首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The oriental fruit fly, Bactrocera dorsalis, is a serious pest of fruits and vegetables. Methyl eugenol (ME), a male attractant, is used to against this fly by mass trapping. Control effect may be influenced by learning, which could modify the olfactory response of the fly to this attractant. To collect the behavioral evidence, studies on the capability of this fly for olfactory learning are necessary. We investigated olfactory learning in male flies with a classical olfactory conditioning procedure using restrained individuals under laboratory conditions. The acquisition of the proboscis extension reflex was used as the criterion for conditioning. A high conditioned response level was found in oriental fruit flies when an odor was presented in paired association with a sucrose reward but not when the odor and sucrose were presented unpaired. We also found that the conditioning performance was influenced by the odor concentration, intertrial interval, and starvation time. A slight sensitization elicited by imbibing sucrose was observed. These results indicate that oriental fruit flies have a high capacity to form an olfactory memory as a result of classical conditioning.  相似文献   

2.
Parkinson’s disease (PD) is the most common motor neurodegenerative disorder. Olfactory dysfunction is a prevalent feature of PD. It often precedes motor symptoms by several years and is used in assisting PD diagnosis. However, the cellular and molecular bases of olfactory dysfunction in PD are not known. The fruit fly Drosophila melanogaster, expressing human alpha-synuclein protein or its mutant, A30P, captures several hallmarks of PD and has been successfully used to model PD in numerous studies. First, we report olfactory deficits in fly expressing A30P (A30P), showing deficits in two out of three olfactory modalities, tested – olfactory acuity and odor discrimination. The remaining third modality is odor identification/naming. Second, oxidative stress is an important environmental risk factor of PD. We show that oxidative stress exacerbated the two affected olfactory modalities in younger A30P flies. Third, different olfactory receptor neurons are activated differentially by different odors in flies. In a separate experiment, we show that the odor discrimination deficit in A30P flies is general and not restricted to a specific class of chemical structure. Lastly, by restricting A30P expression to dopamine, serotonin or olfactory receptor neurons, we show that A30P expression in dopamine neurons is necessary for development of both acuity and discrimination deficits, while serotonin and olfactory receptor neurons appeared not involved. Our data demonstrate olfactory deficits in a synuclein fly PD model for exploring olfactory pathology and physiology, and for monitoring PD progression and treatment.  相似文献   

3.
Alcohol use disorder (AUD) is a serious health challenge. Despite a large hereditary component to AUD, few genes have been unambiguously implicated in their etiology. The fruit fly, Drosophila melanogaster, is a powerful model for exploring molecular-genetic mechanisms underlying alcohol-related behaviors and therefore holds great promise for identifying and understanding the function of genes that influence AUD. The use of the Drosophila model for these types of studies depends on the availability of assays that reliably measure behavioral responses to ethanol. This report describes an assay suitable for assessing ethanol sensitivity and rapid tolerance in flies. Ethanol sensitivity measured in this assay is influenced by the volume and concentration of ethanol used, a variety of previously reported genetic manipulations, and also the length of time the flies are housed without food immediately prior to testing. In contrast, ethanol sensitivity measured in this assay is not affected by the vigor of fly handling, sex of the flies, and supplementation of growth medium with antibiotics or live yeast. Three different methods for quantitating ethanol sensitivity are described, all leading to essentially indistinguishable ethanol sensitivity results. The scalable nature of this assay, combined with its overall simplicity to set-up and relatively low expense, make it suitable for small and large scale genetic analysis of ethanol sensitivity and rapid tolerance in Drosophila.  相似文献   

