首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Eight highly trained male kayakers were studied to determine the relationship between critical power (CP) and the onset of blood lactate accumulation (OBLA). Four exercise sessions of 90 s, 240 s, 600 s, and 1200 s were used to identify the CP of each kayaker. Each individual CP was obtained from the line of best fit (LBFCP) obtained from the progressive work output/time relationships. The OBLA was identified by the 4 mmol·l–1 blood lactate concentration and the work output at this level was determined using a lactate curve test. This consisted of paddling at 50 W for 5 min after which a 1-min rest was taken during which a 25-l blood sample was taken to analyse for lactate. Exercise was increased by 50 W every 5 min until exhaustion, with the blood sample being taken in the 1-min rest period. The exercise intensity at the OBLA for each subject was then calculated and this was compared to the exercise intensity at the LBFCP. The intensity at LBFCP was found to be significantly higher (t=2.115, P<0.05) than that at the OBLA of 4 mmol·1–1. These results were further confirmed by significant differences being obtained in blood lactate concentration (t=8.063, P<0.05) and heart rate values (t=2.90, P<0.05) obtained from the exercise intensity at LBFCP over a 20-min period and that of the anaerobic threshold (Than) parameters obtained from the lactate/heart rate curve. These differences suggest that CP and Than are different physiological events and that athletes have utilised either one or the other methods for monitoring training and its effects.  相似文献   

2.
The purpose of this investigation was to determine whether the onset of lactate acidosis is responsible for the increase in ventilatory equivalent (VE/VO2) during exercise of increasing intensity. Eight male subjects performed maximal incremental exercise tests on a cycle ergometer on two separate occasions. For the control (C) treatment, the initial work rates consisted of 4 min of unloaded pedaling (60 rpm) and 1 min of pedaling at a work rate of 30 W. Thereafter, the work rate was increased each minute by 22 W until volitional fatigue. Venous blood samples were taken before the onset of exercise and at the end of each work rate for determination of pH and lactate. Ventilatory parameters at each work rate were also monitored. Before the experimental treatment (E), the subjects performed two 3-min work bouts at high intensity (210-330 W) on the cycle ergometer in order to prematurely raise blood lactate levels and lower blood pH. The same incremental exercise test as C was then performed. The results indicated that the increase in VE/VO2 occurred at similar work rates and %VO2max although the venous H+ and lactate concentrations were significantly elevated during the E treatment. These results suggest that a decrease in the blood pH resulting from blood lactate accumulation is not responsible for the increase in VE/VO2 during incremental exercise.  相似文献   

3.
Arterial blood lactate concentrations were measured in six normal males before, during and after 3- and 6-min bicycle exercises performed at three different work rates. The lactate recovery curves were fitted to a bi-exponential time function consisting of a rapidly increasing and a slowly decreasing component, which supplied an accurate representation of the changes in lactate concentration. Variations in the parameters of this mathematical model have been studied as a function of the duration of exercise and of the work rate, showing a clear dependence on exercise duration such that increasing exercise length decreases the velocity constants of the fitted curves. In terms of the functional meaning which can be given to these constants, this result indicates that extending exercise duration from 3 to 6 min reduces the ability of the whole body to exchange and remove lactate. This effect did not qualitatively modify the one already described, which is due to increased work rates, but it shifted the ability to exchange and remove lactate towards lower values. The main conclusion of the study is that lactate kinetic data vary as a function of time during exercise. This inference must be accounted for in the interpretation of lactate data obtained during muscular exercise.  相似文献   

4.
ABSTRACT: BACKGROUND: This study investigated two different mathematical models for the kinetics of anaerobic power. Model 1 assumes that the work power is linear with the work rate, while model 2 assumes a linear relationship between the alactic anaerobic power and the rate of change of the aerobic power. In order to test these models, a cross country skier ran with poles on a treadmill at different exercise intensities. The aerobic power, based on the measured oxygen uptake, was used as input to the models, whereas the simulated blood lactate concentration was compared with experimental results. Thereafter, the metabolic rate from phosphocreatine break down was calculated theoretically. Finally, the models were used to compare phosphocreatine break down during continuous and interval exercises. RESULTS: Good similarity was found between experimental and simulated blood lactate concentration during steady state exercise intensities. The measured blood lactate concentrations were lower than simulated for intensities above the lactate threshold, but higher than simulated during recovery after high intensity exercise when the simulated lactate concentration was averaged over the whole lactate space. This fit was improved when the simulated lactate concentration was separated into two compartments; muscles + internal organs and blood. Model 2 gave a better behavior of alactic energy than Model 1 when compared against invasive measurements presented in the literature. During continuous exercise, model 2 showed that the alactic energy storage decreased with time, whereas model 1 showed a minimum value when steady state aerobic conditions were achieved. During interval exercise the two models showed similar patterns of alactic energy. CONCLUSIONS: The current study provides useful insight on the kinetics of anaerobic power. Overall, our data indicates that blood lactate levels can be accurately modeled during steady state, and suggests a linear relationship between the alactic anaerobic power and the rate of change of the aerobic power.  相似文献   

