首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Sex allocation theory predicts the optimal allocation to male and female reproduction in sexual organisms. In animals, most work on sex allocation has focused on species with separate sexes and our understanding of simultaneous hermaphrodites is patchier. Recent theory predicts that sex allocation in simultaneous hermaphrodites should strongly be affected by post-copulatory sexual selection, while the role of pre-copulatory sexual selection is much less clear. Here, we review sex allocation and sexual selection theory for simultaneous hermaphrodites, and identify several strong and potentially unwarranted assumptions. We then present a model that treats allocation to sexually selected traits as components of sex allocation and explore patterns of allocation when some of these assumptions are relaxed. For example, when investment into a male sexually selected trait leads to skews in sperm competition, causing local sperm competition, this is expected to lead to a reduced allocation to sperm production. We conclude that understanding the evolution of sex allocation in simultaneous hermaphrodites requires detailed knowledge of the different sexual selection processes and their relative importance. However, little is currently known quantitatively about sexual selection in simultaneous hermaphrodites, about what the underlying traits are, and about what drives and constrains their evolution. Future work should therefore aim at quantifying sexual selection and identifying the underlying traits along the pre- to post-copulatory axis.  相似文献   

2.
The role of sexual selection in shaping the mating system of hermaphrodites is currently widely accepted. However, a quantification of the intensity of sexual selection in hermaphroditic animals has never been accomplished. We evaluated the opportunity for sexual selection for both the female and the male functions in the simultaneous outcrossing hermaphrodite Ophryotrocha diadema by measuring focal hermaphrodites' paternal and maternal offspring in experimental replicated monogamous and promiscuous populations, using genetic markers to estimate paternity. Opportunity for sexual selection for each of the two sexual functions was quantified by means of the Crow's index, i.e. the ratio of variance in progeny number to the squared mean number of progeny. In addition, the extent to which the reproductive success was shared among competing individuals was estimated by means of the Nonacs's B index. We documented that the strength of selection on the male and female function in hermaphrodites with external fertilization depends on the reproductive context. Under a promiscuous regime, hermaphrodites have higher opportunities for selection for both the male and the female function than under the monogamous regime. Moreover, the reproductive skew for the female function becomes greater than that for the male function, moving from monogamy to promiscuity. In our model system, allocation to one sexual function is opposed by any degree of allocation to the other, indicating that sex-specific patterns of selection operate in this model species.  相似文献   

3.
Most models of sex allocation distinguish between sequential and simultaneous hermaphrodites, although an intermediate sexual pattern, size‐dependent sex allocation, is widespread in plants. Here we investigated sex allocation in a simultaneous hermaphrodite animal, the tapeworm Schistocephalus solidus, in which adult size is highly variable. Sex allocation was determined using stereological techniques, which allow measuring somatic and reproductive tissues in a common currency, namely volume. We investigated the relationships between individual volume and allocation to different reproductive tissues using an allometric model. One measure of female allocation, yolk gland volume, increased more than proportionally with individual volume. This is in contrast to the measure of male allocation, testis volume, which showed a strong tendency to increase less than proportionally with individual volume. Together these patterns led to sex allocation being strongly related to individual volume, with large individuals being more biased towards female allocation. We discuss these findings in the light of current ideas about size‐dependent sex allocation in, primarily, plants and try to extend them to simultaneous hermaphrodite animals.  相似文献   

4.
Inbreeding depression has become a central theme in evolutionary biology and is considered to be a driving force for the evolution of reproductive morphology, physiology, behavior, and mating systems. Despite the overwhelming body of empirical work on the reproductive consequences of inbreeding, relatively little is known on whether inbreeding depresses male and female fitness to the same extent. However, sex‐specific inbreeding depression has been argued to affect the evolution of selfing rates in simultaneous hermaphrodites and provides a powerful approach to test whether selection is stronger in males than in females, which is predicted to be the consequence of sexual selection. We tested for sex‐specific inbreeding depression in the simultaneously hermaphroditic freshwater snail Physa acuta by comparing the reproductive performance of both sex functions between selfed and outcrossed focal individuals under different levels of male–male competition. We found that inbreeding impaired both male and female reproductive success and that the magnitude of male inbreeding depression exceeded female inbreeding depression when the opportunity for sperm competition was highest. Our study provides the first evidence for sex‐specific inbreeding depression in a hermaphroditic animal and highlights the importance of considering the level of male–male competition when assessing sex differences in inbreeding depression.  相似文献   

