首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Method of flow cytometric analysis have recently been developed that make it possible to obtain segregated data on a single cell basis. In particular, it has been previously demonstrated that protein distributions obtained by flow cytometry give information about the law of growth of the cell population and the law of growth of the single cell; thus these distribution show how the microbial population is actually growing at the moment of the analysis and may yield more accurate and predictive information. We have extended the analysis of protein distribution and cell volume distribution to continuous cultures of Saccharomyces cerevisiae growing in a glucose-limited chemostat. We have found that: (1) to each dilution rate corresponds a given protein and volume distribution that does not change with time in steady state cultures; (2) there is a good proportionality between the average cell volume and the average protein content; (3) the protein distribution obtained can be easily analyzed with the model of growth of yeast previously developed in our laboratory; (4) the analysis of perturbed states shows that both protein distribution and volume distribution change very quickly; thus they are very sensitive parameters and can be used for monitoring and controlling industrial fermentation.  相似文献   

2.
A detailed analysis of the cell size, monitored as protein content, has been performed in glucose-limited continuous cultures, so as to obtain the values of the average protein content for various subpopulations at different cell cycle stages, as a function of the growth rate. Glucose metabolism appears to affect cell size, since there is an increase of the average protein content of the population when cells produce ethanol above the critical dilution rate. If the production of ethanol is forced at low growth rates by the addition of formate, the average protein content increases. These results indicate a link between glucose metabolism and cell size in budding yeast, as observed for mammalian cells.  相似文献   

3.
Histograms of cell distributions according to protein content obtained by means of flow cytofluorometry characterize the physiological state of the population as a whole and permit to calculate the velocity of protein accumulation in the cell in the course of the cell cycle. Dependence of population heterogeneity on culturing conditions is considered. Mathematical analysis of histograms of continuous cultures of S. cerevisiae is carried out at dilution rates 0.4 hours-1 and 0.05 hours-1. Calculations are carried out on condition that the protein content in the cell rises a) exponentially and b) linearly in the course of the cell cycle. At low growth rate (0.05 hours-1) the distribution is bimodal and therefore it is highly informative. The assumption concerning linear accumulation of the protein allows good approximation of the experimental distributions by the theoretical ones.  相似文献   

4.
The fermentation kinetics Zymomonas mobilis were studied near zero growth rate in fed-batch cultures and continuous cultures with complete cell recycle. The results show the ethanol enhances that specific substrate conversion rate under these conditions. The maximum achievable ethanol concentration in continuous cultures with cell recycle (66 g/L) was significantly lower than in fed-batch cultures (100 g/L). The results indicate that growth-rate-independent metabolism is not instantaneous and can lag behind steadily increasing ethanol concentrations in fed-batch fermentations. A model is proposed to account for this slow adaptation.  相似文献   

5.
Sustained oscillations have been observed in continuous cultures of Saccharomyces cerevisiae. These oscillations appear spontaneously under aerobic conditions and may constitute a severe limitation for process control. We have found that oscillations arise only in a well defined range of dilution rates and dissolved oxygen values. The period of the oscillations is related, but not equal, to the mass doubling time, and shows a relation ship with both the parent cells and daughter cells generation times. At high dilution rates two oscillatory regimens, with different periods, are observed. The analysis of the budding index shows a marked degree of synchronization of the culture, however significant differences, both in phase and in amplitude, are ob served if the budding index of parent cells and of daughter cells are considered separately. The complex changes of the cell population are clearly demonstrated by the continuous and periodic modification of both cell volume distributions and protein distributions. Ethanol is always accumulated before the drop of dissolved oxygen concentration and one of the peaks of budding index. We propose a model that explains the insurgence of these oscillation as a consequence of changes in cell cycle parameters due to alternate growth in glucose and in ethanol.  相似文献   

6.
The pattern of volume growth of Saccharomyces cerevisiae a/alpha was determined by image cytometry for daughter cells and consecutive cycles of parent cells. An image analysis program was specially developed to measure separately the volume of bud and mother cell parts and to quantify the number of bud scars on each parent cell. All volumetric data and cell attributes (budding state, number of scars) were stored in such a way that separate volume distributions of cells or cell parts with any combination of properties--for instance, buds present on mothers with two scars or cells without scars (i.e., daughter cells) and without buds--could be obtained. By a new method called intersection analysis, the average volumes of daughter and parent cells at birth and at division could be determined for a steady-state population. These volumes compared well with those directly measured from cells synchronized by centrifugal elutriation. During synchronous growth of daughter cells, the pattern of volume increase appeared to be largely exponential. However, after bud emergence, larger volumes than those predicted by a continuous exponential increase were obtained, which confirms the reported decrease in buoyant density. The cycle times calculated from the steady-state population by applying the age distribution equation deviated from those directly obtained from the synchronized culture, probably because of inadequate scoring of bud scars. Therefore, for the construction of a volume-time diagram, we used volume measurements obtained from the steady-state population and cycle times obtained from the synchronized population. The diagram shows that after bud emergence, mother cell parts continue to grow at a smaller rate, increasing about 10% in volume during the budding period. Second-generation daughter cells, ie., cells born from parents left with two scars, were significantly smaller than first-generation daughter cells. Second- and third-generation parent cells showed a decreased volume growth rate and a shorter budding period than that of daughter cells.  相似文献   

