首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Reproducing females can allocate energy between the production of eggs or offspring of different size or number, both of which can strongly influence fitness. The physical capacity to store developing offspring imposes constraints on maximum clutch volume, but individual females and populations can trade off whether more or fewer eggs or offspring are produced, and their relative sizes. Harsh environments are likely to select for larger egg or offspring size, and many vertebrate populations compensate for this reproductive investment through an increase in female body size. We report a different trade‐off in a frog endemic to the Tibetan Plateau, Rana kukunoris. Females living at higher altitudes (n = 11 populations, 2000–3500 m) produce larger eggs, but without a concomitant increase in female body size or clutch size. The reduced diel and seasonal activity at high altitudes may impose constraints on the maximum body size of adult frogs, by limiting the opportunity for energy accumulation. Simultaneously, producing larger eggs likely helps to increase the rate of embryonic development, causing tadpoles to hatch earlier. The gelatinous matrix surrounding eggs, more of which is produced by large females, may help buffer developing embryos from temperature fluctuations or offer protection from ultraviolet radiation. High‐altitude frogs on the Tibetan Plateau employ a reproductive strategy that favours large egg size independent of body size, which is unusual in amphibians. The harsh and unpredictable environmental conditions at high altitudes can thus impose strong and opposing selection pressures on adult and embryonic life stages, both of which can simultaneously influence fitness.  相似文献   

2.
Parental care benefits offspring through maternal effects influencing their development, growth and survival. However, although parental care in general is likely the result of adaptive evolution, it does not follow that specific differences in the maternal effects that arise from care are also adaptive. Here, we used an interspecific cross‐fostering design in the burying beetle species Nicrophorus orbicollis and N. vespilloides, both of which have elaborate parental care involving direct feeding of regurgitated food to offspring, to test whether maternal effects are optimized within a species and therefore adaptive. Using a full‐factorial design, we first demonstrated that N. orbicollis care for offspring longer regardless of recipient species. We then examined offspring development and mass in offspring reared by hetero‐ or conspecific parents. As expected, there were species‐specific direct effects independent of the maternal effects, as N. orbicollis larvae were larger and took longer to develop than N. vespilloides regardless of caregiver. We also found significant differences in maternal effects: N. vespilloides maternal care caused more rapid development of offspring of either species. Contrary to expectations if maternal effects were species‐specific, there were no significant interactions between caretaker and recipient species for either development time or mass, suggesting that these maternal effects are general rather than optimized within species. We suggest that rather than coadaptation between parents and offspring performance, the species differences in maternal effects may be correlated with direct effects, and that their evolution is driven by selection on those direct effects.  相似文献   

3.
Rollinson N  Hutchings JA 《Oecologia》2011,166(4):889-898
Positive associations between maternal investment per offspring and maternal body size have been explained as adaptive responses by females to predictable, body size-specific maternal influences on the offspring’s environment. As a larger per-offspring investment increases maternal fitness when the quality of the offspring environment is low, optimal egg size may increase with maternal body size if larger mothers create relatively poor environments for their eggs or offspring. Here, we manipulate egg size and rearing environments (gravel size, nest depth) of Atlantic salmon (Salmo salar) in a 2 × 2 × 2 factorial experiment. We find that the incubation environment typical of large and small mothers can exert predictable effects on offspring phenotypes, but the nature of these effects provides little support to the prediction that smaller eggs are better suited to nest environments created by smaller females (and vice versa). Our data indicate that the magnitude and direction of phenotypic differences between small and large offspring vary among maternal nest environments, underscoring the point that removal of offspring from the environmental context in which they are provisioned in the wild can bias experimentally derived associations between offspring size and metrics of offspring fitness. The present study also contributes to a growing literature which suggests that the fitness consequences of egg size variation are often more pronounced during the early juvenile stage, as opposed to the egg or larval stage.  相似文献   

