首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nonprotein amino acid furanomycin was found to bind with Escherichia coli isoleucyl-tRNA synthetase (IleRS) almost as tightly as the substrate L-isoleucine. The conformation of furanomycin bound to the enzyme was determined by NMR analyses including the transferred nuclear Overhauser effect method. The conformation of IleRS-bound furanomycin was similar to that of L-isoleucine, although the chemical structure of furanomycin is unlike that of L-isoleucine. By E. coli IleRS, E. coli tRNAIle was charged with furanomycin as efficiently as with L-isoleucine. Furthermore, furanomycyl-tRNAIle was bound to polypeptide chain elongation factor Tu as tightly as isoleucyl-tRNAIle. Furanomycin was found to be incorporated into beta-lactamase precursor by in vitro protein biosynthesis. A newly designed amino acid will probably be incorporated into proteins, provided that the new amino acid takes a similar conformation as a protein-constituting amino acid in the active site of an aminoacyl-tRNA synthetase.  相似文献   

2.
A. C. Borstlap 《Planta》1981,151(4):314-319
The joint action of L-valine and L-isoleucine, L-leucine and L-isoleucine, and L-valine and L-leucine on the growth of Spirodela polyrhiza was established. The effect of one branched-chain amino acid on growth inhibition by another one was compared with the non-specific antagonisms which glycine and L-alanine exert on growth inhibition by singly supplied branched-chain amino acids. In this way specific and non-specific interactions could be distinguished. It appeared that: (1) L-isoleucine was a specific antagonist of L-valine; (2) L-leucine was a specific antagonist of L-isoleucine; (3) L-valine and L-leucine were synergistic growth inhibitors. Further, it was found that: (4) growth inhibition by L-leucine was specifically antagonized by simultaneously supplied L-valine and L-isoleucine; (5) an excess of L-isoleucine strongly inhibited the conversion of exogenous valine into leucine; (6) accumulation of valine was typical of isoleucine-induced growth inhibition. The results are consistent with the view that growth inhibition by L-valine and L-leucine is due to the blocking of acetohydroxy acid synthetase, the first common enzyme in the valine-isoleucine biosynthetic pathway. Growth inhibition by L-isoleucine, however, seems to result from inhibition of leucine synthesis at a step after 2-oxoisovaleric acid. Some aspects of the regulation of branched-chain amino acid biosynthesis in higher plants are discussed.  相似文献   

3.
4.
Bacteria possess amino acid export systems, and Corynebacterium glutamicum excretes L-isoleucine in a process dependent on the proton motive force. In order to identify the system responsible for L-isoleucine export, we have used transposon mutagenesis to isolate mutants of C. glutamicum sensitive to the peptide isoleucyl-isoleucine. In one such mutant, strong peptide sensitivity resulted from insertion into a gene designated brnF encoding a hydrophobic protein predicted to possess seven transmembrane spanning helices. brnE is located downstream of brnF and encodes a second hydrophobic protein with four putative membrane-spanning helices. A mutant deleted of both genes no longer exports L-isoleucine, whereas an overexpressing strain exports this amino acid at an increased rate. BrnF and BrnE together are also required for the export of L-leucine and L-valine. BrnFE is thus a two-component export permease specific for aliphatic hydrophobic amino acids. Upstream of brnFE and transcribed divergently is an Lrp-like regulatory gene required for active export. Searches for homologues of BrnFE show that this type of exporter is widespread in prokaryotes but lacking in eukaryotes and that both gene products which together comprise the members of a novel family, the LIV-E family, generally map together within a single operon. Comparisons of the BrnF and BrnE phylogenetic trees show that gene duplication events in the early bacterial lineage gave rise to multiple paralogues that have been retained in alpha-proteobacteria but not in other prokaryotes analyzed.  相似文献   

5.
The effects of L-valine and L-isoleucine on the composition of mycelial fatty acids were investigated during growth of differentiating parent strains of Streptomyces hygroscopicus and Streptomyces griseus as well as their non-differentiating derivatives (Amy-strains) on a synthetic medium. Both in the Amy+ and Amy- strains, in the presence of L-valine, the portion of the isopalmitic acid (iC16:0) increased, but the addition of L-isoleucine led to an elevated level of the 12-methyltetradecanoic acid (aC15:0). The results suggest that the genetically determined alterations in the ratio of both fatty acids in the non-differentiating derivatives may be due to specific changes in the biosynthetic pathways of both amino acid precursors rather than due to changes of their catabolism.  相似文献   