7.
High levels of expression of heterologous proteins (from 5 to 15% of total cell proteins) in the budding yeast Saccharomyces cerevisiae have been obtained previously by the use of the inducible strong hybrid promoter UASGAL/CYC1, in batch as well in continuous cultures. However, in order to maximize the yield of heterologous proteins, a computer controlled fed-batch fermentation is essential. For this reason we have developed a fed-batch system based on a semiconductor gas detector that measures ethanol in the outflow gases. The optimal conditions are described for very high production (up to 1550 mg/liter), with both high productivity (up to 100-120 mg/liter/h) and high yield (up to 15 mg of protein/g of dry biomass), of heterologous protein driven by the UASGAL/CYC1 promoter in a completely computer controlled fed-batch fermentation of budding yeast. However, high production was dependent upon the addition of a large amount of galactose. The process was improved by developing a new, more easily inducible, vector system obtained by subcloning the GAL4 gene.  相似文献   

8.
Banik GG  Todd PW  Kompala DS 《Cytotechnology》1996,22(1-3):179-184
Foreign protein expression from the commonly used SV40 promoter has been found to be primarily during the S-phase of the cell cycle. Simple mathematical models with this cell cycle phase dependent expression of foreign protein suggest that the specific production rate will be proportional to the cell growth rate, which is particularly disadvantageous in high cell density fed-batch or perfusion bioreactors. In this study we investigate this predicted relationship between the production rate and growth rate by culturing recombinant CHO cells in a continuous suspension bioreactor. One CHO cell line, GS-26, has been stably transfected with the plasmid pSVgal, which contains the E. coli lac Z gene under the control of the SV40 promoter. This GS-26 cell line was grown in suspension cultures over a range of specific growth rates in batch and continuous modes. The intracellular -galactosidase activity was assayed using a standard spectrophotometric method after breaking the cells open and releasing the enzyme. A strong growth associated relationship is found between the intracellular -galactosidase content and the specific growth rate in batch and continuous cultures, as predicted.  相似文献   

9.
Daily light-dark cycles can entrain cell growth and division cycles in populations of algae growing in nutrient limited continuous cultures, or cyclostats. In this study a simple model for the flux of cells between discrete developmental stages is formulated for periodic cyclostat cultures of algae. Cell growth, in terms of volume, was set as being constant within a given developmental compartment, but variable between compartments. Growth within a given compartment or transition between compartments was restricted to specific intervals of the subjective day. The model was calibrated to phosphate limited cyclostat growth of Euglena gracilis, with the intervals for transition between compartments fixed at the times relative to the subjective dawn corresponding to critical transition points in the phased cell cycle of this organism. The model output for mean population volume per cell agreed well with experimental data. Although greatly simplified, the periodic behavior of the model volume frequency distributions for the discrete compartments provide reasonable approximation of experimentally determined distributions.  相似文献   

10.
A mathematical model is formulated for the development of a population of cells in which the individual members may grow and divide or die. A given cell is characterized by its age and volume, and these parameters are assumed to determine the rate of volume growth and the probability per unit time of division or death. The initial value problem is formulated, and it is shown that if cell growth rate is proportional to cell volume, then the volume distribution will not converge to a time-invariant shape without an added dispersive mechanism. Mathematical simplications which are possible for the special case of populations in the exponential phase or in the steady state are considered in some detail. Experimental volume distributions of mammalian cells in exponentially growing suspension cultures are analyzed, and growth rates and division probabilities are deduced. It is concluded that the cell volume growth rate is approximately proportional to cell volume and that the division probability increases with volume above a critical threshold. The effects on volume distribution of division into daughter cells of unequal volumes are examined in computer models.  相似文献   