5.
Fitness in self-incompatible simultaneous hermaphrodites incorporates gains and costs from both male and female reproductive function, and evolutionarily stable allocation of gonadal tissue to male or female function depends on these gains and costs. Paradoxically, despite the often equal expected gains but different costs associated with each sex, contributions to expected reproductive success through male and female function must be identical. Whenever allocation costs are unequal and limiting resources are energetically expensive or risky to acquire, these costs must ultimately be paid through reduced survival, resolving the paradox by equally diminishing expected reproductive success as male and as female. Maximizing fitness as lifetime reproductive success – not just reproductive rate alone, as in previous studies – maximizes the product of expected survival time and reproductive rate. The analysis shows how male-biased allocation can thereby arise and generate novel predictions on the relation between intensity of sperm competition and allocation to male function.  相似文献   

6.
Summary This paper examines the correlates of individual size, reproductive success, gonadal allocation, and growth in a hermaphroditic reef fish. Individuals in S. fasciatus mature as simultaneous hermaphrodites; large individuals subsequently lose female function and become functional males. Daily female reproductive success was highly correlated with both hermaphrodite size and amount of female gonadal tissue. Three separate comparisons gave a positive correlation between male reproductive success and male gonadal allocation: (1) Males had higher levels of male gonadal allocation and male reproductive success than hermaphrodites. (2) The percent of gonad allocated to male tissue in hermaphrodites was higher in the year they had higher male mating success. (3) Male gonadal tissue of hermaphrodites was positively correlated with male reproductive success in the year that male reproductive success by hermaphrodites was higher and more variable. There was no evidence for a trade-off between male function, female function, and growth among hermaphrodites. Many of these patterns have also been observed in plants, but the selective pressures leading to these patterns in S. fasciatus and plants are probably quite different.  相似文献   

7.
8.
Sex allocation in a simultaneously hermaphroditic marine shrimp   总被引:2,自引:1,他引:1  
Two fundamental questions dealing with simultaneous hermaphrodites are how resources are optimally allocated to the male and female function and what conditions determine shifts in optimal sex allocation with age or size. In this study, I explored multiple factors that theoretically affect fitness gain curves (that depict the relationship between sex-specific investment and fitness gains) to predict and test the overall and size-dependent sex allocation in a simultaneously hermaphroditic brooding shrimp with an early male phase. In Lysmata wurdemanni, sperm competition is absent as hermaphrodites reproducing in the female role invariably mated only once with a single other shrimp. Shrimps acting as females preferred small over large shrimps as male mating partners, male mating ability was greater for small compared to large hermaphrodites, and adolescent males were predominant in the population during the breeding season. In addition, brooding constraints were not severe and varied linearly with body size whereas the ability to acquire resources increased markedly with body size. Using sex allocation theory as a framework, the findings above permitted to infer the shape of the male and female fitness gain curves for the hermaphrodites. The absence of sperm competition and the almost unconstrained brooding capacity imply that both curves saturate, however the male curve levels off much more quickly than the female curve with increasing level of investment. In turn, the predominance of adolescent males in the population implies that the absolute gain of the female curve is greater than that of the male curve. Last, the size-dependent female preference and male mating ability of hermaphrodites determines that the absolute gain of the male curve is greater for small than for large hermaphrodites. Taking into consideration the inferred shape of the fitness gain curves, two predictions with respect to the optimal sex allocation were formulated. First, overall sex allocation should be female biased; it permits hermaphrodites to profit from the female function that provides a greater fitness return than the male function. Second, sex allocation should be size-dependent with smaller hermaphrodites allocating more than proportionally resources to male reproduction than larger ones. This size-dependent sex allocation permits hermaphrodites to profit from male mating opportunities that are the greatest at small body sizes. Size-dependent sex allocation is also expected because the male fitness gain curve decelerates more quickly than the female gain curve and experiments indicated that resources are greater for large than small hermaphrodites. These two predictions were tested when determining the sex allocation of hermaphrodites by dissecting their gonad and quantifying ovaries versus testes mass. Supporting the predictions above, hermaphrodites allocated, on average, 118 times more to the female than to the male gonad and the proportion of resources devoted to male function was higher in small than in large hermaphrodites. A trade-off between male and female allocation is assumed by theory but no negative correlation between male and female reproductive investment was observed. In L. wurdemanni, the relationship between sex-specific investment and fitness changes during ontogeny in a way that is consistent with an adjustment of sex allocation to improve size-specific reproductive success.  相似文献   

