首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Host specificity between local Frankia strains and native alders [Alnus incana (L.) Moench and A. glutinosa (L.) Gaertn.] was evaluated in inoculation experiments. Pure cultures of Frankia , whether originating from A. incana or A. glutinosa , were infective and effective on both host species. These pure cultures were isolated from spore-negative (Sp) nodules. From spore-positive (Sp+) nodules no Frankia isolates were obtained. This strain type resisted all our isolation attempts and therefore crushed nodules had to be used for Sp+ type inoculations.
The Sp+ type Frankia populations differed in their host specificity. Sp+ nodules from A. glutinosa were effective on both alder species, but Sp+ nodules from A. incana induced effective nodules only on the original host; on A. glutinosa only small (1-3mm) prenodule-like structures were found. Such A. glutinosa plants died on N-free medium, thus showing that these nodules were ineffective. In the effective nodules the middle cortex was dominated by infected cells filled with vesicle clusters. In the ineffective nodules only a few cortical cells were infected and sporangia predominated in these cells. Surprisingly enough they also contained vesicle-like structures as demonstrated in electron micrographs.  相似文献   

2.
Repeated attempts at isolating the Frankia endophyte of Coriaria spp. have not yielded infective microbial cultures that could fulfil Koch's postulates. In order to circumvent the critical isolation step, nodule endophytes of Coriaria were characterized directly by means of specific amplification of nodule DNA (PCR) followed by sequencing of part of the 16S rDNA gene. Three closely related sequences were obtained from nodules originating from France, Mexico and New Zealand, containing unique sequences different from all other Frankia strains characterized so far. The sequences obtained were closest (with 5 or 6 substitutions) to those of Frankia alni and those of Casuarina-infective Frankia strains, respectively. Two nucleotides unique to the Coriaria endophyte sequences were used to define specific primers, resulting in a hybridization test that could discriminate between Frankia DNAs originating from Coriaria nodules and those recovered from all cultured Frankia strains tested. The endophytes of Coriaria thus appear to form a distinct Frankia lineage.  相似文献   

3.
High-N(2)-fixing activities of Frankia populations in root nodules on Alnus glutinosa improve growth performance of the host plant. Therefore, the establishment of active, nodule-forming populations of Frankia in soil is desirable. In this study, we inoculated Frankia strains of Alnus host infection groups I, IIIa, and IV into soil already harboring indigenous populations of infection groups (IIIa, IIIb, and IV). Then we amended parts of the inoculated soil with leaf litter of A. glutinosa and kept these parts of soil without host plants for several weeks until they were spiked with [(15)N]NO(3) and planted with seedlings of A. glutinosa. After 4 months of growth, we analyzed plants for growth performance, nodule formation, specific Frankia populations in root nodules, and N(2) fixation rates. The results revealed that introduced Frankia strains incubated in soil for several weeks in the absence of plants remained infective and competitive for nodulation with the indigenous Frankia populations of the soil. Inoculation into and incubation in soil without host plants generally supported subsequent plant growth performance and increased the percentage of nitrogen acquired by the host plants through N(2) fixation from 33% on noninoculated, nonamended soils to 78% on inoculated, amended soils. Introduced Frankia strains representing Alnus host infection groups IIIa and IV competed with indigenous Frankia populations, whereas frankiae of group I were not found in any nodules. When grown in noninoculated, nonamended soil, A. glutinosa plants harbored Frankia populations of only group IIIa in root nodules. This group was reduced to 32% +/- 23% (standard deviation) of the Frankia nodule populations when plants were grown in inoculated, nonamended soil. Under these conditions, the introduced Frankia strain of group IV was established in 51% +/- 20% of the nodules. Leaf litter amendment during the initial incubation in soil without plants promoted nodulation by frankiae of group IV in both inoculated and noninoculated treatments. Grown in inoculated, amended soils, plants had significantly lower numbers of nodules infected by group IIIa (8% +/- 6%) than by group IV (81% +/- 11%). On plants grown in noninoculated, amended soil, the original Frankia root nodule population represented by group IIIa of the noninoculated, nonamended soil was entirely exchanged by a Frankia population belonging to group IV. The quantification of N(2) fixation rates by (15)N dilution revealed that both the indigenous and the inoculated Frankia populations of group IV had a higher specific N(2)-fixing capacity than populations belonging to group IIIa under the conditions applied. These results show that through inoculation or leaf litter amendment, Frankia populations with high specific N(2)-fixing capacities can be established in soils. These populations remain infective on their host plants, successfully compete for nodule formation with other indigenous or inoculated Frankia populations, and thereby increase plant growth performance.  相似文献   

