首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Cell death can be divided into the anti-inflammatory process of apoptosis and the pro-inflammatory process of necrosis. Necrosis, as apoptosis, is a regulated form of cell death, and Poly-(ADP-Ribose) Polymerase-1 (PARP-1) and Receptor-Interacting Protein (RIP) 1/3 are major mediators. We previously showed that absence or inhibition of PARP-1 protects mice from nephritis, however only the male mice. We therefore hypothesized that there is an inherent difference in the cell death program between the sexes. We show here that in an immune-mediated nephritis model, female mice show increased apoptosis compared to male mice. Treatment of the male mice with estrogens induced apoptosis to levels similar to that in female mice and inhibited necrosis. Although PARP-1 was activated in both male and female mice, PARP-1 inhibition reduced necrosis only in the male mice. We also show that deletion of RIP-3 did not have a sex bias. We demonstrate here that male and female mice are prone to different types of cell death. Our data also suggest that estrogens and PARP-1 are two of the mediators of the sex-bias in cell death. We therefore propose that targeting cell death based on sex will lead to tailored and better treatments for each gender.  相似文献   

2.
Integrin receptor plays key roles in mediating both inside-out and outside-in signaling between cells and the extracellular matrix. We have observed that the tissue-specific loss of the integrin β1 subunit in striated muscle results in a near complete loss of integrin β1 subunit protein expression concomitant with a loss of talin and to a lesser extent, a reduction in F-actin content. Muscle-specific integrin β1-deficient mice had no significant difference in food intake, weight gain, fasting glucose, and insulin levels with their littermate controls. However, dynamic analysis of glucose homeostasis using euglycemichyperinsulinemic clamps demonstrated a 44 and 48% reduction of insulin-stimulated glucose infusion rate and glucose clearance, respectively. The whole body insulin resistance resulted from a specific inhibition of skeletal muscle glucose uptake and glycogen synthesis without any significant effect on the insulin suppression of hepatic glucose output or insulin-stimulated glucose uptake in adipose tissue. The reduction in skeletal muscle insulin responsiveness occurred without any change in GLUT4 protein expression levels but was associated with an impairment of the insulin-stimulated protein kinase B/Akt serine 473 phosphorylation but not threonine 308. The inhibition of insulin-stimulated serine 473 phosphorylation occurred concomitantly with a decrease in integrin-linked kinase expression but with no change in the mTOR·Rictor·LST8 complex (mTORC2). These data demonstrate an in vivo crucial role of integrin β1 signaling events in mediating cross-talk to that of insulin action.Integrin receptors are a large family of integral membrane proteins composed of a single α and β subunit assembled into a heterodimeric complex. There are 19 α and 8 β mammalian subunit isoforms that combine to form 25 distinct α,β heterodimeric receptors (1-5). These receptors play multiple critical roles in conveying extracellular signals to intracellular responses (outside-in signaling) as well as altering extracellular matrix interactions based upon intracellular changes (inside-out signaling). Despite the large overall number of integrin receptor complexes, skeletal muscle integrin receptors are limited to seven α subunit subtypes (α1, α3, α4, α5, α6, α7, and αν subunits), all associated with the β1 integrin subunit (6, 7).Several studies have suggested an important cross-talk between extracellular matrix and insulin signaling. For example, engagement of β1 subunit containing integrin receptors was observed to increase insulin-stimulated insulin receptor substrate (IRS)2 phosphorylation, IRS-associated phosphatidylinositol 3-kinase, and activation of protein kinase B/Akt (8-11). Integrin receptor regulation of focal adhesion kinase was reported to modulate insulin stimulation of glycogen synthesis, glucose transport, and cytoskeleton organization in cultured hepatocytes and myoblasts (12, 13). Similarly, the integrin-linked kinase (ILK) was suggested to function as one of several potential upstream kinases that phosphorylate and activate Akt (14-18). In this regard small interfering RNA gene silencing of ILK in fibroblasts and conditional ILK gene knockouts in macrophages resulted in a near complete inhibition of insulin-stimulated Akt serine 473 (Ser-473) phosphorylation concomitant with an inhibition of Akt activity and phosphorylation of Akt downstream targets (19). However, a complex composed of mTOR·Rictor·LST8 (termed mTORC2) has been identified in several other studies as the Akt Ser-473 kinase (20, 21). In addition to Ser-473, Akt protein kinase activation also requires phosphorylation on threonine 308 Thr-30 by phosphoinositide-dependent protein kinase, PDK1 (22-24).In vivo, skeletal muscle is the primary tissue responsible for postprandial (insulin-stimulated) glucose disposal that results from the activation of signaling pathways leading to the translocation of the insulin-responsive glucose transporter, GLUT4, from intracellular sites to the cell surface membranes (25, 26). Dysregulation of any step of this process in skeletal muscle results in a state of insulin resistance, thereby predisposing an individual for the development of diabetes (27-33). Although studies described above have utilized a variety of tissue culture cell systems to address the potential involvement of integrin receptor signaling in insulin action, to date there has not been any investigation of integrin function on insulin action or glucose homeostasis in vivo. To address this issue, we have taken advantage of Cre-LoxP technology to inactivate the β1 integrin receptor subunit gene in striated muscle. We have observed that muscle creatine kinase-specific integrin β1 knock-out (MCKItgβ1 KO) mice display a reduction of insulin-stimulated glucose infusion rate and glucose clearance. The impairment of insulin-stimulated skeletal muscle glucose uptake and glycogen synthesis resulted from a decrease in Akt Ser-473 phosphorylation concomitant with a marked reduction in ILK expression. Together, these data demonstrate an important cross-talk between integrin receptor function and insulin action and suggests that ILK may function as an Akt Ser-473 kinase in skeletal muscle.  相似文献   

