorax. This indicates that the ancestral embryonic function of Scr was likely restricted to the head, and that the posterior expansion of expression in the T1 legs may have preceded any apparent gain of function during evolution. In addition, Scr plays a pivotal role in the formation of the dorsal ridge, a structure that separates the head and thorax in all insects. This is evidenced by the presence of a supernumerary segment that occurs between the labial and T1 segments of RNAiScr first nymphs and is attributed to an alteration in engrailed (en) expression. The fact that similar Scr phenotypes are observed in Tribolium but not in Drosophila or Oncopeltus reveals the presence of lineage-specific variation in the genetic architecture that controls the formation of the dorsal ridge. In direct contrast to the embryonic roles, Scr has no function in the head region during post-embryogenesis in Periplaneta, and instead, strictly acts to provide identity to the T1 segment. Furthermore, the strongest Periplaneta RNAiScr phenotypes develop ectopic wing-like tissue that originates from the posterior region of the prothoracic segment. This finding provides a novel insight into the current debate on the morphological origin of insect wings.  相似文献   

5.
Crowding and changes in food availability are two critical environmental conditions that impact an animal''s trajectory toward either migration or reproduction. Many insects facing this challenge have evolved wing polyphenisms. When conditions favor reproduction, wing polyphenic species produce adults that either have no wings or short, non-functional wings. Facultative wing growth reflects a physiological and evolutionary trade-off between migration and reproduction, triggered by environmental conditions. How environmental cues are transduced to produce these alternative forms, and their associated ecological shift from migration to reproduction, remains an important unsolved problem in evolutionary ecology. The brown planthopper, a wing polymorphic insect exhibiting strong trade-offs in investment between migration and reproduction, is one of the most serious rice pests in Asia. In this study, we investigated the function of four genes in the insulin-signaling pathway known to couple nutrition with growth, PI3 Kinase (PI3K), PDK1, Akt (Protein Kinase B), and the forkhead gene FOXO. Using a combination of RNA interference and pharmacological inhibitor treatment, we show that all four genes contribute to tissue level regulation of wing polymorphic development in this insect. As predicted, silencing of the NlPI3K, NlAkt and NlPDK1 through dsRNA and with the pharmacological inhibitor Perifosine resulted in short-winged brown planthoppers, whereas knockdown of NlFOXO resulted in long-winged planthoppers. Morphometric analyses confirm that phenotypes from our manipulations mimic what would be found in nature, i.e., major parameters such as bristle number, wing area and body weight are not significantly different from non-experimental animals. Taken together, these data implicate the insulin-signaling pathway in the transduction of environmental factors into condition-dependent patterns of wing growth in insects.  相似文献   

6.
Deformed wing virus (DWV) in western honey bees (Apis mellifera) often remains asymptomatic in workers and drones, and symptoms have never been described from queens. However, intense infections linked to parasitism by the mite Varroa destructor can cause worker wing deformity and death within 67 h of emergence. Ten workers (eight with deformed wings and two with normal wings) and three drones (two with deformed wings and one with normal wings) from two colonies infected with V. destructor from Nova Scotia, Canada, and two newly-emerged queens (one with deformed wings and one with normal wings) from two colonies infected with V. destructor from Prince Edward Island, Canada, were genetically analyzed for DWV. We detected DWV in all workers and drones, regardless of wing morphology, but only in the deformed-winged queen. This is the first report of DWV from Atlantic Canada and the first detection of a symptomatic queen with DWV from anywhere.  相似文献   

7.
The aerodynamic characteristics of the Coleopteran beetle species Epilachna quadricollis, a species with flexible hind wings and stiff elytra (fore wings), are investigated in terms of hovering flight. The flapping wing kinematics of the Coleopteran insect are modeled through experimental observations with a digital high-speed camera and curve fitting from an ideal harmonic kinematics model. This model numerically simulates flight by estimating a cross section of the wing as a two-dimensional elliptical plane. There is currently no detailed study on the role of the elytron or how the elytron-hind wing interaction affects aerodynamic performance. In the case of hovering flight, the relatively small vertical or horizontal forces generated by the elytron suggest that the elytron makes no significant contribution to aerodynamic force.  相似文献   