4.
The effectivity of nodulation of Alnus rubra Bong, by Frankia isolates from A. rubra and Alnus glutinosa (L.) Gaertn. in Northern Britain was compared with strains from The Netherlands and North America, using plants grown in combined nitrogen-free conditions. All strains gave rise to spore (-) nodules, even when isolated from nodules from sites known to contain spore (+) nodules. Nodules of all plants evolved little hydrogen, probably due to the presence of an efficient uptake hydrogenase in the microsymbkmts. Nodule weight as a percentage of whole plant weight was higher for nodules of low specific activity (N fixed per unit weight nodules), attaining a maximum of 5.1% of plant dry weight in the least effective of the heterologous associations of A. glutinosa Frankia with A. rubra . The range of variation in nodule specific activity was much greater in heterologous than homologous associations, but nodules of high specific activity were found in both associations. However, plants that fixed most N during the growth period were not those with nodules of highest specific activity. The most effective associations were homologous symbioses, which combined good nodule growth per plant with satisfactory specific activity, fixing N at rates which would support superior plant growth under the prevailing growth conditions. Preliminary field experiments suggest that the most effective of the A. rubra isolates is suitable for use as an inoculant in nurseries. Strains isolated from A. glutinosa were more effective and showed a different order of effectivity in homologous symbioses compared with their association with A. rubra . An A. glutinosa strain was isolated, which stimulated satisfactory nodule growth and gave good nodule specific activity in both A. rubra and A. gtutinosa .  相似文献   

5.
Our understanding of the actinorhizal symbiosis, in particular of the Frankia-Ceanothus association, has been hampered by the failure to isolate infective strains in pure culture. Recently, the polymerase chain reaction (PCR) has been utilized to amplify regions of the Frankia genome, allowing analysis of the microsymbiont genome without first isolating the microbe in pure culture. Root nodules were collected from six Ceanothus spp. common to the coastal regions of the Santa Monica Mountains of southern California. Individual lobes were surface-sterilized, total DNA was extracted and amplified using prokaryotic-specific primers. To assess the genetic diversity of Frankia endophytes in the population studied, the BOX primer was used to generate genomic fingerprints of prokaryotic nodule inhabitants using rep-PCR. Fingerprint patterns fell into twelve distinct groups indicating the occurrence of genetic diversity of Frankia in the nodules sampled. DNA extracts of individual lobes that gave distinct BOX-PCR fingerprints were also amplified by PCR using primers directed against conserved regions of the 16S ribosomal RNA gene. The nucleotide sequences of the PCR products were determined and aligned with the corresponding region from other taxa for phylogenetic analysis. The sequences from Ceanothus nodules share a common ancestor to that of the Elaeagnus –infective strains.  相似文献   

6.
Phylogenetic analyses suggest that, among the members of the Eurosid I clade, nitrogen-fixing root nodule symbioses developed multiple times independently, four times with rhizobia and four times with the genus Frankia. In order to understand the degree of similarity between symbiotic systems of different phylogenetic subgroups, gene expression patterns were analyzed in root nodules of Datisca glomerata and compared with those in nodules of another actinorhizal plant, Alnus glutinosa, and with the expression patterns of homologous genes in legumes. In parallel, the phylogeny of actinorhizal plants was examined more closely. The results suggest that, although relationships between major groups are difficult to resolve using molecular phylogenetic analysis, the comparison of gene expression patterns can be used to inform evolutionary relationships. In this case, stronger similarities were found between legumes and intracellularly infected actinorhizal plants (Alnus) than between actinorhizal plants of two different phylogenetic subgroups (Alnus/Datisca).  相似文献   