3.
The bacterium Streptomyces anulatus 9663, isolated from the intestine of different arthropods, produces prenylated derivatives of phenazine 1-carboxylic acid. From this organism, we have identified the prenyltransferase gene ppzP. ppzP resides in a gene cluster containing orthologs of all genes known to be involved in phenazine 1-carboxylic acid biosynthesis in Pseudomonas strains as well as genes for the six enzymes required to generate dimethylallyl diphosphate via the mevalonate pathway. This is the first complete gene cluster of a phenazine natural compound from streptomycetes. Heterologous expression of this cluster in Streptomyces coelicolor M512 resulted in the formation of prenylated derivatives of phenazine 1-carboxylic acid. After inactivation of ppzP, only nonprenylated phenazine 1-carboxylic acid was formed. Cloning, overexpression, and purification of PpzP resulted in a 37-kDa soluble protein, which was identified as a 5,10-dihydrophenazine 1-carboxylate dimethylallyltransferase, forming a C–C bond between C-1 of the isoprenoid substrate and C-9 of the aromatic substrate. In contrast to many other prenyltransferases, the reaction of PpzP is independent of the presence of magnesium or other divalent cations. The Km value for dimethylallyl diphosphate was determined as 116 μm. For dihydro-PCA, half-maximal velocity was observed at 35 μm. Kcat was calculated as 0.435 s-1. PpzP shows obvious sequence similarity to a recently discovered family of prenyltransferases with aromatic substrates, the ABBA prenyltransferases. The present finding extends the substrate range of this family, previously limited to phenolic compounds, to include also phenazine derivatives.The transfer of isoprenyl moieties to aromatic acceptor molecules gives rise to an astounding diversity of secondary metabolites in bacteria, fungi, and plants, including many compounds that are important in pharmacotherapy. However, surprisingly little biochemical and genetic data are available on the enzymes catalyzing the C-prenylation of aromatic substrates. Recently, a new family of aromatic prenyltransferases was discovered in streptomycetes (1), Gram-positive soil bacteria that are prolific producers of antibiotics and other biologically active compounds (2). The members of this enzyme family show a new type of protein fold with a unique α-β-β-α architecture (3) and were therefore termed ABBA prenyltransferases (1). Only 13 members of this family can be identified by sequence similarity searches in the data base at present, and only four of them have been investigated biochemically (36). Up to now, only phenolic compounds have been identified as aromatic substrates of ABBA prenyltransferases. We now report the discovery of a new member of the ABBA prenyltransferase family, catalyzing the transfer of a dimethylallyl moiety to C-9 of 5,10-dihydrophenazine 1-carboxylate (dihydro-PCA).2 Streptomyces strains produce many of prenylated phenazines as natural products. For the first time, the present paper reports the identification of a prenyltransferase involved in their biosynthesis.Streptomyces anulatus 9663, isolated from the intestine of different arthropods, produces several prenylated phenazines, among them endophenazine A and B (Fig. 1A) (7). We wanted to investigate which type of prenyltransferase might catalyze the prenylation reaction in endophenazine biosynthesis. In streptomycetes and other microorganisms, genes involved in the biosynthesis of a secondary metabolite are nearly always clustered in a contiguous DNA region. Therefore, the prenyltransferase of endophenazine biosynthesis was expected to be localized in the vicinity of the genes for the biosynthesis of the phenazine core (i.e. of PCA).Open in a separate windowFIGURE 1.A, prenylated phenazines from S. anulatus 9663. B, biosynthetic gene cluster of endophenazine A.In Pseudomonas, an operon of seven genes named phzABCDEFG is responsible for the biosynthesis of PCA (8). The enzyme PhzC catalyzes the condensation of phosphoenolpyruvate and erythrose-4-phosphate (i.e. the first step of the shikimate pathway), and further enzymes of this pathway lead to the intermediate chorismate. PhzD and PhzE catalyze the conversion of chorismate to 2-amino-2-deoxyisochorismate and the subsequent conversion to 2,3-dihydro-3-hydroxyanthranilic acid, respectively. These reactions are well established biochemically. Fewer data are available about the following steps (i.e. dimerization of 2,3-dihydro-3-hydroxyanthranilic acid, several oxidation reactions, and a decarboxylation, ultimately leading to PCA via several instable intermediates). From Pseudomonas, experimental data on the role of PhzF and PhzA/B have been published (8, 9), whereas the role of PhzG is yet unclear. Surprisingly, the only gene cluster for phenazine biosynthesis described so far from streptomycetes (10) was found not to contain a phzF orthologue, raising the question of whether there may be differences in the biosynthesis of phenazines between Pseudomonas and Streptomyces.Screening of a genomic library of the endophenazine producer strain S. anulatus now allowed the identification of the first complete gene cluster of a prenylated phenazine, including the structural gene of dihydro-PCA dimethylallyltransferase.  相似文献   

