首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Most species of freshwater mussels (Unionoida) show a wide variability in shell form and size but an understanding of which factors determine unionoid morphology is poor. We identified ecophenotypic trends in shell and internal characters within three unionoid species from two habitat types (marinas and river) of the River Thames, UK, using traditional and modern morphometric techniques. In marinas, all species grew to larger maximum sizes than in the river, which might be a result of higher temperatures and phytoplankton densities in marinas. Unio pictorum in marinas was more elongated than in the river and Fourier shape analysis revealed a trend from dorsally arched river specimens to straight dorsal and pointed posterior margins in marina individuals. The degree of shell elongation and shape of dorso‐posterior margin were not associated with sediment composition, but were associated with the different hydrological characters of the two habitat types. Relative shell width was a poor indicator of collection site and influenced by allometric growth. Unlike U. pictorum, a difference in shell elongation of marina and river mussels could not be detected in Unio tumidus and Anodonta anatina. However, all three species showed the same trends regarding the shape of the dorso‐posterior shell margin. This shell character may thus have broad ecological significance and could have considerable utility to palaeontologists, taxonomists, and conservation biologists. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 98 , 814–825.  相似文献   

2.
We investigated sperm cells and spermatophores of four species of Old World freshwater crabs belonging to three different genera of the subfamily Potaminae (family Potamidae). Characters previously believed to be apomorphic for the potamid subfamily Potamiscinae were also found to occur in the Potaminae. To infer the morphological ancestral character state combination of the Potamidae, ancestral character state analysis of four different sperm traits was performed, based on a 16S rDNA phylogeny of the investigated species. Comparing molecular phylogeny and character state distribution, several cases of convergent evolution could be identified. The densely packed, coenospermic spermatophores and the occurrence of a ‘tongue‐and‐groove’ connection between operculum and acrosomal zones are probably apomorphies for the whole Potamidae. The spermatozoa of Socotrapotamon socotrense show several unique characters. We also analysed the evolution of acrosome size. The sperm cells of the Potamidae and their sister‐group Gecarcinucidae only slightly overlap in acrosome size. Within the investigated species, the ‘East Asia’ subclade (subfamily Potamiscinae) developed significantly larger acrosomes than the subfamily Potaminae. Our results suggest that the use of brachyuran acrosome morphology for phylogenetic inference at the family level is strongly affected by small sample size, and by convergent character evolution. © 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010.  相似文献   

3.
Because of the sedentary lifestyle of freshwater mussels, studies examining their movement capabilities are scarce. However, the ability to burrow into the substrate and the ability to remain stationary are likely crucial components of their behavioural repertoire. The performance of these different tasks is likely to be affected by the presence of the shell ornamentation characteristic of many mussel species. Previous studies have suggested that shell ornamentation results in a trade‐off between burrowing ability and remaining stationary when an extrinsic force attempts to dislodge it from the substrate once buried. We examined the effect of morphology and shell ornamentation on burrowing performance and anchoring ability by artificially creating shell ornamentation on a relatively smooth‐shelled species (Potamilus alatus). Burrowing behaviours and performance and the force required to dislodge mussels (anchoring ability) were quantified with and without ornamentation. Interestingly, we found that the artificial shell ornamentation had no significant effect on burrowing behaviours and performance or dislodgement force. Burrowing and dislodgement, however, were both highly influenced by shell size and shape. All of the available information suggests that shell size, shape, and sculpture influence burrowing and anchoring in complex ways that needs further examination. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 111 , 136–144.  相似文献   

4.
Previous work on orchid seeds has shown that characters associated with the seed coat may be useful for classification and phylogeny at a suprageneric level. The seed morphology of several species of the tribe Chloraeeae was analysed using traditional morphometrics, and the seed shape was studied, for the first time, using tools of geometric morphometrics. Seed characters were evaluated by their discriminative power and the information they may provide in a phylogenetic context. By contrast with previous findings, seed shape resulted in a continuum among the taxa studied, and in only a few cases could genera or groups of species be discriminated on the basis of shape. However, seed size, expressed as centroid size, was a variable character and informative at a phylogenetic level. Traditional measures of seed coat, mainly those of seed coat cells, were also helpful for the discrimination of genera and species, agreeing with previous statements about their utility in taxonomy and phylogeny. © 2009 The Linnean Society of London, Botanical Journal of the Linnean Society, 2009, 160 , 171–183.  相似文献   

