首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Evandro Fei Fang 《FEBS letters》2010,584(18):4089-4096
A pumpkin 2S albumin with ribonuclease (RNase) activity was purified from pumpkin seeds (Cucurbita sp.) by liquid chromatographic techniques. It manifested potent RNase activity toward baker’s yeast RNA and calf liver RNA, and some polyhomoribonucleotides, including poly(A), poly(U) and poly(C) but not poly(G). Moreover, it was able to hydrolyze total RNA of both animal and plant origins. Ions such as Na+, Mg2+, Ca2+, and Zn2+ inhibited its RNase activity. Since RNase activity has not been previously reported in 2S albumins, this work may shed further light on the biological importance of this group of proteins.  相似文献   

2.
Since its initial characterization, Escherichia coli RNase I has been described as a single-strand specific RNA endonuclease that cleaves its substrate in a largely sequence independent manner. Here, we describe a strong calcium (Ca2+)-dependent activity of RNase I on double-stranded RNA (dsRNA), and a Ca2+-dependent novel hybridase activity, digesting the RNA strand in a DNA:RNA hybrid. Surprisingly, Ca2+ does not affect the activity of RNase I on single stranded RNA (ssRNA), suggesting a specific role for Ca2+ in the modulation of RNase I activity. Mutation of a previously overlooked Ca2+ binding site on RNase I resulted in a gain-of-function enzyme that is highly active on dsRNA and could no longer be stimulated by the metal. In summary, our data imply that native RNase I contains a bound Ca2+, allowing it to target both single- and double-stranded RNAs, thus having a broader substrate specificity than originally proposed for this traditional enzyme. In addition, the finding that the dsRNase activity, and not the ssRNase activity, is associated with the Ca2+-dependency of RNase I may be useful as a tool in applied molecular biology.  相似文献   

3.
Kostyuk  E.  Pinchenko  V.  Kostyuk  P. 《Neurophysiology》2002,34(2-3):158-160
Earlier, considerable prolongation of the depolarization-induced Ca2+ transients was demonstrated in primary sensory neurons of rats with streptozotocin (STZ)-induced diabetes mellitus. To analyze the nature of this effect, we examine possible changes in the characteristics of voltage-operated calcium channels. Neither the amplitude of Ca2+ currents provided by both high- and low-voltage activated calcium channels nor the respective current densities significantly changed within the early stages of diabetes mellitus. In rats treated with nimodipine, also no significant changes in the calcium channel activity were observed. Only in the case of a decrease in the external calcium concentration was some drop in the Ca2+ current amplitude observed. We conclude that within the early stages of diabetes mellitus there are no significant modifications in the structure of the membrane of primary sensory neurons manifested in the expression of Ca2+ channels, which might be responsible for the observed rapidly occurring changes in calcium signalling, cytosolic Ca2+ accumulation, and synaptic plasticity.  相似文献   

4.
Purification and Properties of a Ribonuclease from Cowpea Cotyledons   总被引:3,自引:0,他引:3  
The isolation and characterisation of cotyledonary ribonucleases (RNase; EC 3.1.27.1), are basic steps to understand the physiology and biochemistry of RNA turnover and mobilisation during seed germination and seedling establishment, as well as how environmental stresses affect them. RNase was isolated and purified 928-fold, to apparent electrophoretic homogeneity from 5-d-old seedlings of Vigna unguiculata. It is a protein with an apparent molecular mass of 16 kDa having three major isoforms. Its optimum pH is 5.8, which decreases to 5.2 in presence of KCl. It has an apparent Km of 0.80 mg RNA cm-3 and retains 40 % of its activity when heated to 80 °C. It is completely inhibited by Cu2+, Hg2+ and Zn2+ and is almost insensitive to Mg2+, Ca2+- and EDTA. Urea, Fe2+, Co2+ and 2-mercaptoethanol partially inhibit its activity. Its amino acid composition shows a resem lance to that of other plant RNases. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
Pitiúba cowpea [Vigna unguiculata (L.) Walp] seeds were germinated in distilled water (control treatment) or in 100 mM NaCl solution (salt treatment), and RNase was purified from different parts of the seedlings. Seedling growth was reduced by the NaCl treatment. RNase activity was low in cotyledons of quiescent seeds, but the enzyme was activated during germination and seedling establishment. Salinity reduced cotyledon RNase activity, and this effect appeared to be due to a delay in its activation. The RNases from roots, stems, and leaves were immunologically identical to that found in cotyledons. Partially purified RNase fractions from the different parts of the seedling showed some activity with DNA as substrate. However, this DNA hydrolyzing activity was much lower than that of RNA hydrolyzing activity. The DNA hydrolyzing activity was strongly inhibited by Cu2+, Hg2+, and Zn2+ ions, stimulated by MgCl2, and slowly inhibited by EDTA. This activity from the most purified fraction was inhibited by increasing concentrations of RNA in the reaction medium. It is suggested that the major biological role of this cotyledon RNase would be to hydrolyze seed storage RNA during germination and seedling establishment, and it was discussed that it might have a protective role against abiotic stress during later part of seedling establishment.  相似文献   