4.
5.
6.
7.
Activation of protein kinase C (PKC) promotes the salvage pathway of ceramide formation, and acid sphingomyelinase has been implicated, in part, in providing substrate for this pathway (Zeidan, Y. H., and Hannun, Y. A. (2007) J. Biol. Chem. 282, 11549–11561). In the present study, we examined whether acid β-glucosidase 1 (GBA1), which hydrolyzes glucosylceramide to form lysosomal ceramide, was involved in PKC-regulated formation of ceramide from recycled sphingosine. Glucosylceramide levels declined after treatment of MCF-7 cells with a potent PKC activator, phorbol 12-myristate 13-acetate (PMA). Silencing GBA1 by small interfering RNAs significantly attenuated acid glucocerebrosidase activity and decreased PMA-induced formation of ceramide by 50%. Silencing GBA1 blocked PMA-induced degradation of glucosylceramide and generation of sphingosine, the source for ceramide biosynthesis. Reciprocally, forced expression of GBA1 increased ceramide levels. These observations indicate that GBA1 activation can generate the source (sphingosine) for PMA-induced formation of ceramide through the salvage pathway. Next, the role of PKCδ, a direct effector of PMA, in the formation of ceramide was determined. By attenuating expression of PKCδ, cells failed to trigger PMA-induced alterations in levels of ceramide, sphingomyelin, and glucosylceramide. Thus, PKCδ activation is suggested to stimulate the degradation of both sphingomyelin and glucosylceramide leading to the salvage pathway of ceramide formation. Collectively, GBA1 is identified as a novel source of regulated formation of ceramide, and PKCδ is an upstream regulator of this pathway.Sphingolipids are abundant components of cellular membranes, many of which are emerging as bioactive lipid mediators thought to play crucial roles in cellular responses (1, 2). Ceramide, a central sphingolipid, serves as the main precursor for various sphingolipids, including glycosphingolipids, gangliosides, and sphingomyelin. Regulation of formation of ceramide has been demonstrated through the action of three major pathways: the de novo pathway (3, 4), the sphingomyelinase pathway (5), and the salvage pathway (68). The latter plays an important role in constitutive sphingolipid turnover by salvaging long-chain sphingoid bases (sphingosine and dihydrosphingosine) that serve as sphingolipid backbones for ceramide and dihydroceramide as well as all complex sphingolipids (Fig. 1A).Open in a separate windowFIGURE 1.The scheme of the sphingosine salvage pathway of ceramide formation and inhibition of PMA induction of ceramide by fumonisin B1. A, the scheme of the sphingosine salvage pathway of ceramide formation. B, previously published data as to effects of fumonisin B1 on ceramide mass profiles (23) are re-plotted as a PMA induction of ceramide. In brief, MCF-7 cells were pretreated with or without 100 μm fumonisin B1 for 2 h followed by treatment with 100 nm PMA for 1 h. Lipids were extracted, and then the levels of ceramide species were determined by high-performance liquid chromatography-tandem mass spectrometry. Results are expressed as sum of increased mass of ceramide species. Dotted or open columns represents C16-ceramide or sum of other ceramide species (C14-ceramide, C18-ceramide, C18:1-ceramide, C20-ceramide, C24-ceramide, and C24:1-ceramide), respectively. The data represent mean ± S.E. of three to five values.Metabolically, ceramide is also formed from degradation of glycosphingolipids (Fig. 1A) usually in acidic compartments, the lysosomes and/or late endosomes (9). The stepwise hydrolysis of complex glycosphingolipids eventually results in the formation of glucosylceramide, which in turn is converted to ceramide by the action of acid β-glucosidase 1 (GBA1)2 (9, 10). Severe defects in GBA1 activity cause Gaucher disease, which is associated with aberrant accumulation of the lipid substrates (1014). On the other hand, sphingomyelin is cleaved by acid sphingomyelinase to also form ceramide (15, 16). Either process results in the generation of lysosomal ceramide that can then be deacylated by acid ceramidase (17), releasing sphingosine that may escape the lysosome (18). The released sphingosine may become a substrate for either sphingosine kinases or ceramide synthases, forming sphingosine 1-phosphate or ceramide, respectively (3, 1921).In a related line of investigation, our studies (20, 22, 23) have begun to implicate protein kinase Cs (PKC) as upstream regulators of the sphingoid base salvage pathway resulting in ceramide synthesis. Activation of PKCs by the phorbol ester (PMA) was shown to stimulate the salvage pathway resulting in increases in ceramide. All the induced ceramide was inhibited by pretreatment with a ceramide synthase inhibitor, fumonisin B1, but not by myriocin, thus negating acute activation of the de novo pathway and establishing a role for ceramide synthesis (20, 23). Moreover, labeling studies also implicated the salvage pathway because PMA induced turnover of steady state-labeled sphingolipids but did not affect de novo labeled ceramide in pulse-chase experiments.Moreover, PKCδ, among PKC isoforms, was identified as an upstream molecule for the activation of acid sphingomyelinase in the salvage pathway (22). Interestingly, the PKCδ isoform induced the phosphorylation of acid sphingomyelinase at serine 508, leading to its activation and consequent formation of ceramide. The activation of acid sphingomyelinase appeared to contribute to ∼50% of the salvage pathway-induced increase in ceramide (28) (also, see Fig. 4C). This raised the possibility that distinct routes of ceramide metabolism may account for the remainder of ceramide generation. In this study, we investigated glucocerebrosidase GBA1 as a candidate for one of the other routes accounting for PKC-regulated salvage pathway of ceramide formation.Open in a separate windowFIGURE 4.Effects of knockdown of lysosomal enzymes on the generation of ceramide after PMA treatment. A, MCF-7 cells were transfected with 5 nm siRNAs of each of four individual sequences (SCR, GBA1-a, GBA1-b, and GBA1-c) for 48 h and then stimulated with 100 nm PMA for 1 h. Lipids were extracted, and then the levels of the C16-ceramide species were determined by high-performance liquid chromatography-tandem mass spectrometry. The data represent mean ± S.E. of three to nine values. B, MCF-7 cells were transfected with 5 nm siRNAs of SCR or GBA1-a (GBA1) for 48 h and then stimulated with 100 nm PMA for 1 h. Lipids were extracted, and then the levels of individual ceramide species were determined by high-performance liquid chromatography-tandem mass spectrometry. The data represent mean ± S.E. of three to five values. C14-Cer, C14-ceramide; C16-Cer, C16-ceramide; C18-Cer; C18-ceramide; C18:1-Cer, C18:1-ceramide; C20-Cer, C20-ceramide; C20-Cer, C24-ceramide; C24:1-Cer, C24:1-ceramide. C, MCF-7 cells were transfected with 5 nm siRNAs of SCR, acid sphingomyelinase (ASM), or GBA1-a (GBA1) for 48 h following stimulation with (PMA) or without (Control) 100 nm PMA for 1 h. Lipids were extracted, and then the levels of ceramide species were determined by high-performance liquid chromatography-tandem mass spectrometry. Levels of C16-ceramide are shown. The data represent mean ± S.E. of four to five values. Significant changes from SCR-transfected cells treated with PMA are shown in A–C (*, p < 0.02; **, p < 0.05; ***, p < 0.01).  相似文献   