4.
Life‐history theory predicts that females who experienced stressful conditions, such as larval competition or malnutrition, should increase their investment in individual offspring to increase offspring fitness (the adaptive parental hypothesis). In contrast, it has been shown that when females were reared under stressful conditions, they become smaller, which consequently decreases egg size (the parental stress hypothesis). To test whether females adjust their egg volume depending on larval competition, independent of maternal body mass constraint, we used a pest species of stored adzuki beans, Callosobruchus chinensis (L.) (Coleoptera: Chrysomelidae: Bruchinae). The eggs of females reared with competitors were smaller than those of females reared alone, supporting the parental stress hypothesis; however, correcting for female body size, females reared with competitors produced larger eggs than those reared in the absence of competition, supporting the adaptive parental hypothesis, as predicted. The phenotypic plasticity in females' investment in each offspring in stressful environments counteracts the constraint of body size on egg size.  相似文献   

5.
The safe harbor hypothesis includes the suggestion that parental care causes the embryonic stage to be the safest harbor, and, therefore, egg size will increase in populations with parental care to decrease the duration of subsequent, higher risk stages. Neither the safe habor hypothesis nor r and K theory seem adequate to explain the correlation between egg size and the presence/absence of parental care among salamanders, a group in which there is a further correlation between the larval (hatchling) habitat and egg size/parental care. Pond-breeding salamanders generally have small eggs and lack parental care, and stream-breeding salamanders generally have large eggs and parental care. I argue that the fundamental difference in the food available to hatchling salamanders between lentic (plankton-rich) and lotic (plankton-poor) environments selects for relatively lower parental investment in the lentic environment. From the standpoint of parental fitness, small (more numerous) hatchlings have a greater payoff where the available food is mall and dense (zooplankton in lentic environments), and large hatchlings are selectively advantageous where the food is of large size and less dense (benthic invertebrates in lotic environments). Selection for larger hatchlings in lotic environments results in longer embryonic periods and, ceteris paribus, greater total embryonic mortality. Embryo hiding and guarding have evolved among lotic-breeding salamanders as compensatory mechanisms to reduce the rate of embryonic mortality. In this view, parental care is a consequence of selection for larger egg size and not an umbrella that allows egg size to increase, contrary to the safe harbor hypothesis. The relationship between variance in parental investment and food available to offspring, developed here for salamanders, may be of general significance. YosiakiItô , a critic of r and K theory, independently arrived at a similar conclusion from a broader data base.  相似文献   

6.
In species with biparental care, sexual conflict occurs because the benefit of care depends on the total amount of care provided by the two parents while the cost of care depends on each parent's own contribution. Asynchronous hatching may play a role in mediating the resolution of this conflict over parental care. The sexual conflict hypothesis for the evolution of asynchronous hatching suggests that females adjust hatching patterns in order to increase male parental effort relative to female effort. We tested this hypothesis in the burying beetle Nicrophorus vespilloides by setting up experimental broods with three different hatching patterns: synchronous, asynchronous and highly asynchronous broods. As predicted, we found that males provided care for longer in asynchronous broods whereas the opposite was true of females. However, we did not find any benefit to females of reducing their duration of care in terms of increased lifespan or reduced mass loss during breeding. We found substantial negative effects of hatching asynchrony on offspring fitness as larval mass was lower and fewer larvae survived to dispersal in highly asynchronous broods compared to synchronous or asynchronous broods. Our results suggest that, even though females can increase male parental effort by hatching their broods more asynchronously, females pay a substantial cost from doing so in terms of reducing offspring growth and survival. Thus, females should be under selection to produce a hatching pattern that provides the best possible trade‐off between the benefits of increased male parental effort and the costs due to reduced offspring fitness.  相似文献   

7.
Parents can increase the fitness of their offspring by allocating nutrients to eggs and/or providing care for eggs and offspring. Although we have a good understanding of the adaptive significance of both egg size and parental care, remarkably little is known about the co-evolution of these two mechanisms for increasing offspring fitness. Here, we report a parental removal experiment on the burying beetle Nicrophorus vespilloides in which we test whether post-hatching parental care masks the effect of egg size on offspring fitness. As predicted, we found that the parent's presence or absence had a strong main effect on larval body mass, whereas there was no detectable effect of egg size. Furthermore, egg size had a strong and positive effect on offspring body mass in the parent's absence, whereas it had no effect on offspring body mass in the parent's presence. These results support the suggestion that the stronger effect of post-hatching parental care on offspring growth masks the weaker effect of egg size. We found no correlation between the number and size of eggs. However, there was a negative correlation between larval body mass and brood size in the parent's presence, but not in its absence. These findings suggest that the trade-off between number and size of offspring is shifted from the egg stage towards the end of the parental care period and that post-hatching parental care somehow moderates this trade-off.  相似文献   