7.
Root nodulation in actinorhizal plants, like Discaria trinervis and Alnus incana, is subject to feedback regulatory mechanisms that control infection by Frankia and nodule development. Nodule pattern in the root system is controlled by an autoregulatory process that is induced soon after inoculation with Frankia. The final number of nodules, as well as nodule biomass in relation to plant biomass, are both modulated by a second mechanism which seems to be related to the N status of the plant. Mature nodules are, in part, involved in the latter process, since nodule excision from the root system releases the inhibition of infection and nodule development. To study the effect of N(2) fixation in this process, nodulated D. trinervis and A. incana plants were incubated under a N(2)-free atmosphere. Discaria trinervis is an intercellularly infected species while A. incana is infected intracellularly, via root hairs. Both symbioses responded with an increment in nodule biomass, but with different strategies. Discaria trinervis increased the biomass of existing nodules without significant development of new nodules, while in A. incana nodule biomass increased due to the development of nodules from new infections, but also from the release of arrested infections. It appears that in D. trinervis nodules there is an additional source for inhibition of new infections and nodule development that is independent of N(2) fixation and nitrogen assimilation. It is proposed here that the intercellular Frankia filaments commonly present in the D. trinervis nodule apex, is the origin for the autoregulatory signals that sustain the blockage of initiated nodule primordia and prevent new roots from infections. When turning to A. incana plants, it seems likely that this signal is related to the early autoregulation of nodulation in A. incana seedlings and is no longer present in mature nodules. Thus, actinorhizal symbioses belonging to relatively distant phylogenetic groups and displaying different infection pathways, show different feedback regulatory processes that control root nodulation by Frankia.  相似文献   

8.
We isolated and characterized an Alnus glutinosa cDNA clone, pAg13, which corresponds to a gene expressed at higher levels in nodules induced by Frankia than in roots. The deduced polypeptide sequence is rich in glutamic acid and proline and contains a putative signal peptide indicating an extracellular location of Ag13. In situ hybridization showed that ag13 is expressed in the pericycle of the nodule vascular bundle and in infected cells that exhibited degradation of the endosymbiont.  相似文献   

9.
Burkholderia endophytes were identified within the leaves of non-nodulated members of the genus Psychotria. In contrast to leaf-nodulated Psychotria species, which are known to accommodate their endosymbionts into specialized endosymbiont-housing structures, non-nodulated species lack bacterial leaf nodules and harbor endosymbionts intercellularly between mesophyll cells. Based on molecular data (rps16, trnG, and trnLF), the phylogenetic reconstruction of the host plants revealed a separate origin of leaf-nodulated and non-nodulated Psychotria species. Despite a distinct phylogenetic position of the two host clades, the endophytes of the non-nodulated plants were not placed into a single monophyletic group but were found to be closely related to the leaf-nodulated endosymbionts. The observation of genetically similar endophytes in both nodulated and non-nodulated Psychotria lineages suggests that the host plant is playing a crucial role in the induction of leaf nodule formation. Moreover, the concentration of endosymbionts into specialized leaf nodules may be considered as a more derived evolutionary adaptation of the host plant, serving as an interface structure to facilitate metabolic exchange between plant and endosymbiont.  相似文献   

10.
The occurrence and localization of enzymes involved in glycolysis, tricarboxylic acid cycle and glyoxylate cycle in root nodules of Alnus glutinosa (L.) Vill. and Hippophaë rhamnoides L. ssp. rhamnoides were studied. The following enzymes, catalyzing reversible steps in the glycolysis, were found in both the endophyte Frankia spp. and the plant cytosol of Alnus nodules: fructose-1,6-diphosphate aldolase, glyceralde-hyde-3-phosphate dehydrogenase, phosphoglycerate kinase and enolase. The enzymes catalyzing irreversible steps in glycolysis, viz. hexokinase and pyruvate kinase, were detectable only in the plant cytosol. Similar results were obtained with nodule homogenates of Hippophaë. This indicates the absence of a complete glycolysis in the endophyte. Vesicle clusters of the nodule endophyte of Alnus contained various dehydrogenases of the tricarboxylic acid cycle and showed activity of glutamate oxaloacetate transaminase. Respiration studies showed that vesicle clusters take up oxygen when supplied with NAD, glutamate and malate together. No oxygen uptake was found when any of these compounds was omitted. Vesicle clusters from both Alnus and Hippophaë nodules showed no detectable activity of the glyoxylate cycle enzymes isocitrate lyase and malate synthase. Since these enzymes are known to be present in Frankia Avcll, when grown in a medium with Tween 80 as carbon source, it is suggested that the glyoxylate cycle enzymes are repressed in the root-nodule symbioses.  相似文献   

11.
欧洲赤杨根瘤及其内生菌的形态学研究   总被引:3,自引:0,他引:3  
对在云南生长的欧洲赤杨自然发生的根瘤及其内生菌──Frankia进行了光学显微镜和扫描电镜的观察,结果表明,这种根瘤与原产地生长的欧洲赤杨所结根瘤十分相似;与原产地在云南的蒙自桤木的根瘤结构也很相近。从这种根瘤中分离到的内生菌的纯培养具有典型的Frankia的特征。  相似文献   