5.
The role of natural selection in phenotypic evolution is central to evolutionary biology. Phenotypic evolution is affected by various factors other than adaptation, and recent focus has been placed on the effects of phylogenetic constraints and niche conservatism on phenotypic evolution. Here, we investigate the relationship between the shell morphology and habitat use of bradybaenid land snails of the genus Aegista and clarify the causes of the divergence in shell morphology among phylogenetically related species. The results of ancestral state reconstruction showed that arboreal species have evolved independently from ground‐dwelling species at least four times. A significant association was found between shell shape and habitat use, despite the existence of a certain degree of phylogenetic constraint between these traits. A principal component analysis showed that arboreal species tend to have a relatively high‐spired shell with a narrow umbilicus. By contrast, ground‐dwelling species have a low‐spired shell with a wide umbilicus. Although the latitude and elevation of the sampling locations showed no relationship with shell morphology, the geology of the sampling locations affected the shell size of arboreal species. The development of a well‐balanced shell shape is one effective method for reducing the cost of locomotion under the force of gravity in each life habitat, resulting in the divergence in shell morphology and the independent evolution of morphologically similar species among different lineages. The present study suggests that ecological divergence is probably the cause of shell morphology divergence in land snails. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 114 , 229–241.  相似文献   

6.
Miniaturization, or the evolution of a dramatically reduced body size compared to related lineages, is an extraordinarily widespread phenomenon among metazoans. Evolutionary biologists have been fascinated by miniaturization because this transition has occurred numerous times, often among close relatives, providing a model system for studying convergent evolution and its underlying mechanisms. Much of the developmental work describing the ontogeny of miniature species suggests that paedomorphosis is the predominant avenue of miniaturization. Nevertheless, specific alterations to ontogeny appear highly variable, so that even related lineages with similar miniaturized traits produce those similarities via distinct ontogenetic paths. One major vertebrate group that has been overlooked in research on miniaturization is turtles. In the present study, we examined patterns of shape change in the plastron (the ventral part of the shell) over the course of ontogeny in a small clade of turtles (Emydinae) aiming to investigate whether two independently evolved diminutive members of the clade (Glyptemys muhlenbergii and Clemmys guttata) should be considered as miniaturized. We employ geometric morphometric methods to quantify the patterns of shape change these potentially miniaturized species and their relatives undergo during ontogeny, and use molecular phylogenetic trees to reconstruct ancestral conditions and provide information on the polarity of shape changes. We find that differing changes in ontogenetic parameters relative to ancestral conditions accompany the evolution of small size in emydines: G. muhlenbergii changes the duration of ontogeny and rate of shape change, whereas C. guttata changes growth rate. The observed ontogenetic repatterning of these species is reminiscent of changes in ontogeny and life history often found in miniaturized taxa. However, we conclude that C. guttata and G. muhlenbergii are not truly miniaturized because they still produce typical adult shell morphologies, and larger emydines display comparable ontogenetic flexibility. Because no emydines carry juvenile shell features forward into adulthood, we speculate that few, if any turtles, will show paedomorphic shell traits without corresponding changes in defensive strategy because such shells may offer insufficient protection. © 2013 The Linnean Society of London  相似文献   

7.
The Loranthaceae is the largest plant family with aerial branch parasites termed mistletoes. Three genera of Loranthaceae are terrestrial root parasites and the remaining 72 genera are aerial parasites. Several characters, including habit, haustorial type, germination pattern, pollen morphology, chromosome number, inflorescence morphology and flower merosity, fusion, symmetry and size, are considered to reflect evolutionary relationships within the family. Convergence is a common evolutionary pattern and can confound interpretations of evolution. We investigated character evolution by mapping character states onto a phylogenetic tree based on the nuclear ITS and chloroplast trnL–trnF regions. Convergences in form were found in several characters, including habit, haustorial type, flower symmetry and merosity. These convergences typically correspond to ecological parameters such as pollination syndrome or stresses associated with the canopy habit. Other characters such as chromosome number and germination pattern illustrate divergent evolution among clades.  © 2006 The Linnean Society of London, Botanical Journal of the Linnean Society , 2006, 150 , 101–113.  相似文献   