8.
Carl van Walraven 《CMAJ》2013,185(16):E755-E762

Background:

Changes in the long-term survival of people admitted to hospital is unknown. This study examined trends in 1-year survival of patients admitted to hospital adjusted for improved survival in the general population.

Methods:

One-year survival after admission to hospital was determined for all adults admitted to hospital in Ontario in 1994, 1999, 2004, or 2009 by linking to vital statistics datasets. Annual survival in the general population was determined from life tables for Ontario.

Results:

Between 1994 and 2009, hospital use decreased (from 8.8% to 6.3% of the general adult population per year), whereas crude 1-year mortality among people with hospital admissions increased (from 9.2% to 11.6%). During this time, patients in hospital became significantly older (median age increased from 51 to 58 yr) and sicker (the proportion with a Charlson comorbidity index score of 0 decreased from 68.2% to 60.0%), and were more acutely ill on admission (elective admissions decreased from 47.4% to 42.0%; proportion brought to hospital by ambulance increased from 16.1% to 24.8%). Compared with 1994, the adjusted odds ratio (OR) for death at 1 year in 2009 was 0.78 (95% confidence interval [CI] 0.77–0.79). However, 1-year risk of death in the general population decreased by 24% during the same time. After adjusting for improved survival in the general population, risk of death at 1 year for people admitted to hospital remained significantly lower in 2009 than in 1994 (adjusted relative excess risk 0.81, 95% CI 0.80–0.82).