9.
Within a population of simultaneous hermaphrodites, individuals may vary in both their current reproductive investment (biomass invested in gonads) and in how they allocate that investment between male and female function. In the chalk bass, Serranus tortugarum, estimates of both reproductive allocation and reproductive success as a male and a female can be made for individuals of different sizes. As individuals increase in size, their investment in gamete production increases, and there is a shift in allocation to a stronger female bias. Spawning frequency as a female in pair spawnings and as a male in both pair spawning and streaking (an alternative mating tactic) does not vary with individual size. As a result, larger individuals should release more sperm or eggs per spawn. Size-assortative pair spawning in this species leads to larger individuals having higher potential returns in total male reproductive success than smaller individuals, which should lead to increases in absolute levels of sperm production in larger individuals when individuals compete for fertilizations through sperm competition. However, smaller individuals contribute a smaller proportion of the sperm released in spawns with multiple spawners and thus are under more intense sperm competition than larger individuals, which should select for increases in male allocation in smaller individuals, all else equal. A local-mate-competition (LMC) model predicts that these factors select for increasing absolute male and female investment with individual size but a relative shift to more female-biased allocation as individual size increases. These predictions are supported by gonadal data. The predictions of average male allocation from the quantitative LMC model were 21.6% and 25.7%, whereas the collections averaged 21.3%. This close agreement of both the mean male allocation and its relative shift with individual size between model and data support the hypothesis that size-specific shifts in sex allocation in this species represent an adaptive response to patterns of mating success and sperm competition.  相似文献   

10.
Sex allocation theory predicts that mating frequency and long‐term sperm storage affect the relative allocation to male and female function in simultaneous hermaphrodites. We examined the effect of mating frequency on male and female reproductive output (number of sperm delivered and eggs deposited) and on the resources allocated to the male and female function (dry mass, nitrogen and carbon contents of spermatophores and eggs) in individuals of the simultaneous hermaphrodite land snail Arianta arbustorum. Similar numbers of sperm were delivered in successive copulations. Consequently, the total number of sperm transferred increased with increasing number of copulations. In contrast, the total number of eggs produced was not influenced by the number of copulations. Energy allocation to gamete production expressed as dry mass, nitrogen or carbon content was highly female‐biased (>95% in all estimates). With increasing number of copulations the relative nitrogen allocation to the male function increased from 1.7% (one copulation) to 4.7% (three copulations), but the overall reproductive allocation remained highly female‐biased. At the individual level, we did not find any trade‐off between male and female reproductive function. In contrast, there was a significant positive correlation between the resources allocated to the male and female function. Snails that delivered many sperm also produced a large number of eggs. This finding contradicts current theory of sex allocation in simultaneous hermaphrodites.  相似文献   