6.
Transport of L-valine by Actinomyces species 26-115, an organism producing actinomycin C depended on L-valine concentration in the medium and temperature and required a source of intrinsic energy. Km for L-valine transport was 3.5.10(-6)--6.0.10(-6) M. It somewhat differed from experiment to experiment. The above system transported also other neutral amino acids. L-isoleucine was a competing inhibitor of L-valine transport. The transport of L-valine was stereospecific. The activity of the transport system was regulated by the intracellular content of L-valine. Probably because of this the amino acid transport depended on the culture age, so far as the level of free valine in the mycelium at various stages of development was different.  相似文献   

7.
The aminoacyl-tRNA synthetases covalently link transfer RNAs to their cognate amino acids. Some of the tRNA synthetases have evolved editing mechanisms to ensure fidelity in this first step of protein synthesis. The amino acid editing site for leucyl- (LeuRS) and isoleucyl- (IleRS) tRNA synthetases reside within homologous CP1 domains. In each case, a threonine-rich peptide and a second conserved GTG region that are separated by about 100 amino acids comprise parts of the hydrolytic editing site. While a number of sites are conserved between these two enzymes and likely confer a commonality to the mechanisms, some positions are idiosyncratic to LeuRS or IleRS. Herein, we provide evidence that a conserved arginine and threonine at respective sites in LeuRS and IleRS diverged to confer amino acid substrate recognition. This site complements other sites in the amino acid binding pocket of the editing active site of Escherichia coli LeuRS, including Thr252 and Val338, which collectively fine-tune amino acid specificity to confer fidelity.  相似文献   

8.
Nordin BE  Schimmel P 《Biochemistry》2003,42(44):12989-12997
The genetic code depends on amino acid fine structure discrimination by aminoacyl-tRNA synthetases. For isoleucyl- (IleRS) and valyl-tRNA synthetases (ValRS), reactions that hydrolyze misactivated noncognate amino acids help to achieve high accuracy in aminoacylation. Two editing pathways contribute to aminoacylation fidelity: pretransfer and post-transfer. In pretransfer editing, the misactivated amino acid is hydrolyzed as an aminoacyl adenylate, while in post-transfer editing a misacylated tRNA is deacylated. Both reactions are dependent on a tRNA cofactor and require translocation to a site located approximately 30 A from the site of amino acid activation. Using a series of 3'-end modified tRNAs that are deficient in either aminoacylation, deacylation, or both, total editing (the sum of pre- and post-transfer editing) was shown to require both aminoacylation and deacylation activities. These and additional results with IleRS are consistent with a post-transfer deacylation event initiating formation of an editing-active enzyme/tRNA complex. In this state, the primed complex processively edits misactivated valyl-adenylate via the pretransfer route. Thus, misacylated tRNA is an obligatory intermediate for editing by either pathway.  相似文献   

9.
The rate of oxidation of L-[1-14C]leucine to 14CO2 by isolated rat hepatocytes is increased by pyruvate and dichloroacetate. This effect is specific for L-leucine, not being observed for L-valine, L-isoleucine, or D-leucine. Transamination, the rate-limiting step of L-leucine catabolism in the liver, is the site of stimulation, because uptake of L-leucine by the cells and the oxidation of its transamination product, alpha-ketoisocaproate, are not increased. Measurement of steady state levels of alpha-ketoisocaproate indicate that both pyruvate and dichloroacetate promote the transamination of L-leucine, thereby increasing the availability of substrate for decarboxylation by the alpha-ketoisocaproate dehydrogenase complex (EC 1.2.4.3). Pyruvate stimulation of transamination is secondary to the provision of keto acid acceptors for the amino group of L-leucine. The mechanism of the effect of dichloroacetate remains unknown.  相似文献   

10.
Aminoacyl-tRNA synthetases catalyze ATP-dependent covalent coupling of cognate amino acids and tRNAs for ribosomal protein synthesis. Escherichia coli isoleucyl-tRNA synthetase (IleRS) exploits both the tRNA-dependent pre- and post-transfer editing pathways to minimize errors in translation. However, the molecular mechanisms by which tRNAIle organizes the synthetic site to enhance pre-transfer editing, an idiosyncratic feature of IleRS, remains elusive. Here we show that tRNAIle affects both the synthetic and editing reactions localized within the IleRS synthetic site. In a complex with cognate tRNA, IleRS exhibits a 10-fold faster aminoacyl-AMP hydrolysis and a 10-fold drop in amino acid affinity relative to the free enzyme. Remarkably, the specificity against non-cognate valine was not improved by the presence of tRNA in either of these processes. Instead, amino acid specificity is determined by the protein component per se, whereas the tRNA promotes catalytic performance of the synthetic site, bringing about less error-prone and kinetically optimized isoleucyl-tRNAIle synthesis under cellular conditions. Finally, the extent to which tRNAIle modulates activation and pre-transfer editing is independent of the intactness of its 3′-end. This finding decouples aminoacylation and pre-transfer editing within the IleRS synthetic site and further demonstrates that the A76 hydroxyl groups participate in post-transfer editing only. The data are consistent with a model whereby the 3′-end of the tRNA remains free to sample different positions within the IleRS·tRNA complex, whereas the fine-tuning of the synthetic site is attained via conformational rearrangement of the enzyme through the interactions with the remaining parts of the tRNA body.  相似文献   

