首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The diversity of extant carnivores provides valuable opportunities for comparative research to illuminate general patterns of mammalian social evolution. Recent field studies on mongooses (Herpestidae), in particular, have generated detailed behavioural and demographic data allowing tests of assumptions and predictions of theories of social evolution. The first studies of the social systems of their closest relatives, the Malagasy Eupleridae, also have been initiated. The literature on mongooses was last reviewed over 25 years ago. In this review, we summarise the current state of knowledge on the social organisation, mating systems and social structure (especially competition and cooperation) of the two mongoose families. Our second aim is to evaluate the contributions of these studies to a better understanding of mammalian social evolution in general. Based on published reports or anecdotal information, we can classify 16 of the 34 species of Herpestidae as solitary and nine as group‐living; there are insufficient data available for the remainder. There is a strong phylogenetic signal of sociality with permanent complex groups being limited to the genera Crossarchus, Helogale, Liberiictis, Mungos, and Suricata. Our review also indicates that studies of solitary and social mongooses have been conducted within different theoretical frameworks: whereas solitary species and transitions to gregariousness have been mainly investigated in relation to ecological determinants, the study of social patterns of highly social mongooses has instead been based on reproductive skew theory. In some group‐living species, group size and composition were found to determine reproductive competition and cooperative breeding through group augmentation. Infanticide risk and inbreeding avoidance connect social organisation and social structure with reproductive tactics and life histories, but their specific impact on mongoose sociality is still difficult to evaluate. However, the level of reproductive skew in social mongooses is not only determined by the costs and benefits of suppressing each other's breeding attempts, but also influenced by resource abundance. Thus, dispersal, as a consequence of eviction, is also linked to the costs of co‐breeding in the context of food competition. By linking these facts, we show that the socio‐ecological model and reproductive skew theory share some determinants of social patterns. We also conclude that due to their long bio‐geographical isolation and divergent selection pressures, future studies of the social systems of the Eupleridae will be of great value for the elucidation of general patterns in carnivore social evolution.  相似文献   

2.
Inbreeding and inbreeding avoidance are key factors in the evolution of animal societies, influencing dispersal and reproductive strategies which can affect relatedness structure and helping behaviours. In cooperative breeding systems, individuals typically avoid inbreeding through reproductive restraint and/or dispersing to breed outside their natal group. However, where groups contain multiple potential mates of varying relatedness, strategies of kin recognition and mate choice may be favoured. Here, we investigate male mate choice and female control of paternity in the banded mongoose (Mungos mungo), a cooperatively breeding mammal where both sexes are often philopatric and mating between relatives is known to occur. We find evidence suggestive of inbreeding depression in banded mongooses, indicating a benefit to avoiding breeding with relatives. Successfully breeding pairs were less related than expected under random mating, which appeared to be driven by both male choice and female control of paternity. Male banded mongooses actively guard females to gain access to mating opportunities, and this guarding behaviour is preferentially directed towards less closely related females. Guard–female relatedness did not affect the guard's probability of gaining reproductive success. However, where mate‐guards are unsuccessful, they lose paternity to males that are less related to the females than themselves. Together, our results suggest that both sexes of banded mongoose use kin discrimination to avoid inbreeding. Although this strategy appears to be rare among cooperative breeders, it may be more prominent in species where relatedness to potential mates is variable, and/or where opportunities for dispersal and mating outside of the group are limited.  相似文献   

3.
The interaction between philopatry and nonrandom mating has important consequences for the genetic structure of populations, influencing co‐ancestry within social groups but also inbreeding. Here, using genetic paternity data, we describe mating patterns in a wild population of red deer (Cervus elaphus) which are associated with marked consequences for co‐ancestry and inbreeding in the population. Around a fifth of females mate with a male with whom they have mated previously, and further, females frequently mate with a male with whom a female relative has also mated (intralineage polygyny). Both of these phenomena occur more than expected under random mating. Using simulations, we demonstrate that temporal and spatial factors, as well as skew in male breeding success, are important in promoting both re‐mating behaviours and intralineage polygyny. However, the information modelled was not sufficient to explain the extent to which these behaviours occurred. We show that re‐mating and intralineage polygyny are associated with increased pairwise relatedness in the population and a rise in average inbreeding coefficients. In particular, the latter resulted from a correlation between male relatedness and rutting location, with related males being more likely to rut in proximity to one another. These patterns, alongside their consequences for the genetic structure of the population, have rarely been documented in wild polygynous mammals, yet they have important implications for our understanding of genetic structure, inbreeding avoidance and dispersal in such systems.  相似文献   