11.
Fitness depends on both the resources that individuals acquire and the allocation of those resources to traits that influence survival and reproduction. Optimal resource allocation differs between females and males as a consequence of their fundamentally different reproductive strategies. However, because most traits have a common genetic basis between the sexes, conflicting selection between the sexes over resource allocation can constrain the evolution of optimal allocation within each sex, and generate trade‐offs for fitness between them (i.e. ‘sexual antagonism’ or ‘intralocus sexual conflict’). The theory of resource acquisition and allocation provides an influential framework for linking genetic variation in acquisition and allocation to empirical evidence of trade‐offs between distinct life‐history traits. However, these models have not considered the emergence of trade‐offs within the context of sexual dimorphism, where they are expected to be particularly common. Here, we extend acquisition–allocation theory and develop a quantitative genetic framework for predicting genetically based trade‐offs between life‐history traits within sexes and between female and male fitness. Our models demonstrate that empirically measurable evidence of sexually antagonistic fitness variation should depend upon three interacting factors that may vary between populations: (1) the genetic variances and between‐sex covariances for resource acquisition and allocation traits, (2) condition‐dependent expression of resource allocation traits and (3) sex differences in selection on the allocation of resource to different fitness components.  相似文献   

12.
Sexual selection arises from both intrasexual competition and mate choice. With respect to the evolution of male traits, there is a vast literature documenting the existence of female choice and male–male competition, and both have been shown to co‐occur in many species. Despite numerous studies of these two components of male reproductive success in isolation, few have investigated whether and how they interact to determine total sexual selection. To address this, we investigate male territoriality in Drosophila serrata, a species in which female preference for male sexual pheromones (cuticular hydrocarbons or CHCs) have been extensively studied. We demonstrate that territoriality occurs, that it involves direct male–male aggressive interactions, and that it contributes to variation in male mating success. Results from a phenotypic manipulation also indicate that territorial success is condition‐dependent, although a genetic manipulation of condition, involving three generations of full‐sib inbreeding, failed to find a significant effect. Finally, selection assays also suggest that territorial success depends on male body size but not on CHCs, whereas the opposite is true for mating success.  相似文献   

13.
Sex allocation theory for simultaneous hermaphrodites has focused primarily on the effects of sperm competition, but the role of mate choice has so far been neglected. We present a model to study the coevolution of cryptic female choice and sex allocation in simultaneous hermaphrodites. We show that the mechanism of cryptic female choice has a strong effect on the evolutionary outcome: if individuals remove a fixed proportion of less-preferred sperm, the optimal sex allocation is more female biased (i.e. more biased towards egg production) than without cryptic female choice; conversely, if a fixed amount of sperm is removed, sex allocation is less female-biased than without cryptic female choice, and can easily become male biased (i.e. biased towards sperm production). Under male-biased sex allocation, hermaphroditism can become unstable and the population can split into pure males and hermaphrodites with a female-biased allocation. We discuss the idea that the evolution of sex allocation may depend on the outcome of sexual conflict over the fate of received sperm: the sperm donor may attempt to manipulate or by-pass cryptic female choice and the sperm recipient is expected to resist such manipulation. We conclude that cryptic female choice can have a strong influence on sex allocation in simultaneous hermaphrodites and strongly encourage empirical work on this question.  相似文献   

14.
Sexual selection and reproductive success in hermaphroditic seabasses   总被引:1,自引:1,他引:0  
Mating behavior in simultaneously hermaphroditic seabasses hasbeen often cited as an example of cooperation among unrelatedconspecifics. The predominant mating behavior in this groupinvolves egg trading, where individuals reciprocally fertilizeparcels of eggs from a partner. Egg trading has been suggestedas a good example of a tit-for-tat cooperative mating strategy.Although simultaneous hermaphroditic fishes are often held upas strong examples of cooperation in mating behavior, a closerexamination reveals significant sexual selection and sexualconflict between male and female roles among individuals. Inthe 7 species where data exist, there is a significant increasein male reproductive success with individual size, and in allbut 1 species success through male function increases fasterthan reproductive success through female function. Despite thismale-size advantage in simultaneous hermaphrodites, most speciesmaintain their hermaphroditism for their entire life, and theincreased male allocation while engaging in biased forms ofreciprocation appear to increase the evolutionary stabilityof hermaphroditism in these species. Thus, egg-trading behavioris probably more complicated than was initially recognized,with individuals releasing different numbers of eggs in spawns,spawning at different rates as males and females, and partitioningmale effort between pair and alternative mating tactics. Thedepartures from equal reciprocity can probably be best understoodby including aspects of traditional mating-system theory, withindividuals increasing male mating success through a varietyof behavioral tactics.  相似文献   