11.
Neurological dysfunction is common in patients with maple syrup urine disease (MSUD). However, the mechanisms underlying the neuropathology of this disorder are poorly known. In the present study we investigated the effect of acute hyperleucinemia on plasma and brain concentrations of amino acids. Fifteen-day-old rats were injected subcutaneously with 6 micromol L-leucine per gram body weight. Controls received saline in the same volumes. The animals were sacrificed 30--120 min after injection, blood was collected and their brain rapidly removed and homogenized. The amino acid concentrations were determined by HPLC using orthophtaldialdehyde for derivatization and fluorescence for detection. The results showed significant reductions of the large neutral amino acids (LNAA) L-phenylalanine, L-tyrosine, L-isoleucine, L-valine and L-methionine, as well as L-alanine, L-serine and L-histidine in plasma and of L-phenylalanine, L-isoleucine, L-valine and L-methionine in brain, as compared to controls. In vitro experiments using brain slices to study the influence of leucine on amino acid transport and protein synthesis were also carried out. L-Leucine strongly inhibited [14C]-L-phenylalanine transport into brain, as well as the incorporation of the [14C]-amino acid mixture, [14C]-L-phenylalanine and [14C]-L-lysine into the brain proteins. Although additional studies are necessary to evaluate the importance of these effects for MSUD, considering previous findings of reduced levels of LNAA in plasma and CSF of MSUD patients during crises, it may be speculated that a decrease of essential amino acids in brain may lead to reduction of protein and neurotransmiter synthesis in this disorder.  相似文献   

12.
L-]14C]Penicillamine is bound to RNA from rat liver in an in vitro reaction catalyzed by rat liver aminoacyl-tRNA synthetases. Addition of certain naturally occuring amino acids results in a significant decrease of L-penicillamine binding. The most potent inhibitor of this binding is L-valine, followed by L-isoleucine and L-threonine. Amino acids without structural relationship to L-penicillamine in the non-functional part of the molecule, such as L-phenylalanine, are ineffective. Studies on the competition of L-penicillamine and L-isoleucine, respectively, with L-valine demonstrate the high specificity of the aminoacylation reaction. They show that the change of L-penicillamine binding to tRNA Val is considerably lower than that of L-valine.  相似文献   

13.
Aspergillus oryzae protyrosinase (pro-TY) has a unique feature that the proenzyme is activated under conditions of acidic pH. The pro-TY was inactive at pH 7.0. The latent enzyme was activated at pH 3.0, and was slightly activated by sodium dodecyl sulfate (SDS). The molecular masses of the pro-TY and acid-activated tyrosinase (acid-TY) were 266 and 165 kDa, respectively, as estimated by gel-filtration chromatography. The CD spectra showed that the tertiary and/or quaternary structure was changed after the acid activation. On the basis of these results, we deduce that the intersubunit polar interaction is disrupted at pH 3.0, and that the tetrameric pro-TY dissociates to dimers. Tryptophan fluorescence spectra and binding assay of 8-anilino-1-naphthalene sulfonic acid (ANS) suggested that hydrophobic amino acid residues of the active site were exposed to solvent after acid treatment. It was likely that Cys108 formed an intermolecular disulfide bond between the subunits of dimeric acid-TY. The dimerization of acid-TY involving the intermolecular disulfide bond is essential for the activity.  相似文献   

14.
Both to demonstrate whether the predominant species are dipolar ion or the neutral form and to predict the change of dipolar form to neutral form ratio in ethanol-water mixtures, the macroscopic protonation constants of eight alpha-amino acid (glycine, L-alanine, L-valine, L-leucine, L-phenylalanine, L-serine, L-methionine, and L-isoleucine) were determined potentiometrically in 20-80% (v/v) ethanol-water mixtures at 25 degrees C with an ionic strength of 0.10 M. The calculation of the constants was carried out using a PKAS computer program. The effect of solvent composition on the protonation constants and the dipolar ionic to neutral form ratio of these acids in the mixed solvents are discussed. One can conclude that the dipolar form of amino acids, HA(+/-), dominates in ethanol-water mixtures.  相似文献   