4.
In group‐living species, the degree of relatedness among group members often governs the extent of reproductive sharing, cooperation and conflict within a group. Kinship among group members can be shaped by the presence and location of neighbouring groups, as these provide dispersal or mating opportunities that can dilute kinship among current group members. Here, we assessed how within‐group relatedness varies with the density and position of neighbouring social groups in Neolamprologus pulcher, a colonial and group‐living cichlid fish. We used restriction site‐associated DNA sequencing (RADseq) methods to generate thousands of polymorphic SNPs. Relative to microsatellite data, RADseq data provided much tighter confidence intervals around our relatedness estimates. These data allowed us to document novel patterns of relatedness in relation to colony‐level social structure. First, the density of neighbouring groups was negatively correlated with relatedness between subordinates and dominant females within a group, but no such patterns were observed between subordinates and dominant males. Second, subordinates at the colony edge were less related to dominant males in their group than subordinates in the colony centre, suggesting a shorter breeding tenure for dominant males at the colony edge. Finally, subordinates who were closely related to their same‐sex dominant were more likely to reproduce, supporting some restraint models of reproductive skew. Collectively, these results demonstrate that within‐group relatedness is influenced by the broader social context, and variation between groups in the degree of relatedness between dominants and subordinates can be explained by both patterns of reproductive sharing and the nature of the social landscape.  相似文献   

5.
To better understand evolutionary pathways leading to eusociality, interspecific comparisons are needed, which would use a common axis, such as that of reproductive skew, to array species. African mole‐rats (Bathyergidae, Rodentia) provide an outstanding model of social evolution because of a wide range of social organizations within a single family; however, their reproductive skew is difficult to estimate, due to their cryptic lifestyle. A maximum skew could theoretically be reached in groups where reproduction is monopolized by a stable breeding pair, but the value could be decreased by breeding‐male and breeding‐female turnover, shared reproduction and extra‐group mating. The frequency of such events should be higher in species or populations inhabiting mesic environments with relaxed ecological constraints on dispersal. To test this prediction, we studied patterns of parentage and relatedness within 16 groups of Ansell's mole‐rat (Fukomys anselli) in mesic miombo woodland. Contrary to expectation, there was no shared reproduction (more than one breeder of a particular sex) within the studied groups, and proportion of immigrants and offspring not assigned to current breeding males was low. The within‐group parentage and relatedness patterns observed resemble arid populations of ‘eusocial’ Fukomys damarensis, rather than a mesic population of ‘social’ Cryptomys hottentotus. As a possible explanation, we propose that the extent ecological conditions affect reproductive skew may be markedly affected by life history and natural history traits of the particular species and genera.  相似文献   

6.
In structured populations, competition for reproductive opportunities should be relaxed among related males. The few tests of this prediction often neglect the fact that sexual selection acts through multiple mechanisms, both before and after mating. We performed experiments to study the role of within‐group male relatedness across pre‐ and postcopulatory mechanisms of sexual selection in social groups of red junglefowl, Gallus gallus, in which two related males and one unrelated male competed over females unrelated to all the males. We confirm theoretical expectations that, after controlling for male social status, competition over mating was reduced among related males. However, this effect was contrasted by other sexual selection mechanisms. First, females biased male mating in favor of the unrelated male, and might also favor his inseminations after mating. Second, males invested more—rather than fewer—sperm in postcopulatory competition with relatives. A number of factors may contribute to explain this counterintuitive pattern of sperm allocation, including trade‐offs between male investment in pre‐ versus postcopulatory competition, differences in the relative relatedness of pre‐ versus postcopulatory competitors, and female bias in sperm utilization in response to male relatedness. Collectively, these results reveal that within‐group male relatedness may have contrasting effects in different mechanisms of sexual selection.  相似文献   