Interpretation:

After accounting for both the increased burden of patient sickness and improved survival in the general population, 1-year survival for people admitted to hospital increased significantly from 1994 to 2009. The reasons for this improvement cannot be determined from these data. Hospitals have a special place in most health care systems. Hospital staff care for the people with the most serious illnesses and the most vulnerable. They are frequently the location of many life-defining moments — including birth, surgery, acute medical illness and death — of many people and their families. Hospitals serve as a focus in the training of most physicians. In addition, they consume a considerable proportion of health care expenditures worldwide. 1 Given the prominence of hospitals in health care systems, measuring outcomes related to hospital care is important. In particular, the measurement of trends for outcomes of hospital care can help us to infer whether the care provided to hospital patients is improving. Previous such studies have focused on survival trends for specific diseases or patients who received treatment in specific departments. 2 12 None of these studies have adjusted for survival trends in the general population, the adjustment for which is important to determine whether changes in survival of patients in hospital merely reflect changes in the overall population. In this study, whether or not patient outcomes have changed over time was determined by examining trends in 1-year survival in all patients admitted to hospital, adjusting for improved survival in the general population.  相似文献   

9.
10.
11.
12.
Ryanodine receptors (RyR) are Ca2+ channels that mediate Ca2+ release from intracellular stores in response to diverse intracellular signals. In RINm5F insulinoma cells, caffeine, and 4-chloro-m-cresol (4CmC), agonists of RyR, stimulated Ca2+ entry that was independent of store-operated Ca2+ entry, and blocked by prior incubation with a concentration of ryanodine that inactivates RyR. Patch-clamp recording identified small numbers of large-conductance (γK = 169 pS) cation channels that were activated by caffeine, 4CmC or low concentrations of ryanodine. Similar channels were detected in rat pancreatic β-cells. In RINm5F cells, the channels were blocked by cytosolic, but not extracellular, ruthenium red. Subcellular fractionation showed that type 3 IP3 receptors (IP3R3) were expressed predominantly in endoplasmic reticulum, whereas RyR2 were present also in plasma membrane fractions. Using RNAi selectively to reduce expression of RyR1, RyR2, or IP3R3, we showed that RyR2 mediates both the Ca2+ entry and the plasma membrane currents evoked by agonists of RyR. We conclude that small numbers of RyR2 are selectively expressed in the plasma membrane of RINm5F pancreatic β-cells, where they mediate Ca2+ entry.Ryanodine receptors (RyR)3 and inositol 1,4,5-trisphosphate receptors (IP3R) (1, 2) are the archetypal intracellular Ca2+ channels. Both are widely expressed, although RyR are more restricted in their expression than IP3R (3, 4). In common with many cells, pancreatic β-cells and insulin-secreting cell lines express both IP3R (predominantly IP3R3) (5, 6) and RyR (predominantly RyR2) (7). Both RyR and IP3R are expressed mostly within membranes of the endoplasmic (ER), where they mediate release of Ca2+. Functional RyR are also expressed in the secretory vesicles (8, 9) or, and perhaps more likely, in the endosomes of β-cells (10). Despite earlier suggestions (11), IP3R are probably not present in the secretory vesicles of β-cells (8, 12, 13).All three subtypes of IP3R are stimulated by IP3 with Ca2+ (1), and the three subtypes of RyR are each directly regulated by Ca2+. However, RyR differ in whether their most important physiological stimulus is depolarization of the plasma membrane (RyR1), Ca2+ (RyR2) or additional intracellular messengers like cyclic ADP-ribose. The latter stimulates both Ca2+ release and insulin secretion in β-cells (8, 14). The activities of both families of intracellular Ca2+ channels are also modulated by many additional signals that act directly or via phosphorylation (15, 16). Although they commonly mediate release of Ca2+ from the ER, both IP3R and RyR select rather poorly between Ca2+ and other cations (permeability ratio, PCa/PK ∼7) (1, 17). This may allow electrogenic Ca2+ release from the ER to be rapidly compensated by uptake of K+ (18), and where RyR or IP3R are expressed in other membranes it may allow them to affect membrane potential.Both Ca2+ entry and release of Ca2+ from intracellular stores contribute to the oscillatory increases in cytosolic Ca2+ concentration ([Ca2+]i) that stimulate exocytosis of insulin-containing vesicles in pancreatic β-cells (7). Glucose rapidly equilibrates across the plasma membrane (PM) of β-cells and its oxidative metabolism by mitochondria increases the cytosolic ATP/ADP ratio, causing KATP channels to close (19). This allows an unidentified leak current to depolarize the PM (20) and activate voltage-gated Ca2+ channels, predominantly L-type Ca2+ channels (21). The resulting Ca2+ entry is amplified by Ca2+-induced Ca2+ release from intracellular stores (7), triggering exocytotic release of insulin-containing dense-core vesicles (22). The importance of this sequence is clear from the widespread use of sulfonylurea drugs, which close KATP channels, in the treatment of type 2 diabetes. Ca2+ uptake by mitochondria beneath the PM further stimulates ATP production, amplifying the initial response to glucose and perhaps thereby contributing to the sustained phase of insulin release (23). However, neither the increase in [Ca2+]i nor the insulin release evoked by glucose or other nutrients is entirely dependent on Ca2+ entry (7, 24) or closure of KATP channels (25). This suggests that glucose metabolism may also more directly activate RyR (7, 26) and/or IP3R (27) to cause release of Ca2+ from intracellular stores. A change in the ATP/ADP ratio is one means whereby nutrient metabolism may be linked to opening of intracellular Ca2+ channels because both RyR (28) and IP3R (1) are stimulated by ATP.The other major physiological regulators of insulin release are the incretins: glucagon-like peptide-1 and glucose-dependent insulinotropic hormone (29). These hormones, released by cells in the small intestine, stimulate synthesis of cAMP in β-cells and thereby potentiate glucose-evoked insulin release (30). These pathways are also targets of drugs used successfully to treat type 2 diabetes (29). The responses of β-cells to cAMP involve both cAMP-dependent protein kinase and epacs (exchange factors activated by cAMP) (31, 32). The effects of the latter are, at least partly, due to release of Ca2+ from intracellular stores via RyR (3335) and perhaps also via IP3R (36). The interplays between Ca2+ and cAMP signaling generate oscillatory changes in the concentrations of both messengers (37). RyR and IP3R are thus implicated in mediating responses to each of the major physiological regulators of insulin secretion: glucose and incretins.Here we report that in addition to expression in intracellular stores, which probably include both the ER and secretory vesicles and/or endosomes, functional RyR2 are also expressed in small numbers in the PM of RINm5F insulinoma cells and rat pancreatic β-cells.  相似文献   