8.
Nicrophorusvespilloides is a social beetle that rears its offspring on decomposing carrion. Wild beetles are frequently associated with two types of macrobial symbionts, mites, and nematodes. Although these organisms are believed to be phoretic commensals that harmlessly use beetles as a means of transfer between carcasses, the role of these symbionts on N. vespilloides fitness is poorly understood. Here, we show that nematodes have significant negative effects on beetle fitness across a range of worm densities and also quantify the density‐dependent transmission of worms between mating individuals and from parents to offspring. Using field‐caught beetles, we provide the first report of a new nematode symbiont in N. vespilloides, most closely related to Rhabditoides regina, and show that worm densities are highly variable across individuals isolated from nature but do not differ between males and females. Next, by inoculating mating females with increasing densities of nematodes, we show that worm infections significantly reduce brood size, larval survival, and larval mass, and also eliminate the trade‐off between brood size and larval mass. Finally, we show that nematodes are efficiently transmitted between mating individuals and from mothers to larvae, directly and indirectly via the carcass, and that worms persist through pupation. These results show that the phoretic nematode R. regina can be highly parasitic to burying beetles but can nevertheless persist because of efficient mechanisms of intersexual and intergenerational transmission. Phoretic species are exceptionally common and may cause significant harm to their hosts, even though they rely on these larger species for transmission to new resources. However, this harm may be inevitable and unavoidable if transmission of phoretic symbionts requires nematode proliferation. It will be important to determine the generality of our results for other phoretic associates of animals. It will equally be important to assess the fitness effects of phoretic species under changing resource conditions and in the field where diverse interspecific interactions may exacerbate or reduce the negative effects of phoresy.  相似文献   

9.
Inbreeding depression is defined as a fitness decline in progeny resulting from mating between related individuals, the severity of which may vary across environmental conditions. Such inbreeding‐by‐environment interactions might reflect that inbred individuals have a lower capacity for adjusting their phenotype to match different environmental conditions better, as shown in prior studies on developmental plasticity. Behavioural plasticity is more flexible than developmental plasticity because it is reversible and relatively quick, but little is known about its sensitivity to inbreeding. Here, we investigate effects of inbreeding on behavioural plasticity in the context of parent–offspring interactions in the burying beetle Nicrophorus vespilloides. Larvae increase begging with the level of hunger, and parents increase their level of care when brood sizes increase. Here, we find that inbreeding increased behavioural plasticity in larvae: inbred larvae reduced their time spent associating with a parent in response to the length of food deprivation more than outbred larvae. However, inbreeding had no effect on the behavioural plasticity of offspring begging or any parental behaviour. Overall, our results show that inbreeding can increase behavioural plasticity. We suggest that inbreeding‐by‐environment interactions might arise when inbreeding is associated with too little or too much plasticity in response to changing environmental conditions.  相似文献   

10.
We investigate the effect of offspring and maternal inbreeding on maternal and offspring traits associated with early offspring fitness in the burying beetle Nicrophorus vespilloides. We conducted two experiments. In the first experiment, we manipulated maternal inbreeding only (keeping offspring outbred) by generating mothers that were outbred, moderately inbred or highly inbred. Meanwhile, in the second experiment, we manipulated offspring inbreeding only (keeping females outbred) by generating offspring that were outbred, moderately inbred or highly inbred. In both experiments, we monitored subsequent effects on breeding success (number of larvae), maternal traits (clutch size, delay until laying, laying skew, laying spread and egg size) and offspring traits (hatching success, larval survival, duration of larval development and average larval mass). Maternal inbreeding reduced breeding success, and this effect was mediated through lower hatching success and greater larval mortality. Furthermore, inbred mothers produced clutches where egg laying was less skewed towards the early part of laying than outbred females. This reduction in the skew in egg laying is beneficial for larval survival, suggesting that inbred females adjusted their laying patterns facultatively, thereby partially compensating for the detrimental effects of maternal inbreeding on offspring. Finally, we found evidence of a nonlinear effect of offspring inbreeding coefficient on number of larvae dispersing. Offspring inbreeding affected larval survival and larval development time but also unexpectedly affected maternal traits (clutch size and delay until laying), suggesting that females adjust clutch size and the delay until laying in response to being related to their mate.  相似文献   