11.
A macroscopic model that takes into account phenomena of overflow metabolism within glycolysis and glutaminolysis is proposed to simulate hybridoma HB-58 cell cultures. The model of central carbon metabolism is reduced to a set of macroscopic reactions. The macroscopic model describes three metabolism states: respiratory metabolism, overflow metabolism and critical metabolism. The model parameters and confidence intervals are obtained via a non linear least squares identification. It is validated with experimental data of fed-batch hybridoma cultures and successfully predicts the dynamics of cell growth and death, substrate consumption (glutamine and glucose) and metabolites production (lactate and ammonia). Based on a sensitivity analysis of the model outputs with respect to the parameters, a model reduction is proposed. Finally, the maximization of biomass productivity of hybridoma cell fed-batch cultures is analyzed. This model allows, on the one hand, quantitatively describing overflow metabolism in mammalian cell cultures and, on the other hand, will be valuable for monitoring and control of fed-batch cultures in order to optimize the process. This is illustrated in this contribution with the determination of optimal feeding profiles aiming at maximizing biomass productivity.  相似文献   

12.
A selection of mouse hybridoma cell lines showed a variation of approximately two orders of magnitude in intracellular monoclonal antibody contents. The different levels directly influenced apparent specific monoclonal antibody productivity during the death phase but not during the growth phase of a batch culture. The pattern of changes in specific productivity during culture remained basically similar even though at different levels for all cell lines tested. Arresting the cells in the G1 phase using thymidine increased the specific productivity, cell volume and intracellular antibody content but at the same time led to decreased viability. In continuous culture DNA synthesis decreased with decreasing dilution rate though without an accompanying change in cell cycle and cell size distributions. The data shows both the decrease in viability and intracellular antibody content to be important factors which influence the negative association between specific antibody productivity and growth rate. In high cell density perfusion culture, when the cell cycle was prolonged by slow growth, viability was low and dead, but not lysed, cells were retained in the system, the specific antibody productivity was nearly two fold higher than that obtained in either batch or continuous cultures. The results imply that the prolongation of G1 phase and the increase in death rate of cells storing a large amount of antibody together cause an apparent increase in specific antibody productivity.  相似文献   

13.
Fed-batch production of recombinant fuculose-1-phosphate aldolase (FucA) by Escherichia coli XL1 Blue MRF′ (pTrcfuc) has been automated by using a simple feedback specific growth rate control strategy. Non-induced continuous cultures were conducted in order to characterize substrate consumption and carbon dioxide production yields and rates. In fed-batch cultures, substrate feeding rate was adjusted using on-line biomass estimation based on exhaust gas analysis and macroscopic mass balances. Overexpression of recombinant protein induced by isopropyl-β-d-thiogalactopyranoside (IPTG) under trc promoter did not affect significantly the control of specific growth rate during 7 h after induction. Growth and protein production curves were parallel until high level of protein expression started to inhibit cell growth. The proposed specific growth rate control strategy has been successfully applied to both non-induced and induced fed-batch cultures that do not exhibit severe growth rate depression.  相似文献   

14.
Regulation of cell size in the yeast Saccharomyces cerevisiae.   总被引:11,自引:2,他引:9       下载免费PDF全文
For cells of the yeast Saccharomyces cerevisiae, the size at initiation of budding is proportional to growth rate for rates from 0.33 to 0.23 h-1. At growth rates lower than 0.23 h-1, cells displayed a minimum cell size at bud initiation independent of growth rate. Regardless of growth rate, cells displayed an increase in volume each time budding was initiated. When abnormally small cells, produced by starvation for nitrogen, were placed in fresh medium containing nitrogen but with different carbon sources, they did not initiate budding until they had grown to the critical size characteristic of that medium. Moreover, when cells were shifted from a medium supporting a low growth rate and small size at bud initiation to a medium supporting a higher growth rate and larger size at bud initiation, there was a transient accumulation of cells within G1. These results suggest that yeast cells are able to initiate cell division at different cell sizes and that regulation of cell size occurs within G1.  相似文献   

15.
A new method is presented for determining the growth rate and the probability of cell division (separation) during the cell cycle, using size distributions of cell populations grown under steady-state conditions. The method utilizes the cell life-length distribution, i.e., the probability that a cell will have any specific size during its life history. This method was used to analyze cell length distributions of six cultures of Escherichia coli, for which doubling times varied from 19 to 125 min. The results for each culture are in good agreement with a single model of growth and division kinetics: exponential elongation of cells during growth phase of the cycle, and normal distributions of length at birth and at division. The average value of the coefficient of variation was 13.5% for all strains and growth rates. These results, based upon 5,955 observations, support and extend earlier proposals that growth and division patterns of E. coli are similar at all growth rates and, in addition, identify the general growth pattern of these cells to be exponential.  相似文献   