5.
The effects of music played during an exercise task on athletic performance have been previously studied. Yet, these results are not applicable for competitive athletes, who can use music only during warm-up or recovery from exercise. Therefore, the aim of this study was to determine the effect of motivational music (music that stimulates or inspires physical activity) during recovery from intense exercise, on activity pattern, rate of perceived exertion (RPE), and blood lactate concentration. Twenty young, active men (mean age 26.2 ± 2.1 years) performed a 6-minute run at peak oxygen consumption speed (predetermined from the VO(2) max test). The mean heart rate (HR), RPE, number of steps (determined by step counter), and blood lactate concentrations were determined at 3, 6, 9, 12, and 15 minutes during the recovery from the exercise, with and without motivational music (2 separate sessions, at random order). There was no difference in the mean HR during the recovery with and without music. Listening to motivational music during the recovery was associated with increased voluntary activity of the participants, determined by increased number of steps (499.4 ± 220.1 vs. 413.2 ± 150.6 steps, with and without music, respectively; p ≤ 0.05). The increased number of steps during the recovery was accompanied by a significantly greater decrease in blood lactate concentration percentage (28.1 ± 12.2 vs. 22.8 ± 10.9%, with and without music, respectively, p ≤ 0.05). This was associated with a greater decrease in RPE (77.7 ± 14.4 vs. 73.1 ± 14.7% with and without music, respectively; p ≤ 0.05). Our results suggest that listening to motivational music during nonstructured recovery from intense exercise leads to increased activity, faster lactate clearance, and reduced RPE and therefore may be used by athletes in their effort to enhance recovery.  相似文献   

6.
A simple method for sampling skin secretion in 1-min periods was developed for investigating the effects of progressive increases in exercise intensity on Na+, K+ and Cl- secretions from the skin of the forearm. Ten healthy male subjects performed exercise consisting of eight stepwise increases in intensity from 50 to 225 W, with a 25-W increase at each step. Exercise at each step was for 3 min followed by a 1-min recovery period. Samples of blood and skin secretion were taken during the recovery period. Significant positive correlations were found between the mean concentrations of Na+ and Cl- and between those of K+ and Cl- in the skin secretion. The concentrations of electrolytes in the skin secretion also showed significant correlations with the blood lactate concentrations. The inflection points for secretions of Na+, K+ and Cl- were 4.04, 3.61 and 3.83 mmol.l-1 of blood lactate; 64.42, 61.96 and 62.14% of maximal oxygen consumption (VO2max); and exercise intensities of 123.01, 117.65 and 125.07 W, respectively. No significant differences were observed between the value of 67.27% of VO2max or 134.00W at the onset of blood lactate accumulation (OBLA) and the inflection points. From these results we concluded that changes in electrolyte concentrations in skin secretion during incremental exercise according to this protocol were closely related with the change in the blood lactate concentration, and that the inflection points for electrolytes may have been near the exercise intensity at OBLA.  相似文献   

7.
We examined the effects of dynamic one-legged knee extension exercise on mean blood velocity (MBV) and muscle interstitial metabolite concentrations in healthy young subjects (n = 7). Femoral MBV (Doppler), mean arterial pressure (MAP) and muscle interstitial metabolite (adenosine, lactate, phosphate, K(+), pH, and H(+); by microdialysis) concentrations were measured during 5 min of exercise at 30 and 60% of maximal work capacity (W(max)). MAP increased (P < 0.05) to a similar extent during the two exercise bouts, whereas the increase in MBV was greater (P < 0.05) during exercise at 60% (77.00 +/- 6.77 cm/s) compared with 30% W(max) (43.71 +/- 3.71 cm/s). The increase in interstitial adenosine from rest to exercise was greater (P < 0.05) during the 60% (0.80 +/- 0.10 microM) compared with the 30% W(max) bout (0.57 +/- 0.10 microM). During exercise at 60% W(max), interstitial K(+) rose at a greater rate than during exercise at 30% W(max) (P < 0.05). However, pH increased (H(+) decreased) at similar rates for the two exercise intensities. During exercise, interstitial lactate and phosphate increased (P < 0.05) with no difference observed between the two intensities. After 5 min of recovery, MBV decreased to baseline levels after exercise at 30% W(max) (4.12 +/- 1.10 cm/s), whereas MBV remained above baseline levels after exercise at 60% W(max) (Delta19.46 +/- 2.61 cm/s; P < 0.05). MAP and interstitial adenosine, K(+), pH, and H(+) returned toward baseline levels. However, interstitial lactate and phosphate continued to increase during the recovery period. Thus an increase in exercise intensity resulted in concomitant changes in MBV and muscle interstitial adenosine and K(+), whereas similar changes were not observed for MAP or muscle interstitial pH, lactate, or phosphate. These data suggest that K(+) and/or adenosine may play an active role in the regulation of skeletal muscle blood flow during exercise.  相似文献   