11.
Recent work has suggested that provisioning of eggs with certain critical nutrients could be a more meaningful measure of maternal investment and correlate of offspring fitness than traditional measures of egg size. The aim of our study was to assess variability in egg quality and larva quality and to identify connections between them and the implications for larval survival. Egg size, proximate composition, and fatty acid composition were measured for 40 batches of eggs from 8 captive pairs of red drum (Osteichthyes: Sciaenops ocellatus). We reared larvae from these batches of eggs to a common size (10 mm total length, 2-3 weeks posthatching) and assessed routine activity and escape response performance of 671 individuals. Egg fatty acid composition varied more than egg size or proximate composition. Concentrations of certain long chain, highly unsaturated essential fatty acids (e.g., arachidonic acid and docosahexaenoic acid) were the only egg traits that were significantly related to larva quality (measured as escape performance). Reduced escape performance of larvae from eggs with low fatty acid concentrations was not compensated by 3 weeks of feeding on a diet enriched with fatty acids, suggesting irreversible developmental effects. Since fatty acids in eggs originate from the maternal diet, offspring survival may be determined in part by availability of nutrient-rich prey to pre-spawning adults. Migrations, regime shifts, and exploitation of marine communities could operate through this mechanism to influence recruitment in fish populations. Our findings underscore the importance of non-genetic maternal contributions to egg quality and the linkage between environmental conditions experienced by adult females and offspring fitness.  相似文献   

12.
Inbreeding depression is the reduction in fitness caused by mating between related individuals. Inbreeding is expected to cause a reduction in offspring fitness when the offspring themselves are inbred, but outbred individuals may also suffer a reduction in fitness when they depend on care from inbred parents. At present, little is known about the significance of such intergenerational effects of inbreeding. Here, we report two experiments on the burying beetle Nicrophorus vespilloides, an insect with elaborate parental care, in which we investigated inbreeding depression in offspring when either the offspring themselves or their parents were inbred. We found substantial inbreeding depression when offspring were inbred, including reductions in hatching success of inbred eggs and survival of inbred offspring. We also found substantial inbreeding depression when parents were inbred, including reductions in hatching success of eggs produced by inbred parents and survival of outbred offspring that received care from inbred parents. Our results suggest that intergenerational effects of inbreeding can have substantial fitness costs to offspring, and that future studies need to incorporate such costs to obtain accurate estimates of inbreeding depression.  相似文献   

13.
Y. Carrière  D. A. Roff 《Oecologia》1995,102(3):389-396
Most models of parental investment in offspring assume a trade-off between propagule size and number, and an increasing concave down function relating offspring fitness to propagule size. In this study, we test these two fundamental assumptions, using three closely related species of crickets, Gryllus firmus, G. veletis, and G. pennsylvanicus. Egg weight, 35-day fecundity and 35-day egg biomass were estimated in a population of each species, and the relationships between these reproductive traits and date of egg laying and body size were estimated. The relationships between egg weight and offspring survival were also sought for eggs buried at different depths, soil moistures, and soil types (G. firmus and G. veletis), as well as in the field (G. pennsylvanicus). A trade-off between egg weight and 35-day fecundity was revealed in a multivariate analysis taking into account among-species variation in egg weight and body size. Independent of the environmental conditions affecting the eggs, a positive correlation existed between the number of larvae that emerged from the soil and propagule weight in each species. Therefore, these findings provide partial support for the assumptions considered in the models mentioned above. A single optimal egg size was favored in two out of the three sets of conditions in which the functions relating egg weight to larval survival could be derived. The conditions encountered by the eggs, however, influenced the average survival of the larvae, as well as the shape of the relationship between egg weight and offspring survival. This suggests that cricket eggs frequently face heterogeneous environments with respect to egg and hatchling survival; the implication of habitat heterogeneity on the evolution of an optimal egg size is considered. The relationships between the reproductive components and female age and size, as well as between egg size and variation in cricket life-history, are discussed in an ecological and evolutionary context.  相似文献   