16.
Several monitoring methods used to predict viable cell density have been the subject of extensive studies, including oxygen uptake rate, carbon dioxide evolution rate, optical density, NADH-dependent fluorescence and relative permittivity measurement . We propose intracellular ATP determination by bioluminescence assay to monitor the progress of baculovirus infection and recombinant protein production in insect cell cultures. We found that the ATP content in viable cells increased after virus addition. The increase in the ATP level was observed until the maximum recombinant protein accumulation was reached. At maximum product yield, the specific ATP content significantly decreased. Results obtained in both batch and fed-batch cultures demonstrated that the specific ATP level could be considered as a good indicator of recombinant protein productivity. Monitoring the cellular ATP content after viral infection makes it possible to define the optimum time for product harvest. The main advantage of applying the ATP assay as an index of the progress of infection and recombinant protein synthesis is its short time and sensitivity.  相似文献   

17.
DNA content and cell volume have both been hypothesized as controls on metabolic rate and other physiological traits. We use cultures of two cryptic species of Ditylum brightwellii (West) Grunow with an approximately two-fold difference in genome size and a small and large culture of each clone obtained by isolating small and large cells to compare the physiological consequences of size changes due to differences in DNA content and reduction in cell size following many generations of asexual reproduction. We quantified the growth rate, the functional absorption cross-section of photosystem II (PSII), susceptibility of PSII to photoinactivation, PSII repair capacity, and PSII reaction center proteins D1 (PsbA) and D2 (PsbD) for each culture at a range of irradiances. The species with the smaller genome has a higher growth rate and, when acclimated to growth-limiting irradiance, has higher PSII repair rate capacity, PSII functional optical absorption cross-section, and PsbA per unit protein, relative to the species with the larger genome. By contrast, cell division rates vary little within clonal cultures of the same species despite significant differences in average cell volume. Given the similarity in cell division rates within species, larger cells within species have a higher demand for biosynthetic reductant. As a consequence, larger cells within species have higher numbers of PSII per unit protein (PsbA), since PSII photochemically generates the reductant to support biosynthesis. These results suggest that DNA content, as opposed to cell volume, has a key role in setting the differences in maximum growth rate across diatom species of different size while PSII content and related photophysiological traits are influenced by both growth rate and cell size.  相似文献   

18.
Amino acids rather than sugars are the primary limiting substrates for the culture of insect cells in a Grace's medium. When cultures are supplemented with amino acids, the yeastolate components other than the amino acids become the secondary limiting substrates. For the fed-batch culture of insect cells, a solution containing concentrated amino acids and yeastolate was supplied using an exponential feed flow rate calculated from mass balance equations. During the batch period the specific growth rate was 0.02 hу, whereas during the fed-batch period it was measured as 0.007 and 0.012 hу on the basis of the cell numbers and the dry cell weight, respectively. This difference in the specific growth rates in the fed-batch period is caused by an increase in the cell size during this period. Furthermore, in fed-batch cultures, dissolved oxygen was found to be a limiting factor for high cell-density cultures.  相似文献   

19.
An optimal quality control policy for the overall specific growth rate of bakers' yeast, which maximizes the fermentative activity in the making of bread, was obtained by direct searching based on the mathematical model proposed previously. The mathematical model had described the age distribution of bakers' yeast which had an essential relationship to the ability of fermentation in the making of bread. The mathematical model is a simple aging model with two periods: Nonbudding and budding. Based on the result obtained by direct searching, the quality control of bakers' yeast fed-batch culture was performed and confirmed to be experimentally valid.  相似文献   

20.
Spontaneous oscillations occur in glucose-limited continuous cultures of Saccharomyces cerevisiae under aerobic conditions. The oscillatory behavior is detectable as a periodic change of many bioparameters such as dissolved oxygen, ethanol production, biomass concentration, as well as cellular content of storage carbohydrates and is associated to a marked synchronization of the yeast population. These oscillations may be related to a periodic accumulation of ethanol produced by yeast in the culture medium.The addition of ethanol to oscillating yeast cultures supports this hypothesis: indeed, no effect was observed if ethanol was added when already present in the medium, while a marked phase oscillation shift was obtained when ethanol was added at any other time. Moreover, the addition of ethanol to a nonoscillating culture triggers new oscillations. An accurate analysis performed at the level of nonoscillating yeast populations perturbed by addition of ethanol showed that both the growth rate and the protein content required for cell division increased in the presence of mixed substrate (i.e., ethanol plus limiting glucose). A marked synchronization of the yeast population occurred when the added ethanol was exhausted and the culture resumed growth only on limiting glucose. A decrease of protein content required for cell division was also apparent. These experimental findings support a new model for spontaneous oscillations in yeast cultures in which the alternative growth on limiting glucose and limiting glucose plus ethanol modifies the critical protein content required for cell division.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号