7.
Sex‐biased dispersal has profound impacts on a species' biology and several factors have been attributed to its evolution, including mating system, inbreeding avoidance, and social complexity. Sex‐biased dispersal and its potential link to individual social interactions were examined in the Qinghai toad‐headed agamid (Phrynocephalus vlangalii). We first determined the pattern of sex‐biased dispersal using population genetic methods. A total of 345 specimens from 32 sites in the Qaidam Basin were collected and genotyped for nine microsatellite DNA loci. Both individual‐based assignment tests and allele frequency‐based analyses were conducted. Females revealed much more genetic structure than males and all results were consistent with male‐biased dispersal. First‐generation migrants were also identified by genetic data. We then examined eight social interaction‐related morphological traits and explored their potential link to sex‐biased dispersal. Female residents had larger heads and longer tails than female migrants. The well‐developed signal system among females, coupled with viviparity, might make remaining on natal sites beneficial, and hence promote female philopatry. Dominant females with larger heads were more likely to stay. Contrary to females, male migrants had larger heads and belly patches than residents, suggesting that dispersal might confer selective advantages for males. Such advantages may include opportunities for multiple mating and escaping from crowded sites. Large belly patches and several other morphological traits may assist their success in obtaining mates during dispersal. Furthermore, a relatively high relatedness (R = 0.06) among females suggested that this species might have rudimentary social structure. Case studies in “less” social species may provide important evidence for a better understanding of sex‐biased dispersal.  相似文献   

8.
The outcome of sexual conflict can depend on the social environment, as males respond to changes in the inclusive fitness payoffs of harmfulness and harm females less when they compete with familiar relatives. Theoretical models also predict that if limited male dispersal predictably enhances local relatedness while maintaining global competition, kin selection can produce evolutionary divergences in male harmfulness among populations. Experimental tests of these predictions, however, are rare. We assessed rates of dispersal in female and male seed beetles Callosobruchus maculatus, a model species for studies of sexual conflict, in an experimental setting. Females dispersed significantly more often than males, but dispersing males travelled just as far as dispersing females. Next, we used experimental evolution to test whether limiting dispersal allowed the action of kin selection to affect divergence in male harmfulness and female resistance. Populations of C. maculatus were evolved for 20 and 25 generations under one of three dispersal regimens: completely free dispersal, limited dispersal and no dispersal. There was no divergence among treatments in female reproductive tract scarring, ejaculate size, mating behaviour, fitness of experimental females mated to stock males or fitness of stock females mated to experimental males. We suggest that this is likely due to insufficient strength of kin selection rather than a lack of genetic variation or time for selection. Limited dispersal alone is therefore not sufficient for kin selection to reduce male harmfulness in this species, consistent with general predictions that limited dispersal will only allow kin selection if local relatedness is independent of the intensity of competition among kin.  相似文献   

9.
Behavioral and demographic factors such as group size, social structure, dispersal patterns, and mating systems affect male reproductive success. In the present study, we analyze the relationship between social structure, genetic relatedness of adult males and offspring paternity in one population of Alouatta caraya inhabiting a continuous forest in Northern Argentina. After 14 months of behavioral studies and genotyping 11 microsatellites, we found that dominant or central males achieved greater mating success and fathered all the offspring conceived during our study in two multimale–multifemale groups (both including three adult males). Although skewed toward the dominant males, females copulated with almost all resident males and with extra group males. We found significantly fewer agonistic interactions between adult males in the group with fewer females and where males were more genetically related to each other (average relatedness r = 0.237; 0.015 int/ind/hr vs. r = 0.02; 0.029 int/ind/hr). Paternity was also analyzed in two other neighboring groups which also showed strong skew to one male over a 2‐year period. These results reveal that even though female black and gold howlers mate with many males, infants are typically fathered by one dominant male. Am. J. Primatol. 76:43–55, 2014. © 2013 The Authors. American Journal of Primatology Published by Wiley Periodicals, Inc.  相似文献   

10.
Patterns of within‐group relatedness are expected to affect the prospects for cooperation among group members through kin selection. It has long been established that dispersal patterns determine the availability of kin and there is ample evidence of matrilineal kin biases in social behavior across primate species. However, in 1979, Jeanne Altmann1 suggested that mating patterns also influence the structure of within‐group relatedness; high male reproductive skew and the frequent replacement of breeding males leads to relatively high levels of paternal relatedness and age‐structured paternal sibships within groups. As a consequence of frequent replacement of breeding males, relatedness among offspring of a given female will be reduced to the half‐ rather than full‐sibling level. Depending on the number of sires and degree of relatedness among mothers, members of the same birth cohort may be as closely related as maternal siblings. If animals are able to recognize their paternal kin and exhibit biases in favor of them, this may influence the distribution of cooperation and the intensity of competition within groups of primates. Here, I summarize the evidence that serves as the basis for Altmann's predictions and review evidence regarding whether or not the availability of paternal kin also leads to paternal kin bias among primates.  相似文献   