14.
The trade‐off between offspring size and number can present a conflict between parents and their offspring. Because egg size is constrained by clutch size, the optimal egg size for offspring fitness may not always be equivalent to that which maximizes parental fitness. We evaluated selection on egg size in three turtle species (Apalone mutica, Chelydra serpentina and Chrysemys picta) to determine if optimal egg sizes differ between offspring and their mothers. Although hatching success was generally greater for larger eggs, the strength and form of selection varied. In most cases, the egg size that maximized offspring fitness was greater than that which maximized maternal fitness. Consistent with optimality theory, mean egg sizes in the populations were more similar to the egg sizes that maximized maternal fitness, rather than offspring fitness. These results provide evidence that selection has maximized maternal fitness to achieve an optimal balance between egg size and number.  相似文献   

15.
Host age is an important determinant of host acceptance and suitability for egg parasitoids. As host embryonic development advances, the quality of resources available to the parasitoid offspring typically declines, usually resulting in reduced acceptance levels by foraging females and lower offspring fitness. We examined the ability of the parasitoid Telenomus podisi Ashmead (Hymenoptera: Scelionidae) to parasitize and develop in Podisus maculiventris (Say) (Hemiptera: Pentatomidae) eggs of different ages. In laboratory experiments, we measured the effect of host age (6, 24, 48, 72, 96, or 120 h old) on parasitism rate and offspring fitness parameters such as survival, development time, sex ratio, and size. Contrary to our expectations, parasitism rate did not differ between host age treatments, nor did sex ratio allocation, offspring size, or the fecundity of newly emerged female offspring. However, parasitoid offspring had a longer development time with increasing host age. This trend was stronger for males than for females, which we suggest could reduce the degree of protandry among offspring emerging from older host eggs, thus increasing the rate of virginity upon leaving the emergence patch and resulting in more frequent off‐patch mating by female offspring in nature. Overall, our results suggest that all stages of P. maculiventris embryonic development are suitable for acceptance and development of T. podisi. Unlike most species of egg parasitoids, T. podisi has evolved mechanisms to utilize host resources, regardless of host developmental stage, with relatively minor fitness consequences.  相似文献   

16.
Bet hedging at reproduction is expected to evolve when mothers are exposed to unpredictable cues for future environmental conditions, whereas transgenerational plasticity (TGP) should be favoured when cues reliably predict the environment offspring will experience. Since climate predictions forecast an increase in both temperature and climate variability, both TGP and bet hedging are likely to become important strategies to mediate climate change effects. Here, the potential to produce variably sized offspring in both warming and unpredictable environments was tested by investigating whether stickleback (Gasterosteus aculeatus) mothers adjusted mean offspring size and within‐clutch variation in offspring size in response to experimental manipulation of maternal thermal environment and predictability (alternating between ambient and elevated water temperatures). Reproductive output traits of F1 females were influenced by both temperature and environmental predictability. Mothers that developed at ambient temperature (17 °C) produced larger, but fewer eggs than mothers that developed at elevated temperature (21 °C), implying selection for different‐sized offspring in different environments. Mothers in unpredictable environments had smaller mean egg sizes and tended to have greater within‐female egg size variability, especially at 21 °C, suggesting that mothers may have dynamically modified the variance in offspring size to spread the risk of incorrectly predicting future environmental conditions. Both TGP and diversification influenced F2 offspring body size. F2 offspring reared at 21 °C had larger mean body sizes if their mother developed at 21 °C, but this TGP benefit was not present for offspring of 17 °C mothers reared at 17 °C, indicating that maternal TGP will be highly relevant for ocean warming scenarios in this system. Offspring of variable environment mothers were smaller but more variable in size than offspring from constant environment mothers, particularly at 21 °C. In summary, stickleback mothers may have used both TGP and diversified bet‐hedging strategies to cope with the dual stress of ocean warming and environmental uncertainty.  相似文献   

