首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
2.
L-Isoaspartyl (D-aspartyl) O-methyltransferase (PCMT1) is a protein repair enzyme that initiates the conversion of abnormal D-aspartyl and L-isoaspartyl residues to the normal L-aspartyl form. In the course of this reaction, PCMT1 converts the methyl donor S-adenosylmethionine (AdoMet) to S-adenosylhomocysteine (AdoHcy). Due to the high level of activity of this enzyme, particularly in the brain, it seemed of interest to investigate whether the lack of PCMT1 activity might alter the concentrations of these small molecules. AdoMet and AdoHcy were measured in mice lacking PCMT1 (Pcmt1-/-), as well as in their heterozygous (Pcmt1+/-) and wild type (Pcmt1+/+) littermates. Higher levels of AdoMet and lower levels of AdoHcy were found in the brains of Pcmt1-/- mice, and to a lesser extent in Pcmt1+/- mice, when compared with Pcmt1+/+ mice. In addition, these levels appear to be most significantly altered in the hippocampus of the Pcmt1-/- mice. The changes in the AdoMet/AdoHcy ratio could not be attributed to increases in the activities of methionine adenosyltransferase II or S-adenosylhomocysteine hydrolase in the brain tissue of these mice. Because changes in the AdoMet/AdoHcy ratio could potentially alter the overall excitatory state of the brain, this effect may play a role in the progressive epilepsy seen in the Pcmt1-/- mice.  相似文献   

3.
The overall rates of S-adenosylmethionine (AdoMet)-dependent transmethylation were estimated in various tissues from the initial rate of S-adenosylhomocysteine (AdoHcy) plus AdoMet accumulation after blocking hydrolysis of AdoHcy. The rates were found to differ widely among the tissues of sheep and the highest rate was in the pancreas, being 600 times higher than that in the muscle. Sheep liver possessed approximately 75% of total-body capacity for transmethylation although the transmethylation rate was approximately half that in rat liver. The minimum estimate of daily requirement of AdoMet for transmethylation for adult sheep was approximately 18 mmol, far in excess of methionine intake. Methionine loading elevated AdoMet levels only in the tissues with a high or moderate rate of transmethylation. The kinetic properties of major methyltransferases in sheep liver along with tissue distribution of AdoMet and AdoHcy suggest that transmethylation rate is subject to physiological regulation by tissue levels of AdoMet and AdoHcy.  相似文献   

4.
Accumulation of S-adenosylhomocysteine (AdoHcy), the homocysteine (Hcy) precursor and a potent methyltransferase inhibitor, may mediate the neurological and vascular complications associated with elevated Hcy. Protein arginine methylation is a crucial post-translational modification and generates monomethylarginine (MMA) and dimethylarginine (asymmetric, ADMA, and symmetric, SDMA) residues. We aimed at determining whether protein arginine methylation status is disturbed in an animal model of diet-induced hyperhomocysteinemia (HHcy). HHcy was achieved by dietary manipulation of Wistar rats: methionine-enrichment (HM), B vitamins deficiency (LV), or both (HMLV). Total Hcy, S-adenosylmethionine (AdoMet), AdoHcy, MMA, ADMA and SDMA concentrations in plasma or tissues (heart, brain and liver) were determined by adequate high-performance liquid chromatography or liquid chromatography-electrospray ionization-tandem mass spectrometry methods. Moreover, in tissues from the HMLV group, histone arginine asymmetric dimethylation was evaluated by Western blotting, and the histone methylation marks H3R17me2a, H3R8me2a and H4R3me2a were studied. HHcy was induced by all special diets, with elevation of AdoHcy concentrations in liver (LV and HMLV) and heart (HMLV) (all versus control). Plasma ADMA levels were lower in all hyperhomocysteinemic animals. Protein-incorporated ADMA levels were decreased in brain and in heart (both for the LV and HMLV groups). Moreover, in brain of animals exposed to the HMLV diet, the H3R8me2a mark was profoundly decreased. In conclusion, our results show that diet-induced Hcy elevation disturbs global protein arginine methylation in a tissue-specific manner and affects histone arginine methylation in brain. Future research is warranted to disclose the functional implications of the global protein and histone arginine hypomethylation triggered by Hcy elevation.  相似文献   