4.
The fruit fly, Drosophila melanogaster, innately avoids even low levels of CO2. CO2 is part of the so-called Drosophila stress odor produced by stressed flies, but also a byproduct of fermenting fruit, a main food source, making the strong avoidance behavior somewhat surprising. Therefore, we addressed whether feeding states might influence the fly’s behavior and processing of CO2. In a recent report, we showed that this innate behavior is differentially processed and modified according to the feeding state of the fly. Interestingly, we found that hungry flies require the function of the mushroom body, a higher brain center required for olfactory learning and memory, but thought to be dispensable for innate olfactory behaviors. In addition, we anatomically and functionally characterized a novel bilateral projection neuron connecting the CO2 sensory input to the mushroom body. This neuron was essential for processing of CO2 in the starved fly but not in the fed fly. In this Extra View article, we provide evidence for the potential involvement of the neuromodulator dopamine in state-dependent CO2 avoidance behavior. Taken together, our work demonstrates that CO2 avoidance behavior is mediated by alternative neural pathways in a context-dependent manner. Furthermore, it shows that the mushroom body is not only involved in processing of learned olfactory behavior, as previously suggested, but also in context-dependent innate olfaction.  相似文献   

5.
Flies transport specific bacteria with their larvae that provide a wider range of nutrients for those bacteria. Our hypothesis was that this symbiotic interaction may depend on interkingdom signaling. We obtained Proteus mirabilis from the salivary glands of the blow fly Lucilia sericata; this strain swarmed significantly and produced a strong odor that attracts blow flies. To identify the putative interkingdom signals for the bacterium and flies, we reasoned that as swarming is used by this bacterium to cover the food resource and requires bacterial signaling, the same bacterial signals used for swarming may be used to communicate with blow flies. Using transposon mutagenesis, we identified six novel genes for swarming (ureR, fis, hybG, zapB, fadE and PROSTU_03490), then, confirming our hypothesis, we discovered that fly attractants, lactic acid, phenol, NaOH, KOH and ammonia, restore swarming for cells with the swarming mutations. Hence, compounds produced by the bacterium that attract flies also are utilized for swarming. In addition, bacteria with the swarming mutation rfaL attracted fewer blow flies and reduced the number of eggs laid by the flies. Therefore, we have identified several interkingdom signals between P. mirabilis and blow flies.  相似文献   

6.
视觉和嗅觉信号对果蝇食物搜寻行为的协同作用   总被引:1,自引:0,他引:1  
冯波  王霞  李岩  杜永均 《昆虫学报》2013,56(7):792-798
为了探索视觉和嗅觉信号在昆虫食物搜寻过程中的作用, 本研究利用杨梅和橘子为引诱物, 在实验室条件下测定了嗅觉和视觉信号诱集到的黑腹果蝇Drosophila melanogaster数量, 分析了嗅觉经历对果蝇嗅觉和视觉食物搜寻的影响。发现同源性嗅觉和视觉信号存在的杨梅诱集到的果蝇数量显著大于单一的视觉信号和嗅觉信号, 但异源性嗅觉和视觉信号组合诱集到的果蝇数量和单独的嗅觉信号相似。嗅觉信号预处理不仅能够显著增加嗅觉信号诱集到的果蝇数量, 其中杨梅嗅觉信号对杨梅预处理果蝇的吸引能力与视觉和嗅觉信号存在的杨梅相似, 而且异源性嗅觉和视觉信号组合诱集到的预处理果蝇数量也不低于视觉和嗅觉信号存在的杨梅。另外杨梅嗅觉信号预处理也能够显著增强杨梅视觉信号诱集到的果蝇数量。但嗅觉预处理并不会改变同源性视觉和嗅觉信号组合诱集到的果蝇数量。本研究表明, 果蝇同时利用视觉和嗅觉信号进行食物搜寻, 因此同源性视觉和嗅觉信号在果蝇诱集过程中具有协同作用。另外果蝇具有较强的记忆和学习能力, 能够将记忆中的嗅觉信号应用于食物搜寻。本研究结果不仅有利于我们了解果蝇在自然状态下的食物搜寻机制, 而且有利于开发更有效的果蝇新型诱捕器。  相似文献   