8.
The evolutionary relationships among most (143 genera) of the currently recognized genera of the braconid wasp subfamily Doryctinae were investigated using maximum parsimony analysis, employing 100 characters from external morphology and four additional, less well‐studied character systems (male genitalia, ovipositor structure, venom apparatus and larval cephalic structure). We investigated the ‘performance’ of characters from external morphology and the other character systems and the effects of abundant missing entries by comparing the data decisiveness, retention and consistency indices of four different character partitions. The results indicate that the performances of the different partitions are not related to the proportions of missing entries, but instead are negatively correlated to their proportion of informative characters, suggesting that the morphological information in this group is subject to high levels of homoplasy. The external morphological partition is significantly incongruent with respect to a data set comprising the other character systems based on the ILD test. Analyses supported neither the monophyly of the large tribes Doryctini and Hecabolini, nor the monophyly of the Spathiini and Heterospilini. Relationships obtained from successive approximation weighting analysis for the complete data differ considerably from the currently accepted tribal and subtribal classifications. The only exceptions were the Ypsistocerini and the Ecphylini, whose recognized members were recovered in single clades. A close relationship between the Binaerini and Holcobraconini, and also Monarea, is consistently supported by venom apparatus and ovipositor structure characters but is not indicated by external morphological data. Low bootstrap values obtained for most of the recovered clades in all analyses do not allow us to propose a meaningful reclassification for the group at this time. A complete list of the recognized genera and their synonymies is given. © 2004 The Linnean Society of London, Zoological Journal of the Linnean Society, 2004, 142 , 369–404.  相似文献   

9.
Clutch size varies widely in reptiles, both intraspecifically and interspecifically. The mechanisms that generate this variation have attracted detailed study, focusing primarily on ecological factors (e.g. food availability), trade‐offs with other traits (e.g. offspring size), and physical constraints (e.g. maternal body shape). Does ovarian morphology, specifically the number of germinal beds from which ova are produced, also correlate with clutch size? Our review of published data on 58 lizard species reveals that clutch size is correlated with the number of germinal beds per ovary (more fecund species have more germinal beds), and that phylogenetic changes in germinal beds have been consistently associated with concurrent phylogenetic changes in fecundity. These correlations imply a causal connection: either clutch size is constrained by ovarian morphology, and/or ovarian morphology evolves to allow adaptive shifts in clutch size. The latter hypothesis is more consistent with available data. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 94 , 81–88.  相似文献   

10.
11.
Leaf morphology and anatomy of Camellia section Camellia (Theaceae)   总被引:1,自引:0,他引:1  
The delimitations of species in Camellia section Camellia have been disputed for many years, resulting from uncertain relationships among species. Leaf morphological and anatomical characters for 54 species and three varieties in this section were investigated to reveal the relationships. Principal component analysis and cluster analysis were conducted using the transformed data for quantitative and qualitative characters from leaf morphology and anatomy. Combining the results of statistical analysis with comparative leaf characters of morphology and anatomy, we discussed the taxonomic treatment of section Camellia by Chang compared with that of Ming and we conclude that section Camellia consists of c. 50 species. © 2009 The Linnean Society of London, Botanical Journal of the Linnean Society, 2009, 159 , 456–476.  相似文献   

12.
Morphological convergence is a central concept in evolutionary biology, but convergent patterns remain under‐studied in nonvertebrate organisms. Some scallop species exhibit long‐distance swimming, a behaviour whose biomechanical requirements probably generate similar selective regimes. We tested the hypothesis that shell shape similarity in long‐distance swimming species is a result of convergent evolution. Using landmark‐based geometric morphometrics, we quantified shell shape in seven species representing major behavioural habits. All species displayed distinct shell shapes, with the exception of the two long‐distance swimmers, whose shells were indistinguishable. These species also displayed reduced morphological variance relative to other taxa. Finally, a phylogenetic simulation revealed that these species were more similar in their shell shape than was expected under Brownian motion, the model of character evolution that best described changes in shell shape. Together, these findings reveal that convergent evolution of shell shape occurs in scallops, and suggest that selection for shell shape and behaviour may be important in the diversification of the group. © 2011 The Linnean Society of London, Zoological Journal of the Linnean Society, 2011, 163 , 571–584.  相似文献   