15.
Disentangling the relationship between age and reproduction is central to understand life‐history evolution, and recent evidence shows that considering condition‐dependent mortality is a crucial piece of this puzzle. For example, nonrandom mortality of ‘low‐condition’ individuals can lead to an increase in average lifespan. However, selective disappearance of such low‐condition individuals may also affect reproductive senescence at the population level due to trade‐offs between physiological functions related to survival/lifespan and the maintenance of reproductive functions. Here, we address the idea that condition‐dependent extrinsic mortality (i.e. simulated predation) may increase the age‐related decline in male reproductive success and with it the potential for sexual conflict, by comparing reproductive ageing in Drosophila melanogaster male/female cohorts exposed (or not) to condition‐dependent simulated predation across time. Although female reproductive senescence was not affected by predation, male reproductive senescence was considerably higher under predation, due mainly to an accelerated decline in offspring viability of ‘surviving’ males with age. This sex‐specific effect suggests that condition‐dependent extrinsic mortality can exacerbate survival‐reproduction trade‐offs in males, which are typically under stronger condition‐dependent selection than females. Interestingly, condition‐dependent extrinsic mortality did not affect mating success, hinting that accelerated reproductive senescence is due to a decrease in male post‐copulatory fitness components. Our results support the recent proposal that male ageing can be an important source of sexual conflict, further suggesting this effect could be exacerbated under more natural conditions.  相似文献   

16.
1. The energy available for reproduction is usually limited by resource acquisition (i.e. condition). Because condition is known to be strongly affected by environmental factors, reproductive investments also vary across heterogeneous environments. 2. Although the condition dependence of reproductive investment is common to both sexes, reproductive traits may exhibit sexually different responses to environmental fluctuation due to sex‐specific life‐history strategies. However, few direct experimental studies have investigated the condition dependence of reproductive investments in both sexes. 3. We investigated the condition dependence of life‐history and reproductive traits of males and females in the beetle Gnatocerus cornutus Fabricus by manipulating larval and adult diet quality. We found that male and female life‐history traits exhibited similar responses to environmental fluctuations. 4. By contrast, the sexes exhibit different patterns of condition dependence in reproductive traits (i.e. the adult nutritional environment has a strong impact on the female lifetime reproductive success, whereas larval nutritional environment strongly affects the secondary sexual trait in males). 5. This difference in the plasticity of reproductive traits may lead to different selection pressures for each sex, even if both sexes develop and/or live in the same environment.  相似文献   

17.
Protandric simultaneous hermaphroditism, as reported for shrimps in the genus Lysmata, is a sexual system in which individuals invariably reproduce as males first and later in life as simultaneous hermaphrodites. I tested three models (i.e., sex-dependent energetic costs, sex-dependent mortality rates and sex-dependent time commitments) in an attempt to explain the adaptive value of protandric simultaneous hermaphroditism in the shrimp L. wurdemanni. Specific assumptions and predictions of each model were evaluated using manipulative experiments. In the laboratory, males grew faster than simultaneous hermaphrodites of the same size and age, an indication that the female function incurs higher energetic costs of reproduction than the male function. Also, large SHPs were more successful in monopolizing food than small males. The sex-dependent growth rate and size-dependent resource holding power agree with predictions of the sex-dependent energetic cost model. The time that simultaneous hermaphrodites required for replenishing their sperm reservoirs after mating as males was much shorter (2 days) than the time required to brood one clutch of embryos (11 days). Also, small simultaneous hermaphrodites experienced heavier mortality due to predatory fishes than large ones. The sex-dependent reproductive time commitment and size-dependent mortality agree with predictions of the sex-dependent time commitment model. Conversely, I found no evidence that the sex-dependent mortality model explains protandric simultaneous hermaphroditism in the studied species. In contrast to model predictions, mortality due to predatory fishes suffered by simultaneous hermaphrodites was not greater than that suffered by males of the same body size. In L. wurdemanni, the relationship between sex-specific investment and reproductive success seems to change during ontogeny in a way that is consistent with an adaptive adjustment of sex allocation to improve age-specific reproductive success.  相似文献   