11.
Although the variability and complexity of chimpanzee behaviour frustrates generalization, it is widely believed that social evolution in this species occurs in the context of the recognizable social group or community. We used a combination of field observations and noninvasive genotyping to study the genetic structure of a habituated community of 55 wild chimpanzees, Pan troglodytes verus, in the Ta? Forest, C?te d'Ivoire. Pedigree relationships in that community show that female mate choice strategies are more variable than previously supposed and that the observed social groups are not the exclusive reproductive units. Genetic evidence based on nuclear microsatellite markers and behavioural obser-vations reveal that females in the Ta? forest actively seek mating partners outside their social unit; noncommunity males accounted for half the paternities over 5 years. This female mating strategy increases male gene flow between communities despite male philopatry, and negates the predicted higher relatedness among community males. Kin selection seems unlikely to explain the frequent cooperation and sharing observed among group males in this population. Similarly, inbreeding avoidance is probably not the sole cause of permanent adolescent female dispersal as a combination of extragroup mating and avoidance of incest with home group males would allow females to avoid inbreeding without the hazards associated with immigration into a new community. Extragroup mating as part of chimpanzee females' reproductive strategy may allow them to choose from a wider variety and number of males, without losing the resources and support provided by their male social group partners. Copyright 1999 The Association for the Study of Animal Behaviour.  相似文献   

12.
Polyandry is ubiquitous in insects and provides the conditions necessary for male‐ and female‐driven forms of post‐copulatory sexual selection to arise. Populations of Amphiacusta sanctaecrucis exhibit significant divergence in portions of the male genitalia that are inserted directly into the female reproductive tract, suggesting that males may exercise some post‐copulatory control over fertilization success. We examine the potential for male–male and male–female post‐copulatory interactions to influence paternity in wild‐caught females of A. sanctaecrucis and contrast our findings with those obtained from females reared in a high‐density laboratory environment. We find that female A. sanctaecrucis exercise control by mating multiple times (females mount males), but that male–male post‐copulatory interactions may influence paternity success. Moreover, post‐copulatory interactions that affect reproductive success of males are not independent of mating environment: clutches of wild‐caught females exhibit higher sire diversity and lower paternity skew than clutches of laboratory‐reared females. There was no strong evidence for last male precedence in either case. Most attempts at disentangling the contributions of male–male and male–female interactions towards post‐copulatory sexual selection have been undertaken in a laboratory setting and may not capture the full context in which they take place – such as the relationship between premating and post‐mating interactions. Our results reinforce the importance of designing studies that can capture the multifaceted nature of sexual selection for elucidating the role of post‐copulatory sexual selection in driving the evolution of male and female reproductive traits, especially when different components (e.g. precopulatory and post‐copulatory interactions) do not exert independent effects on reproductive outcomes.  相似文献   

13.
Female greater horseshoe bats form maternity colonies each summer in order to give birth and raise young. During the mating period, females visit males occupying territorial sites, copulation takes place and sperm are stored until ovulation occurs, normally in April. Using microsatellite markers and a likelihood method of parentage analysis, we studied breeding behaviour and male reproductive success over a five-year period in a population of bats in south-west Britain. Paternity was assigned with 80% confidence to 44% of young born in five successive cohorts. While a small annual skew in male reproductive success was detected, the variance increased over five years due to the repeated success of a few individuals. Mating was polygynous, although some females gave birth to offspring sired by the same male in separate years. Such repeated partnerships probably result from fidelity for either mating sites or individuals or from sperm competition. Females mated with males born both within and outside their own natal colony; however, relatedness between parents was no less than the average recorded for male female pairs. Gene flow between colonies is likely to be primarily mediated by both female and male dispersal during the mating period rather than more permanent movements.  相似文献   