12.
The occurrence and localization of enzymes involved in energy supply and biosynthesis was studied in root nodules of Alnus glutinosa (L.) Vill. Vesicle clusters of the endophyte, Frankia sp., contain NADP-dependent isocitrate dehydrogenase, succinate dehydrogenase, fumarase and malate dehydrogenase. The data indicate that both the endophyte and the host are capable of metabolizing carbon compounds via the tricarboxylic acid cycle. Both vesicle clusters of the endophyte and root nodule cells contain glutamate-oxaloacetate transaminase which can function in a malate-aspartate shuttle. This might enable transport of reducing equivalents from the host cell cytoplasm to the endophyte.  相似文献   

13.
To study the global diversity of plant-symbiotic nitrogen-fixing Frankia strains, a rapid method was used to isolate DNA from these actinomycetes in root nodules. The procedure used involved dissecting the symbiont from nodule lobes; ascorbic acid was used to maintain plant phenolic compounds in the reduced state. Genes for the small-subunit rRNA (16S ribosomal DNA) were amplified by the PCR, and the amplicons were cycle sequenced. Less than 1 mg (fresh weight) of nodule tissue and fewer than 10 vesicle clusters could serve as the starting material for template preparation. Partial sequences were obtained from symbionts residing in nodules from Ceanothus griseus, Coriaria arborea, Coriaria plumosa, Discaria toumatou, and Purshia tridentata. The sequences obtained from Ceonothus griseus and P. tridentata nodules were identical to the sequence previously reported for the endophyte of Dryas drummondii. The sequences from Frankia strains in Coriaria arborea and Coriaria plumosa nodules were identical to one another and indicate a separate lineage for these strains. The Frankia strains in Discaria toumatou nodules yielded a unique sequence that places them in a lineage close to bacteria that infect members of the Elaeagnaceae.  相似文献   

14.
A true hemoglobin (Hb) was shown to be present in the root nodules of Alnus glutinosa L. After purification by gel filtration and ion exchange, the Hb formed a stable complex with oxygen. This oxygen complex could then be converted to carboxyhemoglobin by treatment with CO. Optical absorption spectra typical of Hb were observed. The molecular weight was estimated to be 15 100 by gel filtration, and 18 300 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The Hb was largely insoluble when the initial homogenization was done in the absence of a detergent. Under these conditions much of the Hb appears to be associated with clusters of Frankia , the nitrogen-fixing actinomycete that infects plant cells within the nodules. The exact localization of the Hb in vivo is uncertain. The relatively low average concentration of Hb in Alnus nodules suggests that it is either confined to a relatively small fraction of total nodule volume, or has a function other than facilitation of O2 transport.  相似文献   

15.
16.
In search of plant genes expressed during early interactions between Casuarina glauca and Frankia, we have isolated and characterized a C. glauca gene that has strong homology to subtilisin-like protease gene families of several plants including the actinorhizal nodulin gene ag12 of another actinorhizal plant, Alnus glutinosa. Based on the expression pattern of cg12 in the course of nodule development, it represents an early actinorhizal nodulin gene. Our results suggest that subtilisin-like proteases may be a common element in the process of infection of plant cells by Frankia in both Betulaceae (Alnus glutinosa) and Casuarinaceae (Casuarina glauca) symbioses.  相似文献   