13.
Male characters that are used for male−male combat are often developed and exaggerated, whereas female equivalent characters are vestigial or vanished. In order to assess whether the characters common to both sexes share the same phenotypic variability due to common genetic architecture, we compared males and females of the stag beetle Prosopocoilus inclinatus using recently developed geometric morphometric methods. Elliptic Fourier analysis was used to compare shape variation between male characters (including exaggerated mandibles) and developmentally homologous female characters. A significant positive correlation was found between the size or between the weight of different body parts in both sexes, but a conspicuous difference was detected in the frequency distribution of the weight of all the body parts. Elliptic Fourier analysis demonstrated that there was marked discontinuous variation in mandibles in males, whereas such a discontinuity was not clear in females. The shape of a character in males exhibited some similarity with that of other characters, but this was not found in females. In a character, growth trajectory of shape was significantly affected by both size and weight in males, whereas size and shape tended to vary independently in female characters. These results support the hypothesis that a large sexual dimorphism in variation in shape is due to alleles accumulating in tight linkage with a sex-determining gene.  © 2004 The Linnean Society of London, Biological Journal of the Linnean Society , 2004, 81 , 219–233  相似文献   

14.
The anatomy and morphology of leaves in Carex have the potential to be taxonomically useful. However, studies on the variability of leaf characteristics in the genus are sparse. Researchers therefore risk using leaf anatomical characters without the knowledge of whether they are consistent in a species. We examined 22 qualitative and seven quantitative leaf anatomy characters from transverse leaf sections to test their consistency across 11 Carex spp. The characters were clearly described and primarily microscopic. Some characters were found to exhibit high levels of intraspecific variation, whereas other characters exhibited high levels of consistency in a species, including the shape of the leaf section, the density of papillae and the size of epidermal cells. Caution must be applied when choosing leaf anatomy to delimit taxa because of the intraspecific variability found in some characters, but sufficient numbers of invariant characters exist to provide useful taxonomic separation. © 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2013, 172 , 371–384.  相似文献   

15.
Evolutionary shape changes in skull and mandibular anatomy was analysed in 223 specimens of pantherine felids (Neofelis nebulosa, Panthera leo, Panthera onca, Panthera pardus, Panthera tigris, Panthera uncia) compared to a small‐felid outgroup, consisting of 86 specimens of nine different species, using digital surface morphometry on 25 (skull) and 17 (mandible) landmarks. Shape evolution in the pantherine species is complex and nonlinear, and involves both large‐scale and small‐scale shape changes. Shape changes frequently differ among the ingroup species, but the four large Panthera species (leo, onca, pardus, tigris) bear some resemblance to each other. The leopard and jaguar bear the closest resemblance to each other, and several shape changes are common to the lion and tiger, but have probably evolved convergently as a result of large size. The lion has undergone the largest and most numerous shape changes from a small‐felid outgroup. Certain shape changes in the skull and, in some respects, the mandible of the clouded leopard bear resemblance to those in the four large Panthera species. The snow leopard is often regarded as the most primitive of the extant Panthera, and skull and mandibular shape changes often diverge markedly from those observed in the other five ingroup taxa; its overall skull shape is rather similar to the small‐felid outgroup. This indicates that the shape changes in the clouded leopard are convergent with those of the four large Panthera species. Landmark integration showed no significant correlation with molecular phylogeny, chiefly owing to the snow leopard being placed among the four large Panthera species. A traditional phylogenetic topology with the snow leopard as the basal‐most species of Panthera yielded a weak but nonsignificant phylogenetic signal. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 95 , 766–778.  相似文献   

16.
Body size is an important life history trait that can evolve rapidly as a result of how species interact with each other and their environment. Invasive species often encounter vastly different ecological conditions throughout their introduced range that can influence relative investment in growth, reproduction and defence among populations. In this study, we quantified variation in worker size, morphology and proportion of majors among five populations of a worldwide invasive species, the big‐headed ant, Pheidole megacephala (Fabricius). The sampled populations differed in ant community composition, allowing us to examine if P. megacephala invests differently in the size and number of majors based on the local ant fauna. We also used genetic data to determine if these populations of P. megacephala represented cryptic species or if morphological differences could be attributed to change following introduction. We found significant variation in worker mass among the populations. Both major and minor workers were largest in Australia, where the ant fauna was most diverse, and minor workers were smallest in Hawaii and Mauritius, where P. megacephala interacted with few to no other ants. We also found differences in major and minor worker morphology among populations. Majors from Mauritius had significantly larger heads (width and length) relative to whole body size than those from Hawaii and Florida. Minors had longer heads and hind tibias in South Africa compared with populations from Australia, Hawaii and Florida. The proportion of majors did not differ among populations, suggesting that these populations may not be subject to trade‐offs in investment in major size versus number. Our molecular data place all samples within the same clade, supporting that these morphologically different populations represent the same species. These results suggest that the variation in shape and morphology of major and minor workers may therefore be the result of rapid adaptation or plastic responses to local conditions. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 113 , 423–438.  相似文献   