13.
Understanding the mechanisms that control synaptic efficacy through the availability of neurotransmitter receptors depends on uncovering their specific intracellular trafficking routes. γ-Aminobutyric acid type B (GABAB) receptors (GABABRs) are obligatory heteromers present at dendritic excitatory and inhibitory postsynaptic sites. It is unknown whether synthesis and assembly of GABABRs occur in the somatic endoplasmic reticulum (ER) followed by vesicular transport to dendrites or whether somatic synthesis is followed by independent transport of the subunits for assembly and ER export throughout the somatodendritic compartment. To discriminate between these possibilities we studied the association of GABABR subunits in dendrites of hippocampal neurons combining live fluorescence microscopy, biochemistry, quantitative colocalization, and bimolecular fluorescent complementation. We demonstrate that GABABR subunits are segregated and differentially mobile in dendritic intracellular compartments and that a high proportion of non-associated intracellular subunits exist in the brain. Assembled heteromers are preferentially located at the plasma membrane, but blockade of ER exit results in their intracellular accumulation in the cell body and dendrites. We propose that GABABR subunits assemble in the ER and are exported from the ER throughout the neuron prior to insertion at the plasma membrane. Our results are consistent with a bulk flow of segregated subunits through the ER and rule out a post-Golgi vesicular transport of preassembled GABABRs.The efficacy of synaptic transmission depends on the intracellular trafficking of neurotransmitter receptors (1, 2). The trafficking of glutamatergic and GABAA6 receptors has been extensively studied, and their implications for synaptic plasticity have been well documented (3, 4). For example, differential trafficking of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors modifies synaptic strength and influences experience-dependent plasticity in vivo (5). The molecular mechanisms that govern the trafficking of metabotropic GABABRs and their consequences for synaptic inhibition remain less clear. In particular, limited information is available regarding the relationship between the trafficking of GABABRs and the topological complexity of the secretory pathway in neurons.GABABRs mediate the slow component of synaptic inhibition by acting on pre- and postsynaptic targets (68). They are implicated in epilepsy, anxiety, stress, sleep disorders, nociception, depression, and cognition (9). They also represent attractive targets for the treatment of withdrawal symptoms from drugs of addiction such as cocaine (10). They are obligatory heteromers composed of GABABR1 and GABABR2 subunits. GABABR1 contains an RXR-type sequence in the intracellular C-terminal domain that functions as an ER retention motif (11, 12). The ER retention sequence is masked upon assembly with GABABR2 resulting in the appearance of functional receptors at the plasma membrane. Only GABABR1 binds GABA with high affinity, whereas G protein signaling is exclusively mediated by the second and third intracellular loops of GABABR2 (1315). GABABRs are located in dendrites and axons, but their distribution does not coincide with the active zone or the postsynaptic density. Rather, they are adjacent to both compartments constituting perisynaptic receptors (16, 17).If GABABR subunits are synthesized in the soma, at least two possibilities exist for their anterograde transport, assembly, and insertion in dendrites. First, the subunits may be synthesized in the cell body, assembled in the somatic ER, and targeted preassembled in post-Golgi vesicles to their site of insertion in dendrites. Alternatively, they may be synthesized in the soma and transported through the ER membrane as non-heteromeric subunits. In the latter scenario, newly assembled receptors may exit the ER throughout the somatodendritic compartment prior to insertion at the plasma membrane and diffuse laterally for retention at functional sites. No evidence exists to discriminate between these possibilities. We reasoned that a prevalence of associated subunits in post-Golgi vesicles in dendrites would favor the first alternative, whereas the existence of non-associated subunits in intracellular compartments would support a somatodendritic assembly mechanism. Here we explore the presence of associated GABABR subunits using fluorescence recovery after photobleaching (FRAP), biochemistry, and quantitative colocalization. In addition, we report for the first time the use of BiFC (18) to study GABABR assembly in neurons. Our results demonstrate that GABABR subunits are differentially mobile in dendrites and that a high proportion of non-associated subunits prevail in an intracellular fraction of the adult brain. They also show that GABABR subunits are heteromeric at the plasma membrane but segregated in intracellular compartments of dendrites of hippocampal neurons. Importantly, treatment with brefeldin A (BFA) or interference of the coatomer protein complex II impair ER export and result in the accumulation of assembled subunits in intracellular compartments throughout the somatodendritic arbor. We conclude that GABABR subunits are synthesized in the soma and remain segregated in intracellular compartments prior to somatodendritic assembly. Our observations rule out a post-Golgi vesicular transport of preassembled GABABRs and suggest an alternative mechanism of receptor targeting.  相似文献   