5.
The target cytosines of (cytosine-5)-DNA methyltransferases in prokaryotic and eukaryotic DNA show increased rates of C-->T transition mutations compared to non-target cytosines. These mutations are induced either by the spontaneous deamination of 5-mC-->T generating inefficiently repaired G:T rather than G:U mismatches, or by the enzyme-induced C-->U deamination which occurs under conditions of reduced levels of S-adenosylmethionine (AdoMet) and S-adenosylhomocysteine (AdoHcy). We tested whether various inhibitors of (cytosine-5)-DNA methyltransferases analogous to AdoMet and AdoHcy would affect the rate of enzyme-induced deamination of the target cytosine by M.HpaII and M.SssI. Interestingly, we found two compounds, sinefungin and 5'-amino-5'-deoxyadenosine, that increased the rate of deamination 10(3)-fold in the presence and 10(4)-fold in the absence of AdoMet and AdoHcy. We have therefore identified the first mutagenic compounds specific for the target sites of (cytosine-5)-DNA methyltransferases. A number of analogs of AdoMet and AdoHcy have been considered as possible antiviral, anticancer, antifungal and antiparasitic agents. Our findings show that chemotherapeutic agents with affinities to the cofactor binding pocket of (cytosine-5)-DNA methyltransferase should be tested for their potential mutagenic effects.  相似文献   

6.
The concentrations of S-adenosylmethionine (AdoMet), S-adenosylhomocysteine (AdoHcy), and various methyltransferases were determined in the cerebrum, cerebellum, and liver of rats during development and aging. The liver contained from 3 to 7 and from 10 to 15 nmol AdoHcy per gram in young and adult rats, respectively. The AdoMet concentration was 60 to 90 nmol/g liver from rats of the same age and sex. It did not vary significantly with age. In the brain the AdoMet concentration was 45 to 50 nmol/g at birth and decreased to 20 nmol/ g tissue with maturity of the organ. The level of AdoHcy in this organ was less than 1 nmol/g tissue throughout the life-span of the rat. Since the ratio of AdoMet to AdoHcy is relatively high, the rate of methylation of histones, DNA, or phosphatidylethanolamine in the liver or brain was not significantly influenced by AdoHcy. Under normal nutritional conditions, the tissue concentration of AdoMet is far above the Km values of histone and phosphatidylethanolamine methyltransferases. The levels of activity of these enzymes in liver and brain did not correlated with the cellular concentration of AdoHcy. Thi histone methyltransferase activity was elevated in rapidly proliferating tissues and declined markedly in the absence of histone biosynthesis. Phosphatidylethanolamine methyltransferase activity was elevated during development of the liver. The specific activity of the AdoHcy hydrolase remained relatively constant in the rat brain and liver. The activity of this enzyme was 10 times higher in liver than in brain, yet the concentration of AdoHcy was much lower in the latter organ. The tissue levels of this compound are evidently dependent on the rates of removal of homocysteine and adenosine. Adenosine deaminase was present in the liver and brain at relatively high concentrations, particularly during development.  相似文献   