8.
9.
《Journal of Asia》2023,26(4):102130
Insect wing development is a complex process controlled by a series of genes. Notch is a key gene that regulates insect wing development. It is a receptor protein in the Notch signaling pathway that regulates the expression of downstream target genes after binding with ligands. In this study, we obtained the Notch gene from Sogatella furcifera (SfNotch) and analyzed its mRNA expression levels in different developmental stages and tissues. We also used RNA interference (RNAi) to investigate the biological function of SfNotch. Our results showed that SfNotch expression increased toward the end of the 3rd–5th instars, reaching its highest expression in the adult stage, and was especially high in the thorax and wing tissues. In addition, knockdown of SfNotch resulted in notched wings in 68.5% of S. furcifera. Our findings provide insight into the regulation of insect wing development and contribute to the molecular understanding of this process.  相似文献   

10.
In contemporary entomology the morphological characters of insects are not always treated according to their phylogenetic rank. Fossil evidence often gives clues for different interpretations. All primitive Paleozoic pterygote nymphs are now known to have had articulated, freely movable wings reinforced by tubular veins. This suggests that the wings of early Pterygota were engaged in flapping movements, that the immobilized, fixed, veinless wing pads of Recent nymphs have resulted from a later adaptation affecting only juveniles, and that the paranotal theory of wing origin is not valid. The wings of Paleozoic nymphs were curved backwards in Paleoptera and were flexed backwards at will in Neoptera, in both to reduce resistance during forward movement. Therefore, the fixed oblique-backwards position of wing pads in all modern nymphs is secondary and is not homologous in Paleoptera and Neoptera. Primitive Paleozoic nymphs had articulated and movable prothoracic wings which became in some modern insects transformed into prothoracic lobes and shields. The nine pairs of abdominal gillplates of Paleozoic mayfly nymphs have a venation pattern, position, and development comparable to that in thoracic wings, to which they are serially homologous. Vestigial equivalents of wings and legs were present in the abdomen of all primitive Paleoptera and primitive Neoptera. The ontogenetic development of Paleozoic nymphs was confluent, with many nymphal and subimaginal instars, and the metamorphic instar was missing. The metamorphic instar originated by the merging together of several instars of old nymphs; it occurred in most orders only after the Paleozoic, separately and in parallel in all modern major lineages (at least twice in Paleoptera, in Ephemeroptera and Odonata; separately in hemipteroid, blattoid, orthopteroid, and plecopteroid lineages of exopterygote Neoptera; and once only in Endopterygota). Endopterygota evolved from ametabolous, not from hemimetabolous, exopterygote Neoptera. The full primitive wing venation consists of six symmetrical pairs of veins; in each pair, the first branch is always convex and the second always concave; therefore costa, subcosta, radius, media, cubitus, and anal are all primitively composed of two separate branches. Each pair arises from a single veinal base formed from a sclerotized blood sinus. In the most primitive wings the circulatory system was as follows: the costa did not encircle the wing, the axillary cord was missing, and the blood pulsed in and out of each of the six primary, convex-concave vein pair systems through the six basal blood sinuses. This type of circulation is found as an archaic feature in modern mayflies. Wing corrugation first appeared in preflight wings, and hence is considered primitive for early (paleopterous) Pterygota. Somewhat leveled corrugation of the central wing veins is primitive for Neoptera. Leveled corrugation in some modern Ephemeroptera, as well as accentuated corrugation in higher Neoptera, are both derived characters. The wing tracheation of Recent Ephemeroptera is not fully homologous to that of other insects and represents a more primitive, segmental stage of tracheal system. Morphology of an ancient articular region in Palaeodictyoptera shows that the primitive pterygote wing hinge in its simplest form was straight and composed of two separate but adjoining morphological units: the tergal, formed by the tegula and axillaries; and the alar, formed by six sclerotized blood sinuses, the basivenales. The tergal sclerites were derived from the tergum as follows: the lateral part of the tergum became incised into five lobes; the prealare, suralare, median lobe, postmedian lobe and posterior notal wing process. From the tips of these lobes, five slanted tergal sclerites separated along the deep paranotal sulcus: the tegula, first axillary, second axillary, median sclerite, and third axillary. Primitively, all pteralia were arranged in two parallel series on both sides of the hinge. In Paleoptera, the series stayed more or less straight; in Neoptera, the series became V-shaped. Pteralia in Paleoptera and Neoptera have been homologized on the basis of the fossil record. A differential diagnosis between Paleoptera and Neoptera is given. Fossil evidence indicates that the major steps in evolution, which led to the origin first of Pterygota, then of Neoptera and Endopterygota, were triggered by the origin and the diversification of flight apparatus. It is believed here that all above mentioned major events in pterygote evolution occurred first in the immature stages.  相似文献   