17.
Various models that assume correlations between maternal phenotype and offspring environment predict adaptive variation in egg size within populations. Here we conduct a comparative test of these models using published data on fish egg size. Intrapopulation variation in egg size was most pronounced in fish with demersal eggs and larvae (median coefficient of variation [CV] at family level = 6.5%), where offspring environment is likely influenced by maternal phenotype, and least so in fish with pelagic eggs (CV = 3.6%), which experience a relatively stochastic spatial distribution during incubation. This difference was significant at various taxonomic levels, was robust to variation in mean egg size and habitat (i.e., freshwater or marine), and was mirrored in independent paired contrasts. Fish with demersal eggs and pelagic larvae were not significantly different from those with pelagic eggs (CV = 3.8%), indicating that selection favoring within-population variation in egg size occurs mainly posthatching and that any such selection occurring prehatching may be less intense. These results suggest that patterns of within-population variation in egg size among fish taxa reflect adaptive processes and that maternal effects on the egg size-fitness function may explain apparent discrepancies from the single-optima Smith-Fretwell model.  相似文献   

18.
Little is known about how inbreeding alters selection on ecologically relevant traits. Inbreeding could affect selection by changing the distribution of traits and/or fitness, or by changing the causal effect of traits on fitness. Here, I test whether selection on egg size varies with the degree of inbreeding in the seed‐feeding beetle, Stator limbatus. There was strong directional selection favoring large eggs for both inbred and outbred beetles; offspring from smaller eggs had lower survivorship on a resistant host. Inbreeding treatment had no effect on the magnitude of selection on egg size; all selection coefficients were between ~0.078 and 0.096, regardless of treatment. However, inbreeding depression declined with egg size; this is because the difference in fitness between inbreds and outbreds did not change, but average fitness increased, with egg size. A consequence of this is that populations that differ in mean egg size should experience different magnitudes of inbreeding depression (all else being equal) and thus should differ in the magnitude of selection on traits that affect mating, simply as a consequence of variation in egg size. Also, maternal traits (such as egg size) that mediate stressfulness of the environment for offspring can mediate the severity of inbreeding depression.  相似文献   

19.
When size‐dependent contests over resources influence reproductive success, the trade‐off between number and size of offspring depends on the frequency of contests. Under these circumstances, clutch size should decrease and offspring size should increase as contests become more frequent. We tested these predictions with the burying beetle Nicrophorus pustulatus through manipulation of rearing densities. Burying beetles reproduce on small vertebrate carcasses, a rare but high quality food source for the larvae. Large beetles are more likely to win contests over carcasses and gain exclusive access to a carcass. The winner of a contest kills eggs and larvae already present on a carcass. As a result of the rarity of carcasses, burying beetles are unlikely to breed more than once. As predicted, brood size of N. pustulatus decreased with increasing rearing density. Despite a negative correlation between brood size and larval mass, larval mass did not increase with increasing rearing density. This may be due to the special biology of N. pustulatus which can use snake eggs for reproduction. Potentially larger supply of resources and generally small population densities of N. pustulatus may weaken selection on body size and thus the correlation between brood size and larval mass. As size‐dependent constraints can limit reproductive phenotypes, we examined whether female size influenced reproductive phenotype. Small females produced larger broods with smaller, but more variable, offspring than large females. Mechanical constraints of egg size seem an unlikely explanation for the differences because burying beetles can compensate for small egg size through parental care. Energetic constraints may impact small females because body mass and brood size of small females decreased with increasing density. Yet, at all density levels small females produced larger, not smaller, broods than large females. The larger and more variable broods of small females seem to be in agreement with a bet‐hedging strategy.  相似文献   

20.
The optimal balance of reproductive effort between offspring size and number depends on the fitness of offspring size in a particular environment. The variable environments offspring experience, both among and within life-history stages, are likely to alter the offspring size/fitness relationship and favor different offspring sizes. Hence, the many environments experienced throughout complex life-histories present mothers with a significant challenge to optimally allocate their reproductive effort. In a marine annelid, we tested the relationship between egg size and performance across multiple life-history stages, including: fertilization, larval development, and post-metamorphosis survival and size in the field. We found evidence of conflicting effects of egg size on performance: larger eggs had higher fertilization under sperm-limited conditions, were slightly faster to develop pre-feeding, and were larger post-metamorphosis; however, smaller eggs had higher fertilization when sperm was abundant, and faster planktonic development; and egg size did not affect post-metamorphic survival. The results indicate that egg size effects are conflicting in H. diramphus depending on the environments within and among life-history stages. We suggest that offspring size in this species may be a compromise between the overall costs and benefits of egg sizes in each stage and that performance in any one stage is not maximized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号