6.
H. Morita  M. Shiozawa  Y. Fujio 《Mycoscience》2002,43(4):0283-0287
Rhizopus oryzae IFO 4697 was found to produce intracellular ribonuclease (RNase), and its growth and activity could be regulated under selected metal ion stress. The addition of Fe2+, Mg2+ and Zn2+ to the SLSR medium was essential to growth and RNase production. Ca2+ and Mo6+ stimulated RNase production. It is concluded that the addition of 100 mg/ml Ca2+, 5 mg/ml Mo6+, 0.7 mg/ml Zn2+, 2 mg/ml Fe2+, and 49 mg/ml Mg2+ to the SLSR medium was the best condition for producing RNase in high specific activity (3780 U/mg protein). This result indicates that a metal ion-regulated liquid medium is an efficient culture method for RNase production. Received: July 19, 2001 / Accepted: April 8, 2002  相似文献   

7.
Concentrations of adenine and pyridine nucleotides and the associated charge values were examined in extracts of mycelium of Penicillium notatum during vegetative growth and reproductive development promoted by the addition of Ca2+ (10 mmol dm-3). The significant increase in adenylate energy charge promoted by Ca2+ was due to a fall in intracellular AMP and a concomitant rise in ATP concentration. Intracellular concentrations of NADH and NAD fell within 1 h of the addition of Ca2+. The catabolic reduction charge was unchanged by Ca2+ whilst the anabolic reduction charge increased in Ca2+-induced mycelium due to lowered intracellular NADP concentration. Reduced concentration of NADPH in Ca2+-induced mycelium, relative to the vegetative controls, lowered the phosphorylated nucleotide fraction. The results are discussed in relation to metabolic economy during morphogenesis in P. notatum.  相似文献   

8.
A role for cytosolic free Ca2+ (Ca2+i) in the regulation of growth of Papaver rhoeas pollen tubes during the self-incompatibility response has recently been demonstrated [Franklin-Tong et al. Plant J. 4:163–177 (1993); Franklin-Tong et al. Plant J. 8:299–307 (1995); Franklin-Tong et al. submitted to Plant J.]. We have investigated the possibility that Ca2+i is more generally involved in the regulation of pollen tube growth using confocal laser scanning microscopy (CLSM). Data obtained using Ca2+ imaging, in conjunction with photolytic release of caged inositol 1,4,5-trisphosphate [Ins(1,4,5)P3], point to a central role of the phosphoinositide signal transduction pathway in the control of Ca2+ fluxes and control of pollen tube growth. These experiments further revealed that increases in cytosolic levels of Ins(1,4,5)P3 resulted in the formation of distinct Ca2+ waves. Experiments using the pharmacological agents heparin, neomycin and mastoparan further indicated that Ca2+ waves are propagated, at least in part, by Ins(1,4,5)P3-induced Ca2+ release rather than by simple diffusion or by “classic” Ca2+-induced Ca2+ release mechanisms. We also have data which suggest that Ca2+ waves and oscillations may be induced by photolytic release of caged Ca2+. Ratio-imaging has enabled us to identify an apical oscillating Ca2+ gradient in growing pollen tubes, which may regulate normal pollen tube growth. We also present evidence for the involvement of Ca2+ waves in mediating the self-incompatibility response. Our data suggest that changes in Ca2+i and alterations in growth rate/patterns are likely to be closely correlated and may be causally linked to events such as Ca2+-induced, or Ins(1,4,5)P3-induced wave formation and apical Ca2+ oscillations.Presented at the 1997 SEB Annual Meeting: Interactive MultiMedia Biology - Experimental Biology Online Symposium, Canterbury, 7-11 April  相似文献   

9.
DNase I and proteinase K are two enzymes commonly used in the purification of highly polymerized RNA. In the presence of EDTA DNase I is rapidly inactivated by proteinase K while in 10 mm Ca2+ DNase is totally immune to proteinase K inactivation even at protease concentrations of up to 1 mg/ml. RNase A, a common contaminant of “RNase-free” DNase was inactivated by proteinase K in the presence or absence of Ca2+. Treatment of DNase I with proteinase K in the presence of Ca2+ selectively removed RNase A activity as judged by rRNA and poly(A+ RNA ribosomal RNA degradation monitored by sucrose gradient centrifugation. These results suggest that (i) DNase A and proteinase K can be used together in the presence of Ca2+ to obtain better digestion of nucleoprotein complexes, and (ii) proteinase K treatment of Ca2+ DNase can be used to selectively remove contaminating RNase.  相似文献   