18.
The condition dependence of male sexual traits plays a central role in sexual selection theory. Relatively little, however, is known about the condition dependence of chemical signals used in mate choice and their subsequent effects on male mating success. Furthermore, few studies have isolated the specific nutrients responsible for condition‐dependent variation in male sexual traits. Here, we used nutritional geometry to determine the effect of protein (P) and carbohydrate (C) intake on male cuticular hydrocarbon (CHC) expression and mating success in male decorated crickets (Gryllodes sigillatus). We show that both traits are maximized at a moderate‐to‐high intake of nutrients in a P:C ratio of 1 : 1.5. We also show that female precopulatory mate choice exerts a complex pattern of linear and quadratic sexual selection on this condition‐dependent variation in male CHC expression. Structural equation modelling revealed that although the effect of nutrient intake on mating success is mediated through condition‐dependent CHC expression, it is not exclusively so, suggesting that other traits must also play an important role. Collectively, our results suggest that the complex interplay between nutrient intake, CHC expression and mating success plays an important role in the operation of sexual selection in G. sigillatus.  相似文献   

19.
Theory predicts the optimal timing of sex change will be the age or size at which half of an individual''s expected fitness comes through reproduction as a male and half through reproduction as a female. In this way, sex allocation across the lifetime of a sequential hermaphrodite parallels the sex allocation of an outbreeding species exhibiting a 1∶1 ratio of sons to daughters. However, the expectation of a 1∶1 sex ratio is sensitive to variation in individual condition. If individuals within a population vary in condition, high-condition individuals are predicted to make increased allocations to the sex with the higher variance in reproductive success. An oft-cited example of this effect is seen in red deer, Cervus elaphus, in which mothers of high condition are more likely to produce sons, while those in low condition are more likely to produce daughters. Here, we show that individual condition is predicted to similarly affect the pattern of sex allocation, and thus the allocation of reproductive effort, in sequential hermaphrodites. High-condition sex-changers are expected to obtain more than half of their fitness in the high-payoff second sex and, as a result, are expected to reduce the allocation of reproductive effort in the initial sex. While the sex ratio in populations of sequential hermaphrodites is always skewed towards an excess of the initial sex, condition dependence is predicted to increase this effect.  相似文献   

20.
For sexual selection to act on a given sex, there must exist variation in the reproductive success of that sex as a result of differential access to mates or fertilisations. The mechanisms and consequences of sexual selection acting on male animals are well documented, but research on sexual selection acting on females has only recently received attention. Controversy still exists over whether sexual selection acts on females in the traditional sense, and over whether to modify the existing definition of sexual selection (to include resource competition) or to invoke alternative mechanisms (usually social selection) to explain selection acting on females in connection with reproduction. However, substantial evidence exists of females bearing characters or exhibiting behaviours that result in differential reproductive success that are analogous to those attributed to sexual selection in males. Here we summarise the literature and provide substantial evidence of female intrasexual competition for access to mates, female intersexual signalling to potential mates, and postcopulatory mechanisms such as competition between eggs for access to sperm and cryptic male allocation. Our review makes clear that sexual selection acts on females and males in similar ways but sometimes to differing extents: the ceiling for the elaboration of costly traits may be lower in females than in males. We predict that current and future research on female sexual selection will provide increasing support for the parsimony and utility of the existing definition of sexual selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号