7.
Administration of methionine sulfoximine (MSO) to rats and mice significantly decreased cerebral levels ofS-adenosyl-l-homocysteine (AdoHcy). Concurrent administration of methionine prevented this decrease and, when methionine was given alone, significantly elevated AdoHcy levels resulted in both species. Regionally, AdoHcy levels varied from 20 nmol/g in rat cerebellum and spinal cord to about 60 nmol/g in hypothalamus and midbrain. MSO decreased AdoHcy in all regions tested except striatum, midbrain, and spinal cord. AdoMet/AdoHcy ratios (methylation index) varied from 0.48 in hypothalamus to 2.4 in cerebellum, and MSO administration decreased these ratios in all regions except hypothalamus. AdoHcy hydrolase activity was lowest in hypothalamus, highest in brainstem and, generally, varied inversely with regional AdoHcy levels. MSO decreased AdoHcy hydrolase activity in all regions except hypothalamus and spinal cord. Cycloleucine administration resulted in significantly decreased levels of mouse brain AdoHcy, whereas the administration of dihydroxyphenylalanine (DOPA) failed to affect AdoHcy levels. It is concluded that (a) cerebral AdoHcy levels are more tightly regulated than are those of AdoMet after MSO administration, (b) slight fluctuations of AdoHcy levels may be important in regulating AdoHcy hydrolase activity and hence AdoHcy catabolism in vivo, (c) the AdoMet/AdoHcy ratio reflects the absolute AdoMet concentration rather than the transmethylation flux, (d) the decreased AdoMet levels in midbrain, cortex, and striatum after MSO with no corresponding decrease in AdoHcy suggest an enhanced AdoMet utilization, hence an increased transmethylation in the MSO preconvulsant state.Supported by USPHS, NINCDS grant NS-06294.  相似文献   

8.
Protein L-isoaspartyl (D-aspartyl) O-methyltransferase (PCMT1) is a protein-repair enzyme, and mice lacking this enzyme accumulate damaged proteins in multiple tissues, die at an early age from progressive epilepsy and have an increased S-adenosylmethionine (AdoMet) to S-adenosylhomocysteine (AdoHcy) ratio in brain tissue. It has been proposed that the alteration of AdoMet and AdoHcy levels might contribute to the seizure phenotype, particularly as AdoHcy has anticonvulsant properties. To investigate whether altered AdoMet and AdoHcy levels might contribute to the seizures and thus the survivability of the repair-deficient mice, a folate-deficient amino acid-based diet was administered to the mice in place of a standard chow diet. We found that the low-folate diet significantly decreases the AdoMet/AdoHcy ratio in brain tissue and results in an almost threefold extension of mean life span in the protein repair-deficient mice. These results indicate that the increased AdoMet/AdoHcy ratio may contribute to the lowered seizure threshold in young PCMT1-deficient mice. However, mean survival was also extended almost twofold for mice on a control folate-replete amino acid-based diet compared to mice on the standard chow diet. Survival after 40 days was similar in the mice on the low- and high-folate amino acid-based diets, suggesting that the survival of older PCMT1-deficient mice is not affected by the higher brain AdoMet/AdoHcy ratio. Additionally, the surviving older repair-deficient mice have a significant increase in body weight when compared to age-matched normal mice, independent of the type of diet. This weight increase was not accompanied by an increase in consumption levels, indicating that the repair-deficient mice may also have an altered metabolic state.  相似文献   

9.
A high-throughput, competitive fluorescence polarization immunoassay has been developed for the detection of methyltransferase activity. The assay was designed to detect S-adenosylhomocysteine (AdoHcy), a product of all S-adenosylmethionine (AdoMet)-utilizing methyltransferase reactions. We employed commercially available anti-AdoHcy antibody and fluorescein-AdoHcy conjugate tracer to measure AdoHcy generated as a result of methyltransferase activity. AdoHcy competes with tracer in the antibody/tracer complex. The release of tracer results in a decrease in fluorescence polarization. Under optimized conditions, AdoHcy and AdoMet titrations demonstrated that the antibody had more than a 150-fold preference for binding AdoHcy relative to AdoMet. Mock methyltransferase reactions using both AdoHcy and AdoMet indicated that the assay tolerated 1 to 3 microM AdoMet. The limit of detection was approximately 5 nM (0.15 pmol) AdoHcy in the presence of 3 muM AdoMet. To validate the assay's ability to quantitate methyltransferase activity, the methyltransferase catechol-O-methyltransferase (COMT) and a known selective inhibitor of COMT activity were used in proof-of-principle experiments. A time- and enzyme concentration-dependent decrease in fluorescence polarization was observed in the COMT assay that was developed. The IC(50) value obtained using a selective COMT inhibitor was consistent with previously published data. Thus, this sensitive and homogeneous assay is amenable for screening compounds for inhibitors of methyltransferase activity.  相似文献   