10.
The objective of this study was to examine whether S-RNase plays a specific role in the pre-germinated Pyrus pollen. Effects of exogenous RNase and endogenous S-RNase on concentration of cytosolic-free calcium ([Ca2+]i) variation of pre-germinated Pyrus pollen were studied. [Ca2+]i variation caused by different RNases were complex. In 1 h after being cultured, exogenous RNase, RNase T1 and RNase A, and endogenous incompatible ‘Hohsui’ RNase promoted the [Ca2+]i of ‘Hohsui’ pollen. Acid proteins of ‘Hohsui’ had no remarkable influence on the [Ca2+]i of self-pollen. Endogenous compatible ‘Kohsui’ RNase reduced the [Ca2+]i of ‘Hohsui’ pollen, but compatible ‘Hohsui’ RNase can stimulate the [Ca2+]i of ‘Kohsui’ pollen. RNase T1, RNase A and incompatible ‘Kohsui’ S-RNase can also make ‘Kohsui’ pollen [Ca2+]i increase. Different from ‘Hohsui’ pollen, acid proteins of ‘Hohsui’ pull down the ‘Kohsui’ pollen [Ca2+]i remarkably. Conclusion can be made that during the prophase of pollen germination, endogenous S-RNase has no specific effect on pollen [Ca2+]i changes.  相似文献   

11.
Bacillus megaterium accumulated 3-phosphoglycerate during sporulation which was utilized during spore germination. During sporulation a protein was synthesized before or at the start of 3-phosphoglycerate accumulation inside the developing spores about 1.5 h before dipicolinic acid accumulation. This protein has an affinity for Mn2+ and other divalent metal ions and inhibits phosphoglycerate mutase activity which has been shown to require Mn2+ However, the levels of the inhibitor decreased considerably (75–85%) during spore germination. No appreciable amount of the inhibitor was detected in the vegetable cell and mother cell compartment; however, the forespore compartment possesses an activity comparable to that of dormant spores. The partially purified inhibitor has a molecular weight of 11,000 and possesses both high and low affinity binding sites for Mn2+ and Ca2+ as determined by Scatchard plot analysis.  相似文献   

12.
The levels of the enzyme ribonuclease (RNase) were determined in primary leaves of Phaseolus vulgaris in an attempt to correlate changes in RNA with maturation and senescence. RNase, RNA and chlorophyll levels increased in expanding and maturing tissue and subsequently declined in senescing tissue. Senescence of the primary leaves started with the onset of flowering. A simultaneous increase of RNA and RNase in maturing tissue and a decrease during senescence suggests that the enzyme activity is correlated with the rate of‘turnover’of RNA rather than the absolute levels of RNA present in the tissue.  相似文献   

13.
Complementary DNA sequences were isolated from a library of cloned Arabidopsis leaf mRNA sequences in gt10 that encoded a 21.7 kDa polypeptide (CaBP-22), which shared 66% amino acid sequence identity with Arabidopsis calmodulin. The putative Ca2+-binding domains of CaBP-22 and calmodulin, however, were more conserved and shared 79% sequence identity. Ca2+ binding by CaBP-22, which was inferred from its amino acid sequence similarity with calmodulin, was demonstrated indirectly by Ca2+-induced mobility shifting of in vitro translated CaBP-22 during SDS-polyacrylamide gel electrophoresis. CaBP-22 is encoded by a ca. 0.9 kb mRNA that was detected by northern blotting of leaf poly(A)+ RNA; this mRNA was slightly larger than the 809 bp CaBP-22 cDNA insert, indicating that the deduced amino acid sequence of CaBP-22 is near full-length. CaBP-22 mRNA was detected in RNA fractions isolated from leaves of both soil-grown and hydroponically grown Arabidopsis, but below the limits of detection in RNA isolated from roots, and developing siliques. Thus, CaBP-22 represents a new member of the EF-hand family of Ca2+-binding proteins with no known animal homologue and may participate in transducing Ca2+ signals to a specific subset of response elements.  相似文献   

14.
A study has been made on the influence of indole-3-acetic acid (IAA) on the ribonuclease (RNase) activity in wheat coleoptile sections and green pea stem sections. The hormonal effects on the enzyme activity, ribonncleic acid (RNA) metabolism and growth have been compared. Addition of 10?5M IAA to the plant sections causes their RNase activity to decrease and their elongation to increase. Removal of the added IAA results in increasing enzyme activity and decreasing growth. The altered enzyme activities are paralleled by opposite changes in the RNA net synthesis. Administration of crystalline RNase to the plant tissue depresses growth. There is thus evidence that the in vivo effect of IAA on the RNase activity is of importance for the hormonal regulation of RNA metabolism and growth. The IAA-induced reduction in the enzyme activity involves cellular metabolism. The effect can be suspended by means of p-chloromercuribenzoate. A possible mechanism for the reduction is discussed.  相似文献   