14.
15.
16.
A new enzyme, rhamnogalacturonan (RG) α-d-galactopyranosyluronohydrolase (RG-galacturonohydrolase), able to release a galacturonic acid residue from the nonreducing end of RG chains but not from homogalacturonan, was purified from an Aspergillus aculeatus enzyme preparation. RG-galacturonohydrolase acted with inversion of anomeric configuration, initially releasing β-d-galactopyranosyluronic acid. The enzyme cleaved smaller RG substrates with the highest catalytic efficiency. A Michaelis constant of 85 μm and a maximum reaction rate of 160 units mg−1 was found toward a linear RG fragment with a degree of polymerization of 6. RG-galacturonohydrolase had a molecular mass of 66 kD, an isoelectric point of 5.12, a pH optimum of 4.0, and a temperature optimum of 50°C. The enzyme was most stable between pH 3.0 and 6.0 (for 24 h at 40°C) and up to 60°C (for 3 h).  相似文献   

17.
18.
The aim of this study was to analyse the infection dynamics ofAngiostrongylus cantonensis in its possible intermediate hosts over two years in an urban area in the state of Rio de Janeiro where the presence ofA. cantonensis had been previously recorded in molluscs. Four of the seven mollusc species found in the study were exotic.Bradybaena similaris was the most abundant, followed byAchatina fulica, Streptaxis sp., Subulina octona, Bulimulus tenuissimus, Sarasinula linguaeformis and Leptinaria unilamellata. Only A. fulica and B. similaris were parasitised by A. cantonensis and both presented co-infection with other helminths. The prevalence of A. cantonensisin A. fulica was more than 50% throughout the study. There was an inverse correlation between the population size ofA. fulica and the prevalence of A. cantonensis and abundance of the latter was negatively related to rainfall. The overall prevalence of A. cantonensis in B. similariswas 24.6%. A. fulica was the most important intermediary host of A. cantonensis in the studied area andB. similaris was secondary in importance for A. cantonensis transmission dynamics.  相似文献   