14.
Reproductive skew is a measure of the proportion of individuals of each sex that breed in a group and is a valuable measure for understanding the evolution and maintenance of sociality. Here, we provide the first quantification of reproductive skew within social groups of European badgers Meles meles , throughout an 18-year study in a high-density population. We used 22 microsatellite loci to analyse within-group relatedness and demonstrated that badger groups contained relatives. The average within-group relatedness was high ( R =  0.20) and approximately one-third of within-group dyads were more likely to represent first-order kin than unrelated pairs. Adult females within groups had higher pairwise relatedness than adult males, due to the high frequency of extra-group paternities, rather than permanent physical dispersal. Spatial clustering of relatives occurred among neighbouring groups, which we suggest was due to the majority of extra-group paternities being attributable to neighbouring males. Reproductive skew was found among within-group candidate fathers ( B  = 0.26) and candidate mothers ( B  = 0.07), but not among breeding individuals; our power to detect skew in the latter was low. We use these results to evaluate reproductive skew models. Although badger society best fits the assumptions of the incomplete-control models, our results were not consistent with their predictions. We suggest that this may be due to female control of paternity, female–female reproductive suppression occurring only in years with high food availability resulting in competition over access to breeding sites, extra-group paternity masking the benefits of natal philopatry, and/or the inconsistent occurrence of hierarchies that are linear when established.  相似文献   

15.
In group‐living species with male dominance hierarchies where receptive periods of females do not overlap, high male reproductive skew would be predicted. However, the existence of female multiple mating and alternative male mating strategies can call into question single‐male monopolization of paternity in groups. Ring‐tailed lemurs (Lemur catta) are seasonally breeding primates that live in multi‐male, multi‐female groups. Although established groups show male dominance hierarchies, male dominance relationships can break down during mating periods. In addition, females are the dominant sex and mate with multiple males during estrus, including group residents, and extra‐group males—posing the question of whether there is high or low male paternity skew in groups. In this study, we analyzed paternity in a population of wild L. catta from the Bezà Mahafaly Special Reserve in southwestern Madagascar. Paternity was determined with 80–95% confidence for 39 offspring born to nine different groups. We calculated male reproductive skew indices for six groups, and our results showed a range of values corresponding to both high and low reproductive skew. Between 21% and 33% of offspring (3 of 14 or three of nine, counting paternity assignments at the 80% or 95% confidence levels, respectively) were sired by extra‐troop males. Males siring offspring within the same group during the same year appear to be unrelated. Our study provides evidence of varying male reproductive skew in different L. catta groups. A single male may monopolize paternity across one or more years, while in other groups, >1 male can sire offspring within the same group, even within a single year. Extra‐group mating is a viable strategy that can result in extra‐group paternity for L. catta males.  相似文献   

16.
Dispersal in most group‐living species ensures gene flow among groups, but in cooperative social spiders, juvenile dispersal is suppressed and colonies are highly inbred. It has been suggested that such inbred sociality is advantageous in the short term, but likely to lead to extinction or reduced speciation rates in the long run. In this situation, very low levels of dispersal and gene flow among colonies may have unusually important impacts on fitness and persistence of social spiders. We investigated sex‐specific differences in dispersal and gene flow among colonies, as reflected in the genetic structure within colonies and populations of the African social spider Stegodyphus dumicola Pocock, 1898 (Eresidae). We used DNA fingerprinting and mtDNA sequence data along with spatial mapping of colonies to compare male and female patterns of relatedness within and among colonies at three study sites. Samples were collected during and shortly after the mating season to detect sex‐specific dispersal. Distribution of mtDNA haplotypes was consistent with proliferation of social nests by budding and medium‐ to long‐distance dispersal by ballooning females. Analysis of molecular variance and spatial autocorrelation analyses of AFLPs showed high levels of genetic similarity within colonies, and STRUCTURE analyses revealed that the number of source populations contributing to colonies ranged from one to three. We also showed significant evidence of male dispersal among colonies at one site. These results support the hypothesis that in social spiders, genetic cohesion among populations is maintained by long‐distance dispersal of female colony founders. Genetic diversity within colonies is maintained by colony initiation by multiple dispersing females, and adult male dispersal over short distances. Male dispersal may be particularly important in maintaining gene flow among colonies in local populations.  相似文献   