15.
Mutants of Corynebacterium glutamicum were made and enzymatically characterized to clone ilvD and ilvE, which encode dihydroxy acid dehydratase and transaminase B, respectively. These genes of the branched-chain amino acid synthesis were overexpressed together with ilvBN (which encodes acetohydroxy acid synthase) and ilvC (which encodes isomeroreductase) in the wild type, which does not excrete L-valine, to result in an accumulation of this amino acid to a concentration of 42 mM. Since L-valine originates from two pyruvate molecules, this illustrates the comparatively easy accessibility of the central metabolite pyruvate. The same genes, ilvBNCD, overexpressed in an ilvA deletion mutant which is unable to synthesize L-isoleucine increased the concentration of this amino acid to 58 mM. A further dramatic increase was obtained when panBC was deleted, making the resulting mutant auxotrophic for D-pantothenate. When the resulting strain, C. glutamicum 13032DeltailvADeltapanBC with ilvBNCD overexpressed, was grown under limiting conditions it accumulated 91 mM L-valine. This is attributed to a reduced coenzyme A availability and therefore reduced flux of pyruvate via pyruvate dehydrogenase enabling its increased drain-off via the L-valine biosynthesis pathway.  相似文献   

16.
Semipermeable nylon-polyethylenimine artificial cells containing leucine dehydrogenase (EC 1.4.1.9), alcohol dehydrogenase (EC 1.1.1.1), urease (EC 3.5.1.5), and dextran-NAD+ were prepared. Artificial cells could convert ammonia or urea into L-leucine, L-valine, and L-isoleucine. For batch conversion in 20.0 mM of ammonium acetate substrate solutions, in 2 h 0.2 ml of artificial cells could produce 4.48 mumol of L-leucine, 9.98 mumol of L-valine, or 5.96 mumol of L-isoleucine. The corresponding conversion ratios were 22.4, 49.9, and 29.8%. In 20.0 mM of urea substrate solutions, 13.71 mumol of L-leucine, 16.12 mumol of L-valine, or 13.44 mumol of L-isoleucine was produced and the conversion ratios were 68.6, 80.6, and 67.2%. The substrate specificity of leucine dehydrogenase for the reductive amination was determined. Of the three branched-chain amino acids produced, the production rates of L-valine were the highest. The apparent Km values were as follows: 0.32 mM for alpha-ketoisocaproate, 1.63 mM for alpha-ketoisovalerate, and 0.73 mM for Dl-alpha-keto-beta-methyl-n-valerate. The leucine dehydrogenase multienzyme system had a good storage stability. It retained 72.0% of the original activity with artificial cells were stored at 4 degrees C for 6 weeks. The optimum conversion pH and temperature were 8.5-9.0 and 35-40 degrees C. The effects of urea and ammonium salts on conversion rate were also studied. The relative activities in ammonium salts solutions were 45.1-75.9% of those in urea solutions.  相似文献   

17.
In gramicidin S synthetase 2 (GS 2) from Bacillus brevis, L-proline, L-valine, L-ornithine, and L-leucine activations to aminoacyl adenylates are progressively inhibited by phenylglyoxal. The inactivation of GS 2 obeys pseudo-first-order kinetics. ATP completely prevents inactivation of GS 2 by phenylglyoxal, whereas amino acids only partially prevent it. In the presence of ATP, four arginine residues per mol of GS 2 are protected from modification by phenylglyoxal as determined by amino acid analysis and the incorporation of [7-14C]phenylgloxal into the enzyme protein, indicating that a single arginine residue is necessary for each amino acid activation. In isoleucyl tRNA synthetase from Escherichia coli, phenylglyoxal inhibits activation of L-isoleucine to isoleucyl adenylate. ATP completely prevents inactivation, although isoleucine only partially prevents it. One arginine residue of isoleucyl tRNA synthetase is protected by ATP from modification by phenylglyoxal, suggesting that a single arginine residue is essential for isoleucine activation. These results support the involvement of arginine residues in ATP binding with GS 2 or isoleucyl tRNA synthetase, and thus indicate that arginine residues of amino acid activating enzymes are essential for the formation of aminoacyl adenylates in both nonribosomal and ribosomal peptide biosynthesis.  相似文献   