10.
11.
12.
A fraction of the viral mRNA synthesized in interferon-treated HeLa cells infected with vesicular stomatitis virus (VSV) lacks the 7-methyl group in the 5'-terminal guanosine of the cap; this mRNA is not associated with polyribosomes and does not bind to ribosomes in an assay for initiation of protein synthesis (de Ferra, F., and Baglioni, C. (1981) Virology 112, 426-435). To establish whether this defect in methylation is due to changes in the level of the methyl donor S-adenosylmethionine (AdoMet) and of its competitive inhibitor S-adenosylhomocysteine (AdoHcy), we measured the concentration of these compounds in HeLa cells treated with interferon. An increase in both AdoMet and AdoHcy was detected 3 to 6 h after addition of interferon. The level of these compounds increased gradually and in proportion to the interferon concentration used. With 125 reference units/ml of beta interferon, for example, the AdoHcy concentration increased more than 3-fold and that of AdoMet about 1.5-fold with a consequent change in the AdoHcy/AdoMet ratio. An increased AdoHcy/AdoMet ratio was also found in HeLa cells treated with pure alpha 2 interferon produced in Escherichia coli by recombinant DNA techniques. When the methylation of VSV mRNA was measured in assays carried out with permeabilized virions at the AdoHcy and AdoMet concentrations found in interferon-treated cells, a preferential inhibition of the viral (guanine-7-)methyltransferase activity was observed. Such an inhibition may account for the synthesis of VSV mRNA lacking the 7-methyl group of guanosine in the cap.  相似文献   

13.
BACKGROUND/AIMS: The methylation potential (MP) is defined as the ratio of S-adenosylmethionine (AdoMet) to S-adenosylhomocysteine (AdoHcy). It was shown recently that hypoxia increases AdoMet/AdoHcy ratio in HepG2 cells (Hermes et al., Exp Cell Res 294: 325-334, 2004). In the present study, we compared AdoMet/AdoHcy ratio and energy metabolism in HepG2, HEK-293, HeLa, MCF-7 and SK-HEP-1 cell lines under normoxia and hypoxia. METHODS: Metabolite concentrations were measured by HPLC. In addition, AdoHcy hydrolase (AdoHcyase) activity was determined photometrically. RESULTS: Under normoxia HepG2 cells show the highest AdoMet/AdoHcy ratio of 53.4 +/- 3.3 followed by MCF-7 and SK-HEP-1 cells with a AdoMet/AdoHcy ratio of 14.4 +/- 1.1 and 21.1 +/- 1.3, respectively. The lowest AdoMet/AdoHcy ratios are exhibited by HeLa and HEK-293 cells (6.6 +/- 0.7 and 7.1 +/- 0.3). Hypoxia does not significantly change the MP in MCF-7 and HeLa cells, but alters the MP in HepG2, HEK-293 and SK-HEP-1 cells. These alterations are dependent on the cell density. Under normoxia HepG2 cells exhibit AdoHcyase activity of 2.5 +/- 0.2 nmol min(-1) mg(-1) protein. All other cell lines show 3-5 times lower enzyme activity. Interestingly, hypoxia affects AdoHcyase activity only in HepG2 cells. CONCLUSIONS: Our data clearly show that the cell lines are characterized by different MP and different behavior under hypoxia. That implies that a lower MP is not necessarily associated with impaired transmethylation activity and cellular function.  相似文献   