11.
BMP signaling responses are refined by distinct secreted and intracellular antagonists in different cellular and temporal contexts. Here, we show that the nuclear LEM-domain protein MAN1 is a tissue-specific antagonist of BMP signaling in Drosophila. MAN1 contains two potential Mad-binding sites. We generated MAN1ΔC mutants, harbouring a MAN1 protein that lacks part of the C-terminus including the RNA recognition motif, a putative Mad-binding domain. MAN1ΔC mutants show wing crossvein (CV) patterning defects but no detectable alterations in nuclear morphology. MAN1ΔC pupal wings display expanded phospho-Mad (pMad) accumulation and ectopic expression of the BMP-responsive gene crossveinless-2 (cv-2) indicating that MAN1 restricts BMP signaling. Conversely, MAN1 overexpression in wing imaginal discs inhibited crossvein development and BMP signaling responses. MAN1 is expressed at high levels in pupal wing veins and can be activated in intervein regions by ectopic BMP signaling. The specific upregulation of MAN1 in pupal wing veins may thus represent a negative feedback circuit that limits BMP signaling during CV formation. MAN1ΔC flies also show reduced locomotor activity, and electrophysiology recordings in MAN1ΔC larvae uncover a new presynaptic role of MAN1 at the neuromuscular junction (NMJ). Genetic interaction experiments suggest that MAN1 is a BMP signaling antagonist both at the NMJ and during CV formation.  相似文献   

12.
In insects, forewings and hindwings usually have different shapes, sizes, and color patterns. A variety of RNAi experiments across insect species have shown that the hox gene Ultrabithorax (Ubx) is necessary to promote hindwing identity. However, it remains unclear whether Ubx is sufficient to confer hindwing fate to forewings across insects. Here, we address this question by over-expressing Ubx in the butterfly Bicyclus anynana using a heat-shock promoter. Ubx whole-body over-expression during embryonic and larvae development led to body plan changes in larvae but to mere quantitative changes to adult morphology, respectively. Embryonic heat-shocks led to fused segments, loss of thoracic and abdominal limbs, and transformation of head limbs to larger appendages. Larval heat-shocks led to reduced eyespot size in the expected homeotic direction, but neither additional eyespots nor wing shape changes were observed in forewings as expected of a homeotic transformation. Interestingly, Ubx was found to be expressed in a novel, non-characteristic domain – in the hindwing eyespot centers. Furthermore, ectopic expression of Ubx on the pupal wing activated the eyespot-associated genes spalt and Distal-less, known to be directly repressed by Ubx in the fly?s haltere and leg primordia, respectively, and led to the differentiation of black wing scales. These results suggest that Ubx has been co-opted into a novel eyespot gene regulatory network, and that it is capable of activating black pigmentation in butterflies.  相似文献   

13.
The Drosophila wing and the dorsal thorax develop from primordia within the wing imaginal disc. Here we show that spalt major (salm) is expressed within the presumptive dorsal body wall primordium early in wing disc development to specify notum and wing hinge tissue. Upon ectopic salm expression, dorsally located second leg disc cells develop notum and wing hinge tissue instead of sternopleural tissue. Similarly, by salm over-expression within the wing disc, wing blade formation is suppressed and a mirror-image duplication of the notum and wing hinge is formed. In large dorsal clones, which lack salm and its neighboring paralogue spalt related (salr), the cells of the notum primordium do not grow; these dorsal cells are not specified as notum, hence no notum outgrowth develops. These results suggest that the zinc finger factors encoded by the salm/salr complex play important roles in defining cells of the early wing disc as dorsal body wall cells, which develop into a large dorsal body wall territory and form mesonotum and some wing hinge tissue, and in delimiting the wing primordium. We also find that salm activity is down-regulated by its own product and by that of the Pax gene eyegone.  相似文献   