7.
植食性昆虫对寄主植物的选择适应性是研究昆虫和植物协同进化关系的核心内容之一。评估寄主植物对植食性昆虫种群的适合度,需要综合分析昆虫对寄主的产卵选择性和寄主对昆虫的取食适合性。以桔小实蝇和番石榴实蝇为研究对象,分别测定了这两种实蝇对6种寄主果实:番石榴、香蕉、杨桃、木瓜、甜橙、番茄的产卵选择性以及幼虫取食后对其生长发育的影响。寄主产卵选择性实验分别采用完整寄主果实直接供试产卵和块状寄主果实气味引诱产卵两种处理方式;在生长发育适应性实验中,以幼虫和蛹的存活和生长发育等相关参数作为评价指标。实验结果表明,寄主的供试方式不同,两种实蝇的选择性均有明显差异;对寄主气味选择性强的寄主更适合于两种实蝇后代的生长发育。两种实蝇对6种寄主果实的产卵选择性和后代发育适合性两者相关性不显著,与许多文献报道单一地采用发育适合性(如发育历期、存活率或蛹重等)作为评价寄主选择性的结果不一致。两种实蝇之间对6种寄主果实的产卵选择和幼虫取食适合性既具相似性也具差异性,表明这两种实蝇在寄主生态位上既有重叠性又有分化性。  相似文献   

8.
Flies generate robust and high-performance olfactory and visual behaviors. Adult fruit flies can distinguish small differences in odor concentration across antennae separated by less than 1 mm [1], and a single olfactory sensory neuron is sufficient for near-normal gradient tracking in larvae [2]. During flight a male housefly chasing a female executes a corrective turn within 40 ms after a course deviation by its target [3]. The challenges imposed by flying apparently benefit from the tight integration of unimodal sensory cues. Crossmodal interactions reduce the discrimination threshold for unimodal memory retrieval by enhancing stimulus salience [4], and dynamic crossmodal processing is required for odor search during free flight because animals fail to locate an odor source in the absence of rich visual feedback [5]. The visual requirements for odor localization are unknown. We tethered a hungry fly in a magnetic field, allowing it to yaw freely, presented odor plumes, and examined how visual cues influence odor tracking. We show that flies are unable to use a small-field object or landmark to assist plume tracking, whereas odor activates wide-field optomotor course control to enable accurate orientation toward an attractive food odor.  相似文献   

9.
《Fly》2013,7(1):50-61
From the moment an adult fruit fly ecloses, its primary objective in life is to disperse and locate the source of an attractive food odor upon which to feed and reproduce. The evolution of flight has greatly enhanced the success of fruit flies specifically and insects more generally.1 Control of flight by Drosophila melanogaster is unequivocally visual. Strong optomotor reflexes towards translatory and rotational visual flow stabilize forward flight trajectory, altitude, and speed. 2, 3 The steering responses to translatory and rotational flow in particular are mediated by computationally separate neural circuits in the fly’s visual system,4 and gaze-stabilizing body saccades are elicited by threshold integration of expanding visual flow .5 However, visual information is not alone sufficient to enable a fruit fly to recognize and locate an appropriately smelly object due in part to the relatively poor resolution of its compound eyes. Rather, the animal uses an acute sense of smell to actively track odors during flight. Without a finely adapted olfactory system, the fly’s remarkable visual capabilities are for naught. The relative importance of vision is apparent in the cross-modal fusion of the two modalities for stable active odor tracking.6, 7 Olfactory processing in Drosophila is shaped by ecological and functional forces which are inextricably linked. Thus physiologists seeking the functional determinants of olfactory coding as well as ecologists seeking to understand the mechanisms of speciation do well to consider each others’ point of view. Here we synthesize a broad perspective that integrates across ultimate and proximate mechanisms of odor tracking in Drosophila.  相似文献   