14.
15.
Aphanothece halophytica, a halophilic cyanobacterium capable of growing in saturated NaCl, accumulates high intracellular concentrations of glycinebetaine in response to increasing environmental NaCl. In this organism, intracellular levels of K+ rise dramatically with increasing external NaCl before an increase in glycinebetaine can be detected. Glycinebetaine synthesis requires three S-adenosylmethionine (AdoMet)-mediated transmethylations; each transmethylation reaction generates one molecule of the transmethylation inhibitor S-adenosylhomocysteine (AdoHcy). Thus, glycinebetaine synthesis should require continued removal of AdoHcy. In A. halophytica, catabolism of AdoHcy was shown to occur via the reversible reaction catalyzed by AdoHcy hydrolase (EC 3.3.1.1). Activity of AdoHcy hydrolase in the direction of synthesis of AdoHcy was inhibited by 0.4 M KCl in this organism. On the other hand, activity of AdoHcy hydrolase in the direction of AdoHcy hydrolysis was unaffected by 0.4 M KCl. Glycinebetaine increased synthesis of AdoHcy in the presence of 0.4 KCl, but had no effect on AdoHcy hydrolysis. Based upon these results, a mechanism is proposed for the regulation of glycinebetaine synthesis by K+ and glycinebetaine in A. halophytica. According to this mechanism, the regulatory response would be initiated by a K+-induced shift in the AdoMet/AdoHcy ratio.Abbreviations AdoMet S-adenosylmethionine - AdoHcy S-adenosyl homocysteine  相似文献   

16.
Methyltransferases use S-adenosylmethionine (AdoMet) as methyl group donor, forming S-adenosylhomocysteine (AdoHcy) and methylated substrates, including DNA and proteins. AdoHcy inhibits most methyltransferases. Accumulation of intracellular AdoHcy secondary to Hcy elevation elicits global DNA hypomethylation. We aimed at determining the extent at which protein arginine methylation status is affected by accumulation of intracellular AdoHcy. AdoHcy accumulation in human umbilical vein endothelial cells was induced by inhibition of AdoHcy hydrolase by adenosine-2,3-dialdehyde (AdOx). As a measure of protein arginine methylation status, the levels of monomethylarginine (MMA) and asymmetric and symmetric dimethylated arginine residues (ADMA and SDMA, respectively) in cell protein hydrolysates were measured by HPLC. A 10% decrease was observed at a 2.5-fold increase of intracellular AdoHcy. Western blotting revealed that the translational levels of the main enzymes catalyzing protein arginine methylation, protein arginine methyl transferases (PRMTs) 1 and 5, were not affected by AdoHcy accumulation. Global DNA methylation status was evaluated by measuring 5-methylcytosine and total cytosine concentrations in DNA hydrolysates by LC-MS/MS. DNA methylation decreased by 10% only when intracellular AdoHcy concentration accumulated to 6-fold of its basal value. In conclusion, our results indicate that protein arginine methylation is more sensitive to AdoHcy accumulation than DNA methylation, pinpointing a possible new player in methylation-related pathology.  相似文献   

17.
Initial velocity determinations were conducted with human DNA (cytosine-5) methyltransferase (DNMT1) on unmethylated and hemimethylated DNA templates in order to assess the mechanism of the reaction. Initial velocity data with DNA and S-adenosylmethionine (AdoMet) as variable substrates and product inhibition studies with methylated DNA and S-adenosylhomocysteine (AdoHcy) were obtained and evaluated as double-reciprocal plots. These relationships were linear for plasmid DNA, exon-1 from the imprinted small nuclear ribonucleoprotein-associated polypeptide N, (CGG.CCG)(12), (m(5)CGG. CCG)(12), and (CGG.CCG)(73) but were not linear for (CGG. Cm(5)CG)(12). Inhibition by AdoHcy was apparently competitive versus AdoMet and uncompetitive/noncompetitive versus DNA at 相似文献   