19.
The interaction between epithelial cells and the extracellular matrix is crucial for tissue architecture and function and is compromised during cancer progression. Dystroglycan is a membrane receptor that mediates interactions between cells and basement membranes in various epithelia. In many epithelium-derived cancers, β-dystroglycan is expressed, but α-dystroglycan is not detected. Here we report that α-dystroglycan is correctly expressed and trafficked to the cell membrane but lacks laminin binding as a result of the silencing of the like-acetylglucosaminyltransferase (LARGE) gene in a cohort of highly metastatic epithelial cell lines derived from breast, cervical, and lung cancers. Exogenous expression of LARGE in these cancer cells restores the normal glycosylation and laminin binding of α-dystroglycan, leading to enhanced cell adhesion and reduced cell migration in vitro. Our findings demonstrate that LARGE repression is responsible for the defects in dystroglycan-mediated cell adhesion that are observed in epithelium-derived cancer cells and point to a defect of dystroglycan glycosylation as a factor in cancer progression.Normal epithelial cells are tightly associated with one another and with the underlying basement membrane to maintain tissue architecture and function. During cancer progression, primitive cancer cells escape from this control by modifying the binding affinities of their cell membrane receptors. Several receptors have been described as important for this process. Of these, the integrins are the best studied (1). The receptor dystroglycan has been reported to be required for the development and maintenance of epithelial tissues (2, 3). A direct requirement for dystroglycan in epithelia is further demonstrated by the profound effect that loss of dystroglycan expression has on cell polarity and laminin binding in cultured mammary epithelial cells (4, 5). However, dystroglycan is not only important in the establishment and maintenance of epithelial structure. Associations have also been made between the loss of α-dystroglycan immunoreactivity and cancer progression in tumors of epithelial origin, including breast, colon, cervix, and prostate cancers (4, 69). The dystroglycan loss of function could thus serve as an effective means by which cancerous cells modify their adhesion to the extracellular matrix (ECM).2Dystroglycan is a ubiquitously expressed cell membrane protein that plays a key function in cellular integrity, linking the intracellular cytoskeleton to the extracellular matrix. The dystroglycan gene encodes a preprotein that is cleaved into two peptides (10). The C-terminal component, known as β-dystroglycan, is embedded within the cell membrane, whereas the N-terminal component, α-dystroglycan, is present within the extracellular periphery but remains associated with β-dystroglycan through non-covalent bonds. β-Dystroglycan binds to actin (11), dystrophin (11), utrophin (11), and Grb2 (12) through its C-terminal intracellular domain. α-Dystroglycan, on the other hand, binds to ECM proteins that contain laminin globular domains including laminins (13, 14), agrin (15), and perlecan (16), as well as to the transmembrane protein neurexin (17). α-Dystroglycan is extensively decorated by three different types of glycan modifications: mucin type O-glycosylation, O-mannosylation, and N-glycosylation. The state of α-dystroglycan glycosylation has been shown to be critical for the ability of the protein to bind to laminin globular domain-containing proteins of the ECM (18).Previous studies of epithelium-derived cancers (4, 9) demonstrated that the loss of immunoreactivity of α-dystroglycan antibodies correlates with tumor grade and poor prognosis. This reduced detection of α-dystroglycan, however, is based on a loss of α-dystroglycan reactivity to antibodies (known as IIH6 and VIA4-1) that recognize the laminin-binding glyco-epitope of α-dystroglycan, i.e. the protein is only functional when it is glycosylated in such a way (henceforth, referred to as functional glycosylation). However, in most of the cancer samples that have been studied to date, β-dystroglycan is expressed at normal levels at the cell membrane. Thus, the aforementioned cancer-associated loss of α-dystroglycan expression may reflect a failure in the post-translational processing of dystroglycan rather than in the synthesis of α-dystroglycan itself.A similar defect in dystroglycan has been reported in a group of congenital muscular dystrophies (19). This spectrum of human developmental syndromes involves the brain, eye, and skeletal muscle and shows a dramatic gradient of phenotypic severity that ranges from the most devastating in Walker-Warburg syndrome to the least severe in limb-girdle muscular dystrophy. Six distinct known and putative glycosyltransferases have been shown to underlie these syndromes: protein O-mannosyltransferase 1 (POMT1), protein O-mannosyltransferase 2 (POMT2), protein O-mannose β-1,2-acetylglucosaminyltransferase 1 (POMGnT1), like acetylglucosaminyltransferase (LARGE), Fukutin, and Fukutin-related protein (FKRP) (2025). Indeed, all muscular dystrophy patients with mutations in any of these genes fail to express the functionally glycosylated α-dystroglycan epitope that is recognized by the IIH6 and VIA4-1 antibodies.To investigate the molecular mechanism responsible for the loss of α-dystroglycan in epithelium-derived cancers and its role in metastatic progression, we examined the expression and glycosylation status of α-dystroglycan in a group of breast, cervical, and lung cancer cell lines. Here we report that although α-dystroglycan is expressed in the metastatic cell lines MDA-MB-231, HeLa, H1299, and H2030, it is not functionally glycosylated. In screening these cell lines for expression of the six known α-dystroglycan-modifying proteins, we observed that only one, LARGE, was extensively down-regulated. We also report that the ectopic restoration of LARGE expression in these cell lines led not only to the production of a functional dystroglycan but also to the reversion of certain characteristics associated with invasiveness, namely cell attachment to ECM proteins and cell migration.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号