14.
Angela Wilson 《Phytochemistry》1985,24(8):1685-1691
Flavonoid pigments (18) were identified in the wings and body of Melanargia galathea: tricin, tricin 7-glucoside, tricin 7-diglucoside, tricin 4′-glucoside, luteolin, luteolin 7-glucoside, luteolin 7-diglucoside, luteolin 7-triglucoside, apigenin, apigenin 7-glucoside, orientin, orientin 7-glucoside, iso-orientin, iso-orientin 7-glucoside, vitexin 7-glucoside, vitexin 7-glucoside, isovitexin, isovitexin 7-glucoside and a novel but incompletely identified tricin 4′-conjugate. Examination of the wings and bodies of individual M. galathea, M. galathea var. procida, M. lachesis, M. russiae, M. larissa, M. occitanica and M. ines butterflies from a number of different populations in Europe by 2D PC revealed that variation in their flavonoid patterns was so minor that the flavonoid pattern of these Melanargia spp. may be considered constant. The concentration of flavonoids in the wings of each butterfly was greater than that in the body, as is the covering of scales. Not all flavonoids are located in the scales; some are also located in the reproductive tissues of the female. With the exception of the tricin 4′-conjugate which was absent from the egg and first instar larvae before feeding commences, these flavonoids were present in all the life stages of M. galathea. The presence of tricin 4′-conjugate in Melanargia but its absence from the larval food plants suggests that this compound is synthesized by the insect and that flavonoids are not merely sequestered from the diet but are also partly metabolized.  相似文献   

15.
Hemimetabolous insects undergo an ancestral mode of development in which embryos hatch into first nymphs that resemble miniature adults. While recent studies have shown that homeotic (hox) genes establish segmental identity of first nymphs during embryogenesis, no information exists on the function of these genes during post-embryogenesis. To determine whether and to what degree hox genes influence the formation of adult morphologies, we performed a functional analysis of Sex combs reduced (Scr) during post-embryonic development in Oncopeltus fasciatus. The main effect was observed in prothorax of Scr-RNAi adults, and ranged from significant alterations in its size and shape to a near complete transformation of its posterior half toward a T2-like identity. Furthermore, while the consecutive application of Scr-RNAi at both of the final two post-embryonic stages (fourth and fifth) did result in formation of ectopic wings on T1, the individual applications at each of these stages did not. These experiments provide two new insights into evolution of wings. First, the role of Scr in wing repression appears to be conserved in both holo- and hemimetabolous insects. Second, the prolonged Scr-depletion (spanning at least two nymphal stages) is both necessary and sufficient to restart wing program. At the same time, other structures that were previously established during embryogenesis are either unaffected (T1 legs) or display only minor changes (labium) in adults. These observations reveal a temporal and spatial divergence of Scr roles during embryonic (main effect in labium) and post-embryonic (main effect in prothorax) development.  相似文献   

16.
The formation of duplicated wing skeletal elements and/or extra wing muscles was studied by juxtaposing normally nonadjacent embryonic chick wing bud cells. A wedge of right or left stage 21 wing bud ectoderm and mesoderm was inserted in a slit made in a host stage 20 to 22 right wing bud at the same anteroposterior position as its position of origin. The distal edge of the donor wedge and host wing bud were aligned with each other. Donor tissue was grafted into a host wing bud in one of the following four axial relationships: both the anteroposterior and dorsoventral axes corresponded with each other (aadd); only the anteroposterior axes were opposed (apdd); only the dorsoventral axes were opposed (aadv); both the anteroposterior and dorsoventral axes were opposed (apdv). Of the 63 wings resulting from the control aadd operation and the 45 wings from the apdd operation, only 12 wings had a duplicated skeletal element; of the 69 wings sectioned from these two groups of operations, only one had an extra muscle. However, of the wings resulting from the aadv and apdv operations (48 and 52 cases, respectively), 23 had a duplicated skeletal element; of the 54 wings sectioned from these operations, 43 wings had one to four extra muscles. Furthermore, when the aadv operation was performed with a wedge of donor quail wing bud ectoderm and mesoderm or mesoderm alone, supernumerary muscles formed in these chimeric wings and they were made up of donor quail and host chick cells or only donor quail cells.  相似文献   