18.
Retinyl esters are the major chemical forms of vitamin A stored in the liver, and can be delivered to peripheral tissues for conversion into biologically active forms. The function and regulation of the hepatic genes that are potentially involved in catalyzing the hydrolysis of retinyl esters remain unclear. Here we show that two lipid hydrolytic genes, pancreatic-related protein 2 (mPlrp2) and procolipase (mClps), expressed specifically in the mouse pancreas, are associated with the ratio of S-adenosylmethionine (AdoMet) to S-adenosylhomocysteine (AdoHcy). Light illumination deficiency or administration of 5'-AMP elevated the ratio of AdoMet to AdoHcy and induced the expression in the liver of mPlrp2 and mClps, which was blocked by all-trans retinoic acid. Mice fed a vitamin A-free diet exhibited increased activation of hepatic mPlrp2 and mClps expression, which was associated with increased methylation of histone H3K4 residues located near the mPlrp2 and mClps promoters. Inhibition of hepatic mPlrp2 and mClps expression by a methylase inhibitor, methylthioadenosine, markedly decreased plasma retinol levels in these mice. The activated hepatic stellate cell (HSC)-T6 cell line specifically expressed mClps and mPlrp2. Inhibition of mClps gene expressions by short hairpin RNA (shRNA) decreased hydrolysis of retinyl esters in the HSC-T6 cell line. These data suggest that the conditional expression of mPlrp2 and mClps is involved in the hydrolysis of retinyl esters in the mouse liver.  相似文献   

19.
Adenosine has been shown to initiate apoptosis through different mechanisms: (i) activation of adenosine receptors, (ii) intracellular conversion to AMP and stimulation of AMP-activated kinase, (iii) conversion to S-adenosylhomocysteine (AdoHcy), which is an inhibitor of S-adenosylmethionine (AdoMet)-dependent methyltransferases. Since the pathways involved are still not completely understood, we further investigated the role of AdoHcy hydrolase in adenosine-induced apoptosis. In HepG2 cells, adenosine induced caspase-like activity and DNA fragmentation, a marker of apoptosis. These effects were potentiated by co-incubation with homocysteine or adenosine deaminase inhibitor, pentostatin, and were mimicked by inhibition of AdoHcy hydrolase by adenosine-2',3'-dialdehyde (Adox). Adenosine-induced effects were significantly inhibited by dipyridamole, an inhibitor of adenosine transporter, whereas inhibitors of adenosine kinase did not affect adenosine-induced changes. Various adenosine receptor agonists and AICAR, an activator of AMP-activated kinase, did not mimic the effect of adenosine. Thus, adenosine-induced apoptosis is likely due to intracellular action of AdoHcy and independent of AMP-activated kinase and adenosine receptors. Because elevated AdoHcy levels are associated with reduced mRNA methylation, we studied mRNA expression in Adox-treated cells by microarray analysis. Since several p53-target genes and other apoptosis-related genes were up-regulated by Adox, we conclude that AdoHcy is involved in adenosine-induced apoptosis by altering gene expression.  相似文献   

20.
Exogenous administration of testosterone produced several metabolic tissue-specific changes in female mouse kidneys, but not in the liver. The hormone induced ornithine decarboxylase (ODC) activity, and also profoundly influenced metabolism of S-adenosylmethionine (AdoMet). Therefore, the activity of the AdoMet-synthesizing enzyme (AdoMet synthetase) and of cystathionine synthase, which commits homocysteine irreversibly to the transsulfuration pathway, were significantly increased. In contrast to the level of AdoMet in the liver the renal level of this metabolite was augmented, whereas the level of S-adenosylhomocysteine (AdoHcy) did not change. This resulted in an increase of the AdoMet/AdoHcy ratio. In testosterone-treated mice, pulse-labelled with [methyl-14C]methionine, the radioactivity recovered in the kidneys doubled, but in the liver remained the same. The rise in radioactivity recovered occurred mainly in TCA-soluble compounds and lipids, and to a smaller extent, in proteins and nucleic acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号