15.
16.
Incubation of radish (Raphanus sativus L.) seeds in the presence of 1 or Smol m?3 Ca-EGTA, which increased Ca2+ activity in the incubation medium (c. 0.24 or 0.37 mol m?3 at 24 h with respect to c. 0.13 mol m?3 in the control), did not affect germination, the restoration of K+ net influx, the increase in DNA and RNA levels or protein synthesis. Incubation in 1 mol m?3 Na-EGTA, which reduced Ca2+ activity in the incubation medium (20 mmol m?3 at 24 h), decreased the total Ca2+ level in embryo axes (-21%), but only slightly inhibited the increase in fresh weight without affecting the restoration of K+ net influx, the increase in DNA and RNA levels or protein synthesis. In the presence of 5 mol m?3 Na-EGTA (Ca2+ activity in the incubation medium was 0.6 mmol m?3), the decrease in the total Ca2+ level was greater (c. -27%) and the increases in fresh weight, DNA and RNA were inhibited by about 50, 39 and 40%, respectively. These results indicate that increased Ca2+ availability does not affect germination and suggest that the effect of Na-EGTA, at least up to 5 mol m?3, is a result of an induction of Ca2+ deficiency. The amount and specific activity of calmodulin (CaM) present in the soluble fraction (100 000g) of radish embryo axes greatly increased during the first 24 h of incubation (c. 5-fold and 7-fold, respectively). This increase was very similar in the Ca-EGTA-treated seeds but was inhibited (c. -38%) by 1 mol m?3 Na-EGTA, even if the increases in DNA and RNA levels and protein synthesis were not significantly reduced. The lower amount of CaM after 24 h of incubation in 1 mol m?3 Na-EGTA (c. -30%) was due to a reduction in the fraction of CaM bound to a proteinaceous CaM inhibitor present in radish seeds [M. Cocucci & N. Negrini (1988) Plant Physiology 88, 910–914] and not involved in the metabolic reactivation of the seed. These results suggest that the level of CaM is controlled by Ca2+ availability and that the CaM inhibitor has a role in controlling the amount of Ca-CaM available for the Ca-CaM-dependent enzymes.  相似文献   

17.
18.
RNase activity from Chlorella was partially purified. Two RNase activities were demonstrated, one soluble and the other ribosomal. The effects on ribonuclease activity of variations in pH and temperature, and of Mg2+, Na+, and mononucleotides were examined. The RNase activities (phosphodiesterases EC 3.1.4.23) were both endonucleolytic, releasing oligonucleotides, and cyclic nucleotide intermediates, but exhibited different specificities in releasing mononucleotides from RNA. The ribosomal activity released 3′-GMP, and after prolonged incubation 3′-UMP, but the soluble activity released 3′-GMP, 3′-AMP and 3′-UMP. Neither ofthe RNase preparations hydrolysed DNA, nor released 5′-nucleotides from RNA. Increased ribosomal RNase activity was related to dissociation of ribosomes, and latency of ribosomal RNase activity was demonstrated. The possible in vivo distribution of RNases is discussed.  相似文献   

19.
A brief review of the genetic studies on ribonuclease P (RNase P) fromEscherichia coli is presented. Temperature-sensitive mutants ofE. coli defective in tRNA processing were isolated by screening cells which were unable to synthesize a suppressor tRNA at restrictive temperature. Structural analysis of accumulated tRNA precursors showed that the isolated mutants were defective in RNase P activity. Analyses of the mutants revealed that the enzyme is essential for the synthesis of all tRNA molecules in cells and that the enzymes consists of two subunits. Analyses of the isolated mutants revealed a possible domain structure of the RNA subunit of the enzyme.Abbreviations E. coli Escherichia coli - RNase P ribonuclease P  相似文献   

20.
Ribonuclease P (RNase P) is a key enzyme involved in tRNA biosynthesis. It catalyses the endonucleolytic cleavage of nearly all tRNA precursors to produce 5-end matured tRNA. RNase P activity has been found in all organisms examined, from bacteria to mammals. Eubacterial RNase P RNA is the only known RNA enzyme which functionsin trans in nature. Similar behaviour has not been demonstrated in RNase P enzymes examined from archaebacteria or eukaryotes. Characterisation of RNase P enzymes from more diverse eukaryotic species, including the slime moldDictyostelium discoideum, is useful for comparative analysis of the structure and function of eukaryotic RNase P.Abbreviations RNase P ribonuclease P - MN micrococcal nuclease  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号