18.
The free radicals produced by gamma-radiolysis of polycrystalline amino acids (L-valine, L-leucine, L-isoleucine and L-proline) at room temperature in the absence of air were investigated by spin trapping with 2-methyl-2-nitrosopropane (MNP). The spin adducts produced by dissolving the irradiated solids in aqueous MNP solutions were separated by high-performance liquid chromatography and then identified by e.s.r. Deamination (ring-opening reaction for L-proline) was observed for all amino acid. For L-valine and L-leucine, H-abstraction from the tertiary carbon in the side chains occurred. For isoleucine, H-abstractions from the alpha-carbon of the amino acid and from a non-terminal carbon in the side chain were found.  相似文献   

19.
The sulfonylurea herbicide sulfometuron methyl inhibits the growth of several bacterial species. In the presence of L-valine, sulfometuron methyl inhibits Salmonella typhimurium, this inhibition can be reversed by L-isoleucine. Reversal of growth retardation by L-isoleucine, accumulation of guanosine 5'-diphosphate 3'-diphosphate (magic spot), and relA mutant hypersensitivity suggest sulfometuron methyl interference with branched-chain amino acid biosynthesis. Growth inhibition of S. typhimurium is mediated by sulfometuron methyl's inhibition of acetolactate synthase, the first common enzyme in the branched-chain amino acid biosynthetic pathway. Sulfometuron methyl exhibits slow-binding inhibition of acetolactate synthase isozyme II from S. typhimurium with an initial Ki of 660 +/- 60 nM and a final, steady-state Ki of 65 +/- 25 nM. Inhibition of acetolactate synthase by sulfometuron methyl is substantially more rapid (10 times) in the presence of pyruvate with a maximal first-order rate constant for conversion from initial to final steady-state inhibition of 0.25 +/- 0.07 min-1 (minimal half-time of 2.8 min). Mutants of S. typhimurium able to grow in the presence of sulfometuron methyl were obtained. They have acetolactate synthase activity that is insensitive to sulfometuron methyl because of mutations in or near ilvG, the structural gene for acetolactate synthase isozyme II.  相似文献   

20.
Bromomethyl ketone derivatives of L-valine (VBMK), L-isoleucine (IBMK), L-norleucine (NleBMK) and L-phenylalanine (FBMK) were synthesized. These reagents were used for qualitative comparative labeling of Escherichia coli valyl-tRNA synthetase (ValRS), an enzyme with Val/Ile editing activity, in order to identify the binding sites for L-valine or noncognate amino acids. Labeling of E. coli ValRS with the substrate analog valyl-bromomethyl ketone (VBMK) resulted in a complete loss of valine-dependent isotopic [32P]PPi-ATP exchange activity. L-Valine protected the enzyme against inactivation. Noncognate amino acids analogs isoleucyl-, norleucyl- and phenylalanyl-bromomethyl ketones (IBMK, NleBMK and FBMK) were also capable of abolishing the activity of ValRS, FBMK being less efficient in inactivating the synthetase. Matrix-assisted laser desorption-ionization mass spectrometry designated cysteines 424 and 829 as the target residues of the substrate analog VBMK on E. coli ValRS, whereas, altogether, IBMK, NleBMK and FBMK labeled His266, Cys275, His282, His433 and Cys829, of which Cys275, His282 and His433 were labeled in common by all three noncognate amino-acid-derived bromomethyl ketones. With the exception of Cys829, which was most likely unspecifically labeled, the amino-acid residues labeled by the reagents derived from noncognate amino acids were distributed between two fragments 259-291 and 419-434 in the primary structure of E. coli ValRS. In fragment 419-434, Cys424 was specifically labeled by the substrate analog VBMK, while His433 was labeled in common by all the used bromomethyl ketone derivatives of noncognate amino acids, suggesting that the synthetic site where aminoacyl adenylate formation takes place on E. coli ValRS is built up of two subsites. One subsite containing Cys424 might represent the catalytic locus of the active center where specific L-valine activation takes place. The second subsite containing His433 might represent the binding site for noncognate amino acids. The fact that Cys275 and His282, fragment 259-291, were labeled by IBMK, NleBMK and FBMK, but not by the substrate analog VBMK, suggests that these residues might be located at or near the editing site of E. coli ValRS. Comparison of fragment 259-291 with all the available ValRS amino-acid sequences revealed that His282 is strictly conserved, with the exception of its replacement by a glycine in a subgroup corresponding to the archaebacteria. Because a nucleophile is needed in the editing site to achieve hydrolysis of an undesired product at the level of the carbonyl group thereof, it is proposed that the conserved His282 of E. coli ValRS is involved in editing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号