17.
Although the monophyly of Nemertea is strongly supported by unique morphological characters and results of molecular phylogenetic studies, their ingroup relationships are largely unresolved. To contribute solving this problem we studied sperm ultrastructure of 12 nemertean species that belong to different subtaxa representing the commonly recognized major monophyletic groups. The study yielded a set of 26 characters with an unexpected variation among species of the same genus (Tubulanus and Procephalothrix species), whereas other species varied in metric values or only one character state (Ramphogordius). In some species, the sperm nucleus has grooves (Zygonemertes virescens, Amphiporus imparispinosus) that may be twisted and give a spiral shape to the sperm head (Paranemertes peregrina, Emplectonema gracile). To make the characters from sperm ultrastructure accessible for further phylogenetic analyses, they were coded in a character matrix. Published data for eight species turned out to be sufficiently detailed to be included. Comparative evaluation of available information on the sperm ultrastructure suggests that subtaxa of Heteronemertea and Hoplonemertea are supported as monophyletic by sperm morphology. However, the data do not provide information on the existing contradictions regarding the internal relationships of “Palaeonemertea.” Nevertheless, our study provides evidence that sperm ultrastructure yields numerous potentially informative characters that will be included in upcoming phylogenetic analyses. J. Morphol. 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

18.
19.
The phenology and morphology of Mediterranean plants are constrained by drought in summer and cold temperatures in winter. In this study we examine how climatic factors and phylogenetic constraints have shaped variation in the phenology and morphology of 17 species of the genus Cyclamen cultivated in uniform garden conditions. We quantify the extent to which traits differ among subgenera and thus represent conserved traits within evolutionary lineages. We also explore whether leaf, flowering and seed-release phenology are correlated among species, and thus whether variation in flowering phenology results from selection on dispersal phenology. Our results show a significant influence of subgenus membership on leaf and flowering phenology but not on morphological traits or the timing of seed release. Among-species variation in foliage height, leaf size and seed mass (but not in floral traits) is correlated with chromosome number. Leaf traits show that species with a shorter vegetative period have a higher capacity for resource acquisition. Major phenological shifts, i.e. spring vs. autumn flowering and a decoupling of leaf and flower phenology in autumnal flowering species, thus occurred prior to the diversification of species in each subgenus and not as a response to selection on dispersal timing. Leaf and flowering phenology illustrate a gradient of strategies from autumn flowering in the absence of leaves (hysteranthous species) to spring flowering with fully developed foliage (synanthous species). In the former, flowering is uncoupled from resource acquisition by simultaneous photosynthesis, indicative that hysteranthy is a response to temporal unpredictability in the onset of rain after the summer drought. Our results support the idea that whereas leaf development is controlled primarily by moisture availability and secondarily by temperature, flowering is temperature dependent, above a minimum moisture threshold. © 2004 The Linnean Society of London, Botanical Journal of the Linnean Society, 2004, 145 , 469–484.  相似文献   

20.
Extensive variation in land snail shell morphology has been widely documented, although few studies have attempted to investigate the ecological and evolutionary drivers of this variation. Within a comparative phylogenetic framework, we investigated the temporal and spatial evolution of the shell morphology of the Greek endemic land snail genus Codringtonia. The contribution of both inter‐ and intraspecies shell differentiation in the overall shell variability is assessed. The effect of climate, space, and evolutionary history on the shell variability was inferred using a variance partitioning framework. For Codringtonia species, intraspecies divergence of shell traits contributes substantially to the overall shell variability. By decomposing this variability, it was shown that the overall shell size of Codringtonia clades is phylogenetically constrained, related to early speciation events, and strongly affected by large‐scale spatial variability (latitudinal gradient). The effect of climate on shell size cannot be disentangled from phylogeny and space. Shell and, to a larger extent, aperture shape are not phylogenetically constrained, and appear to be mostly related to conspecific populations divergence events. Shell shape is substantially explained by both climate and space that greatly overlap. Aperture shape is mainly interpreted by medium to small‐scale spatial variables. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 110 , 796–813.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号