10.
Aggressive behavior in Drosophila melanogaster is composed of the sequential expression of stereotypical behavioral patterns (for analysis see 1). This complex behavior is influenced by genetic, hormonal and environmental factors. As in many organisms, previous fighting experience influences the fighting strategy of flies and the outcome of later contests: losing a fight increases the probability of losing later contests, revealing "loser" effects that likely involve learning and memory 2-4. The learning and memory that accompanies expression of complex social behaviors like aggression, is sensitive to pre-test handling of animals 5,6. Many experimental procedures are used in different laboratories to study aggression 7-9, however, no routinely used protocol that excludes handling of flies is currently available. Here, we report a new behavioral apparatus that eliminates handling of flies, using instead their innate negative geotactic responses to move animals into or out of fighting chambers. In this protocol, small circular fight arenas containing a food cup are divided into two equal halves by a removable plastic slider prior to introduction of flies. Flies enter chambers from their home isolation vials via sliding chamber doors and geotaxis. Upon removal of plastic sliders, flies are free to interact. After specified time periods, flies are separated again by sliders for subsequent experimentation. All of this is done easily without handling of individual flies. This apparatus offers a novel approach to study aggression and the associated learning and memory, including the formation of "loser" effects in fly fights. In addition, this new general-purpose behavioral apparatus can be employed to study other social behaviors of flies and should, in general, be of interest for investigating experience-related changes in fundamental behavioral processes.  相似文献   

11.
Behavioral responses of adult female oriental fruit flies, Dacus dorsalisHendel, to the odor of papayas from three ripeness classes were studied using a threechoice flight tunnel bioassay. Laboratoryreared flies were allowed to respond freely to any of three papaya odors (mature green, colorbreak to one-fourth ripe, and one-half to full ripe) emanating from identical (spherical) fruit models. Five behaviors were measured in assessing the fly's relative attraction to the odors (number of landings), arrestment (total fly seconds on sphere), fly-fly interactions on the fruit model (maximum and modal fly density), and acceptance for oviposition (total eggs laid). Females showed no significant difference in total fly landings based on all age classes combined. Significant differences were noted among age classes. Females spent more total time on the sphere and showed a higher maximum density and modal fly density to ripe fruit than to green fruit odors. Ovipositional acceptance of fruit models based on the total number of eggs laid in a sphere was greater in response to the ripefruit odor than to the other two odor classes. Olfactorystimulated behavioral responses of females to the odor of ripe papayas were significantly different from the other ripeness classes for all behaviors at 8 days postemergence and then declined in 11-day-old flies. Behavioral responses were greater during the afternoon than in the morning. Observations of wild oriental fruit flies to papayas in the field indicated a preference for residing on riper fruit. The results of this study are discussed with regard to the role of olfactory inputs generated by the odor of ripening fruit on female attraction and oviposition behavior resulting in infestation of papayas by oriental fruit fly.  相似文献   

12.
In their natural environment, insects such as the vinegar fly Drosophila melanogaster are bombarded with a huge amount of chemically distinct odorants. To complicate matters even further, the odors detected by the insect nervous system usually are not single compounds but mixtures whose composition and concentration ratios vary. This leads to an almost infinite amount of different olfactory stimuli which have to be evaluated by the nervous system.To understand which aspects of an odor stimulus determine its evaluation by the fly, it is therefore desirable to efficiently examine odor-guided behavior towards many odorants and odor mixtures. To directly correlate behavior to neuronal activity, behavior should be quantified in a comparable time frame and under identical stimulus conditions as in neurophysiological experiments. However, many currently used olfactory bioassays in Drosophila neuroethology are rather specialized either towards efficiency or towards resolution.Flywalk, an automated odor delivery and tracking system, bridges the gap between efficiency and resolution. It allows the determination of exactly when an odor packet stimulated a freely walking fly, and to determine the animal´s dynamic behavioral reaction.  相似文献   