17.
Recent evidence shows that females exert a post‐copulatory fertilization bias in favour of unrelated males to avoid the genetic incompatibilities derived from inbreeding. One of the mechanisms suggested for fertilization biases in insects is female control over transport of sperm to the sperm‐storage organs. We investigated post‐copulatory inbreeding‐avoidance mechanisms in females of the cricket Teleogryllus oceanicus. We assessed the relative contribution of related and unrelated males to the sperm stores of double‐mated females. To demonstrate unequivocally that biased sperm storage results from female control rather than cryptic male choice, we manipulated the relatedness of mated males and of males performing post‐copulatory mate guarding. Our results show that when guarded by a related male, females store less sperm from their actual mate, irrespective of the relatedness of the mating male. Our data support the notion that inhibition of sperm storage by female crickets can act as a form of cryptic female choice to avoid the severe negative effects of inbreeding.  相似文献   

18.
Marmot species exhibit a great diversity of social structure, mating systems and reproductive skew. In particular, among the social species (i.e. all except Marmota monax), the yellow-bellied marmot appears quite different from the others. The yellow-bellied marmot is primarily polygynous with an intermediate level of sociality and low reproductive skew among females. In contrast, all other social marmot species are mainly monogamous, highly social and with marked reproductive skew among females. To understand the evolution of this difference in reproductive skew, I examined four possible explanations identified from reproductive skew theory. From the literature, I then reviewed evidence to investigate if marmot species differ in: (1) the ability of dominants to control the reproduction of subordinates; (2) the degree of relatedness between group members; (3) the benefit for subordinates of remaining in the social group; and (4) the benefit for dominants of retaining subordinates. I found that the optimal skew hypothesis may apply for both sets of species. I suggest that yellow-bellied marmot females may benefit from retaining subordinate females and in return have to concede them reproduction. On the contrary, monogamous marmot species may gain by suppressing the reproduction of subordinate females to maximise the efficiency of social thermoregulation, even at the risk of departure of subordinate females from the family group. Finally, I discuss scenarios for the simultaneous evolution of sociality, monogamy and reproductive skew in marmots.  相似文献   

19.
Mating system and philopatry influence the genetic structure of a social group in mammals. Brandt's vole (Lasiopodomys brandtii) lives in social groups year-round and has male biased dispersal, which makes the vole a model system for studies of genetic consequences of mating system and philopatry. This study aimed to test the hypotheses that: (1) multiple paternity (MP) would exist in Brandt's voles, enhance offspring genetic diversity and reduce genetic relatedness between littermates; (2) promiscuity would occur in this species in that males and females mate with multiple partners; and (3) plural breeders of a social group would be genetically related because of philopatry of female juveniles in Brandt's voles. Paternity analysis indicated that MP occurred in 11 (46%) of 24 social groups examined and that promiscuity existed in this species. Multiple paternity litters had twice the offspring genetic diversity and half the average within-litter genetic relatedness of single paternity litters. We also found plural breeding females in six social groups. Average pairwise genetic relatedness of plural breeders ranged from 0.41 to 0.72 in four social groups, suggesting first-order kinship. Future studies need to investigate effects of reproductive skew and MP on population genetic structure of Brandt's voles.  相似文献   

20.
In many cooperatively breeding species, females mate extra‐group, the adaptive value of which remains poorly understood. One hypothesis posits that females employ extra‐group mating to access mates whose genotypes are more dissimilar to their own than their social mates, so as to increase offspring heterozygosity. We test this hypothesis using life history and genetic data from 36 cooperatively breeding white‐browed sparrow weaver (Plocepasser mahali) groups. Contrary to prediction, a dominant female's relatedness to her social mate did not drive extra‐group mating decisions and, moreover, extra‐group mating females were significantly more related to their extra‐group sires than their social mates. Instead, dominant females were substantially more likely to mate extra‐group when paired to a dominant male of low heterozygosity, and their extra‐group mates (typically dominants themselves) were significantly more heterozygous than the males they cuckolded. The combined effects of mating with extra‐group males of closer relatedness, but higher heterozygosity resulted in extra‐group‐sired offspring that were no more heterozygous than their within‐group‐sired half‐siblings. Our findings are consistent with a role for male–male competition in driving extra‐group mating and suggest that the local kin structure typical of cooperative breeders could counter potential benefits to females of mating extra‐group by exposing them to a risk of inbreeding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号