17.
The origin and evolution of insect wings has been the subject of extensive debate. The issue has remained controversial largely because of the absence of definitive fossil evidence or direct developmental evidence of homology between wings and a putative wing origin. Recent identification of wing serial homologs (WSHs) has provided researchers with a potential strategy for identifying WSHs in other species. Future comparative developmental analyses between wings and WSHs may clarify the important steps underlying the evolution of insect wings.  相似文献   

18.
JAK/STAT signaling is localized to the wing hinge, but its function there is not known. Here we show that the Drosophila STAT Stat92E is downstream of Homothorax and is required for hinge development by cell-autonomously regulating hinge-specific factors. Within the hinge, Stat92E activity becomes restricted to gap domain cells that lack Nubbin and Teashirt. While gap domain cells lacking Stat92E have significantly reduced proliferation, increased JAK/STAT signaling there does not expand this domain. Thus, this pathway is necessary but not sufficient for gap domain growth. We show that reduced Wingless (Wg) signaling dominantly inhibits Stat92E activity in the hinge. However, ectopic JAK/STAT signaling does not perturb Wg expression in the hinge. We report negative interactions between Stat92E and the notum factor Araucan, resulting in restriction of JAK/STAT signaling from the notum. In addition, we find that the distal factor Nub represses the ligand unpaired as well as Stat92E activity. These data suggest that distal expansion of JAK/STAT signaling is deleterious to wing blade development. Indeed, mis-expression of Unpaired within the presumptive wing blade causes small, stunted adult wings. We conclude that JAK/STAT signaling is critical for hinge fate specification and growth of the gap domain and that its restriction to the hinge is required for proper wing development.  相似文献   

19.
The gill and paranotal lobe theories of insect wing evolution were both proposed in the 1870s. For most of the 20th century, the paranotal lobe theory was more widely accepted, probably due to the fundamentally terrestrial tracheal respiratory system; in the 1970s, some researchers advocated for an elaborated gill (“pleural appendage”) theory. Lacking transition fossils, neither theory could be definitively rejected.Winged insects are abundant in the fossil record from the mid-Carboniferous, but insect fossils are vanishingly rare earlier, and all earlier fossils are from primitively wingless insects. The enigmatic, isolated mandibles of Rhyniognatha (early Devonian) hint that pterygotes may have been present much earlier, but the question remains open.In the late 20th century, researchers used models to study the interaction of body and protowing size on solar warming and gliding abilities, and stability and glide effectiveness of many tiny adjustable winglets versus a single, large pair of immobile winglets. Living stoneflies inspired the surface-skimming theory, which provides a mechanism to bridge between aquatic gills and flapping wings. The serendipitously discovered phenomenon of directed aerial descent suggests a likely route to the early origin of insect flight. It provides a biomechanically feasible sequence from guided falls to fully-powered flight.  相似文献   

20.
Insect wings are great resources for studying morphological diversities in nature as well as in fossil records. Among them, variation in wing venation is one of the most characteristic features of insect species. Venation is therefore, undeniably a key factor of species-specific functional traits of the wings; however, the mechanism underlying wing vein formation among insects largely remains unexplored. Our knowledge of the genetic basis of wing development is solely restricted to Drosophila melanogaster. A critical step in wing vein development in Drosophila is the activation of the decapentaplegic (Dpp)/bone morphogenetic protein (BMP) signalling pathway during pupal stages. A key mechanism is the directional transport of Dpp from the longitudinal veins into the posterior crossvein by BMP-binding proteins, resulting in redistribution of Dpp that reflects wing vein patterns. Recent works on the sawfly Athalia rosae, of the order Hymenoptera, also suggested that the Dpp transport system is required to specify fore- and hindwing vein patterns. Given that Dpp redistribution via transport is likely to be a key mechanism for establishing wing vein patterns, this raises the interesting possibility that distinct wing vein patterns are generated, based on where Dpp is transported. Experimental evidence in Drosophila suggests that the direction of Dpp transport is regulated by prepatterned positional information. These observations lead to the postulation that Dpp generates diversified insect wing vein patterns through species-specific positional information of its directional transport. Extension of these observations in some winged insects will provide further insights into the mechanisms underlying diversified wing venation among insects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号