13.
In studies conducted in Hawaii under both greenhouse and field conditions, we evaluated the propensity of melon fly females, Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae), to alight on either fruit mimics (agar spheres) or host fruit that were or were not occupied by conspecific resident females. We also examined the extent to which occurrence of local enhancement of alighting found in B. cucurbitae females was affected by a variety of factors such as the presence or the absence of host fruit odor (zucchini or ivy gourd), the number of conspecifics present on a host, the degree of isolation of assayed females from other females prior to testing, and the kinds of stimuli (acoustical, visual, olfactory) emanating from conspecifics present on a host mimic. In addition, we asked whether local enhancement might be operative in the food-foraging behavior of melon flies. We found that in a variety of situations, melon fly females alighted in significantly greater numbers at resources (food, fruit mimics, or host fruit) occupied by conspecific females than at unoccupied resources. Such positive influence of resident conspecific females was more pronounced in greenhouse cage assays when one or two rather than four residents were present on a host mimic (but was more pronounced when four rather than one or two residents were present on a host fruit in a field test), and was more evident when test females were grouped with conspecific females than when test females were isolated from conspecific females for 5 days before testing. Rather than acoustical or olfactory stimuli associated with resident conspecific females, the mere physical presence (visual stimulus) of a motionless dead resident melon fly female provided sufficient stimulation for test females to alight in significantly greater numbers at resources occupied by conspecific females than at unoccupied resources. We consider our findings as good evidence of local enhancement in the melon fly and discuss our results in relation to monitoring tactics for adult melon flies.  相似文献   

14.
Study of the fruit fly, Drosophila melanogaster, has yielded important insights into the underlying molecular mechanisms of learning and memory. Courtship conditioning is a well-established behavioral assay used to study Drosophila learning and memory. Here, we describe the development of software to analyze courtship suppression assay data that correctly identifies normal or abnormal learning and memory traits of individual flies. Development of this automated analysis software will significantly enhance our ability to use this assay in large-scale genetic screens and disease modeling. The software increases the consistency, objectivity, and types of data generated.  相似文献   

15.
Odorants create unique and overlapping patterns of olfactory receptor activation, allowing a family of approximately 1,000 murine and 400 human receptors to recognize thousands of odorants. Odorant ligands have been published for fewer than 6% of human receptors1-11. This lack of data is due in part to difficulties functionally expressing these receptors in heterologous systems. Here, we describe a method for expressing the majority of the olfactory receptor family in Hana3A cells, followed by high-throughput assessment of olfactory receptor activation using a luciferase reporter assay. This assay can be used to (1) screen panels of odorants against panels of olfactory receptors; (2) confirm odorant/receptor interaction via dose response curves; and (3) compare receptor activation levels among receptor variants. In our sample data, 328 olfactory receptors were screened against 26 odorants. Odorant/receptor pairs with varying response scores were selected and tested in dose response. These data indicate that a screen is an effective method to enrich for odorant/receptor pairs that will pass a dose response experiment, i.e. receptors that have a bona fide response to an odorant. Therefore, this high-throughput luciferase assay is an effective method to characterize olfactory receptors—an essential step toward a model of odor coding in the mammalian olfactory system.  相似文献   

16.
While learning to avoid toxic food is common in mammals and occurs in some insects, learning to avoid cues associated with infectious pathogens has received little attention. We demonstrate that Drosophila melanogaster show olfactory learning in response to infection with their virulent intestinal pathogen Pseudomonas entomophila. This pathogen was not aversive to taste when added to food. Nonetheless, flies exposed for 3 h to food laced with P. entomophila, and scented with an odorant, became subsequently less likely to choose this odorant than flies exposed to pathogen-laced food scented with another odorant. No such effect occurred after an otherwise identical treatment with an avirulent mutant of P. entomophila, indicating that the response is mediated by pathogen virulence. These results demonstrate that a virulent pathogen infection can act as an aversive unconditioned stimulus which flies can associate with food odours, and thus become less attracted to pathogen-contaminated food.  相似文献   