17.
Actinorhizal plants form a nodular, nitrogen-fixing root symbiosis with the actinomycete Frankia and are economically and ecologically important due to their ability to improve the nitrogen fertility of disturbed and infertile substrates. In this study, water-retentive polymer inoculum carriers were applied as a root dip. This treatment significantly increased nodulation and in some cases early growth of Alnus glutinosa (L.) Gaertn. and Casuarina equisetifolia var. equisetifolia Forst. & Forst. in a controlled environment and also of A. glutinosa under field conditions. Nodule number and nodule dry weight per plant were at least two to three times greater after 56 to 140 days for plants inoculated with Frankia carried in a water-retentive polymer base compared with plants inoculated with Frankia in water. Nodules on the roots of the plants that were inoculated with Frankia in a polymer slurry were distributed throughout the entire root system, rather than concentrated near the root collar. When amended with water-retentive polymers, actinorhizal plants inoculated with 5- to 10-fold lower titers of Frankia exhibited early growth and nodule numbers equal to or greater than those plants inoculated with standard titers without polymers. The water-retentive, superabsorbent polymers clearly increased the nodulation of two actinorhizal plant species. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
Frankia strains symbiotic with Ceanothus present an interesting opportunity to study the patterns and causes of Frankia diversity and distribution within a particular host infectivity group. We intensively sampled Frankia from nodules on Ceanothus plants along an elevational gradient in the southern Sierra Nevada of California, and we also collected nodules from a wider host taxonomic and geographic range throughout California. The two sampling scales comprised 36 samples from eight species of Ceanothus representing six of the seven major biogeographic regions in and around California. The primary objective of this study was to use a quantitative model to test the relative importance of geographic separation, host specificity, and environment in influencing the identity of Ceanothus Frankia symbionts as determined by ribosomal DNA sequence data. At both sampling scales, Frankia strains symbiotic with Ceanothus exhibited a high degree of genetic similarity. Frankia strains symbiotic with Chamaebatia (Rosaceae) were within the same clade as several Ceanothus symbionts. Results from a classification and regression tree model used to quantitatively explain Frankia phylogenetic groupings demonstrated that the only significant variable in distinguishing between phylogenetic groups at the more local sampling scale was host species. At the regional scale, Frankia phylogenetic groupings were explained by host species and the biogeographic province of sample collection. We did not find any significant correspondence between Frankia and Ceanothus phylogenies indicative of coevolution, but we concluded that the identity of Frankia strains inhabiting Ceanothus nodules may involve interactions between host species specificity and geographic isolation.  相似文献   

19.
The identity of Frankia strains from nodules of Myrica gale, Alnus incana subsp. rugosa, and Shepherdia canadensis was determined for a natural stand on a lake shore sand dune in Wisconsin, where the three actinorhizal plant species were growing in close proximity, and from two additional stands with M. gale as the sole actinorhizal component. Unisolated strains were compared by their 16S ribosomal DNA (rDNA) restriction patterns using a direct PCR amplification protocol on nodules. Phylogenetic relationships among nodular Frankia strains were analyzed by comparing complete 16S rDNA sequences of study and reference strains. Where the three actinorhizal species occurred together, each host species was nodulated by a different phylogenetic group of Frankia strains. M. gale strains from all three sites belonged to an Alnus-Casuarina group, closely related to Frankia alni representative strains, and were low in diversity for a host genus considered promiscuous with respect to Frankia microsymbiont genotype. Frankia strains from A. incana nodules were also within the Alnus-Casuarina cluster, distinct from Frankia strains of M. gale nodules at the mixed actinorhizal site but not from Frankia strains from two M. gale nodules at a second site in Wisconsin. Frankia strains from nodules of S. canadensis belonged to a divergent subset of a cluster of Elaeagnaceae-infective strains and exhibited a high degree of diversity. The three closely related local Frankia populations in Myrica nodules could be distinguished from one another using our approach. In addition to geographic separation and host selectivity for Frankia microsymbionts, edaphic factors such as soil moisture and organic matter content, which varied among locales, may account for differences in Frankia populations found in Myrica nodules.  相似文献   

20.
Alder (Alnus glutinosa) and more than 200 angiosperms that encompass 24 genera are collectively called actinorhizal plants. These plants form a symbiotic relationship with the nitrogen-fixing actinomycete Frankia strain HFPArI3. The plants provide the bacteria with carbon sources in exchange for fixed nitrogen, but this metabolite exchange in actinorhizal nodules has not been well defined. We isolated an alder cDNA from a nodule cDNA library by differential screening with nodule versus root cDNA and found that it encoded a transporter of the PTR (peptide transporter) family, AgDCAT1. AgDCAT1 mRNA was detected only in the nodules and not in other plant organs. Immunolocalization analysis showed that AgDCAT1 protein is localized at the symbiotic interface. The AgDCAT1 substrate was determined by its heterologous expression in two systems. Xenopus laevis oocytes injected with AgDCAT1 cRNA showed an outward current when perfused with malate or succinate, and AgDCAT1 was able to complement a dicarboxylate uptake-deficient Escherichia coli mutant. Using the E. coli system, AgDCAT1 was shown to be a dicarboxylate transporter with a K(m) of 70 microm for malate. It also transported succinate, fumarate, and oxaloacetate. To our knowledge, AgDCAT1 is the first dicarboxylate transporter to be isolated from the nodules of symbiotic plants, and we suggest that it may supply the intracellular bacteria with dicarboxylates as carbon sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号