17.
Genetic screens conducted using Drosophila melanogaster (fruit fly) have made numerous milestone discoveries in the advance of biological sciences. However, the use of biochemical screens aimed at extending the knowledge gained from genetic analysis was explored only recently. Here we describe a method to purify the protein complex that associates with any protein of interest from adult fly heads. This method takes advantage of the Drosophila GAL4/UAS system to express a bait protein fused with a Tandem Affinity Purification (TAP) tag in fly neurons in vivo, and then implements two rounds of purification using a TAP procedure similar to the one originally established in yeast1 to purify the interacting protein complex. At the end of this procedure, a mixture of multiple protein complexes is obtained whose molecular identities can be determined by mass spectrometry. Validation of the candidate proteins will benefit from the resource and ease of performing loss-of-function studies in flies. Similar approaches can be applied to other fly tissues. We believe that the combination of genetic manipulations and this proteomic approach in the fly model system holds tremendous potential for tackling fundamental problems in the field of neurobiology and beyond.  相似文献   

18.
Cooperation between Drosophila flies in searching behavior   总被引:1,自引:0,他引:1  
In Drosophila melanogaster food search behaviour, groups of flies swarm around and aggregate on patches of food. We wondered whether flies explore their environment in a cooperative way as interactions between individual flies within a population might influence the flies' ability to locate food sources. We have shown that the food search behavior in the fruit fly Drosophila is a two-step process. Firstly, 'primer' flies search the environment and randomly land on different food patches. Secondly, the remaining group of flies move to the most favorable food source and aggregate there. We call this a 'search–aggregation' cycle. Our data demonstrate that flies do not individually assess all available food resources. Rather, social interactions between flies appear to affect their choice of a specific food patch. A genetic analysis of this 'search–aggregation' behavior shows that flies carrying mutations in specific genes (for example, the dunce ( dnc ) gene which codes for a phosphodiesterase) were defective in this search–aggregation behavior when compared to normal flies. Future investigations of the neuronal signaling involved in this behavior will help us to understand the complexities of this aspect of Drosophila social behaviour.  相似文献   

19.
Insects are capable of detecting, and discriminating between, a very large number of odours. The biological relevance of many of those odours, particularly those related to food, must first be learned. Given that the number of sensory receptors and antennal lobe (AL) glomeruli is limited relative to the number of odours that must be detectable, this ability implies that the olfactory system makes use of a combinatorial coding scheme whereby each sensory cell or AL projection neuron can participate in coding for several different odours. An important step in understanding this coding scheme is to behaviourally quantify the degree to which sets of odours are discriminable. Here we evaluate odour discriminability in the fruit fly,Drosophila melanogaster, by first conditioning individual flies to not respond to any of several odourants using a nonassociative conditioning protocol (habituation). We show that flies habituate unconditioned leg movement responses to both mechanosensory and olfactory stimulation over 25 unreinforceed trials. Habituation is retained for at least 2 h and is subject to dishabituation. Finally, we test the degree to which the conditioned response generalizes to other odourants based on molecular features of the odourants (e.g. carbon chain length and the presence of a target functional group). These tests reveal predictable generalization gradients across these molecular features. These data substantiate the claim that these features are relevant coding dimensions in the fruit fly olfactory system, as has been shown for other insect and vertebrate species.  相似文献   

20.
Changes in dopamine (DA) signaling have been implicated in a number of human neurologic and psychiatric disorders. Similarly, defects in DA signaling in the fruit fly, Drosophila melanogaster, have also been associated with several behavioral defects. As most genes involved in DA synthesis, transport, secretion, and signaling are conserved between species, Drosophila is a powerful genetic model organism to study the regulation of DA signaling in vivo. In this review, we will provide an overview of the genes and drugs that regulate DA biology in Drosophila. Furthermore, we will discuss the behavioral paradigms that are regulated by DA signaling in flies. By analyzing the genes and neuronal circuits that govern such behaviors using sophisticated genetic, pharmacologic, electrophysiologic, and imaging approaches in Drosophila, we will likely gain a better understanding about how this neuromodulator regulates motor tasks and cognition in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号