8.
This study was designed to describe changes in plasma fatty acyl moieties during a 2-h endurance exercise. Sixteen endurance-trained subjects cycled 2 h at 55% of maximal power output and capillary blood was sampled every 15 min. Fourier-transform infrared (FT-IR) spectrometry was used to determine correlated changes between plasma fatty acyl moieties (FAM) structural characteristics and metabolic parameters (oxygen consumption, respiratory exchange ratio, glucose, lactate, TG, glycerol, and albumin). Opposite changes were found between carbohydrate and fatty acid metabolism during the second hour of exercise, i.e., a decrease of glucose and lactate concentrations while albumin, FAM, and TG increased. For fatty acid metabolism, FAM and TG did not showed the same pattern of changes at the end of exercise, i.e., TG remained constant after 90 min while FAM continued to increase. This late FAM concentration increase was correlated to the changes in albumin concentration and the nu C=C-H/nu(as) CH3 and nu(as) CH2/nu(as) CH3 ratios. These ratios clearly showed that FAM unsaturation increased while chain length decreased. It was hypothesized that PUFA from TG adipose lipolysis ketone bodies (beta-hydroxybutyric acid) from liver may have been released in higher amounts as glycogen stores became depleted after 90 min of exercise.  相似文献   

9.
Arterial blood lactate concentrations obtained on seven black males with hemoglobin sickle cell disease (SC) before, during, and after graded bicycle exercise up to exhaustion were compared with those of seven untrained (HU) and seven trained (HT) healthy males of the same ethnic origin. Lactate recovery curves were fitted by a biexponential time function consisting of a rapidly increasing and a slowly decreasing component. Higher work rates were reached by the HU and HT than by the SC group. Blood lactate rose distinctly over the corresponding preexercise resting values after the 25-, 50-, and 100-W exercise steps for the SC, HU, and HT groups, respectively. The arterial oxygen content was significantly lower for the SC than for the HU group at rest and at the end of exercise. The velocity constants of the slowly decreasing component of the lactate recovery curves were similar for the SC, HU, and HT groups despite the fact that they cycled up to different absolute work rates. The velocity constant of the rapidly increasing component was significantly higher for the HT. In terms of the functional meaning given to these constants and in view of their inverse relationship with absolute work rate (Freund et al. J. Appl. Physiol. 61: 932-939, 1986), these results indicate that, relative to the HU, the HT and the SC display improved and impaired abilities, respectively, to exchange and to remove lactate.  相似文献   

10.
To elucidate further the special nature of anaerobic threshold in children, 11 boys, mean age 12.1 years (range 11.4-12.5 years), were investigated during treadmill running. Oxygen uptake, including maximal oxygen uptake (VO2max), ventilation and the "ventilatory anaerobic threshold" were determined during incremental exercise, with determination of maximal blood lactate following exercise. Within 2 weeks following this test four runs of 16-min duration were performed at a constant speed, starting with a speed corresponding to about 75% of VO2max and increasing it during the next run by 0.5 or 1.0 km.h-1 according to the blood lactate concentrations in the previous run, in order to determine maximal steady-state blood lactate concentration. Blood lactate was determined at the end of every 4-min period. "Anaerobic threshold" was calculated from the increase in concentration of blood lactate obtained at the end of the runs at constant speed. The mean maximal steady-state blood lactate concentration was 5.0 mmol.l-1 corresponding to 88% of the aerobic power, whereas the mean value of the conventional "anaerobic threshold" was only 2.6 mmol.l-1, which corresponded to 78% of the VO2max. The correlations between the parameters of "anaerobic threshold", "ventilatory anaerobic threshold" and maximal steady-state blood lactate were only poor. Our results demonstrated that, in the children tested, the point at which a steeper increase in lactate concentrations during progressive work occurred did not correspond to the true anaerobic threshold, i.e. the exercise intensity above which a continuous increase in lactate concentration occurs at a constant exercise intensity.  相似文献   

11.
This study examined the effect of acute exposure of the whole body to cold on blood lactate response during incremental exercise. Eight subjects were tested with a cycle ergometer in a climatic chamber, room temperature being controlled either at 24 degrees C (MT) or at -2 degrees C (CT). The protocol consisted of a step increment in exercise intensity of 30 W every 2 min until exhaustion. Oxygen consumption (VO2) was measured at rest and during the last minute of each exercise intensity. Blood samples were collected at rest and at exhaustion for estimations of plasma norepinephrine (NE), epinephrine (E), free fatty acid (FFA) and glucose concentrations, during the last 15 s of each exercise step and also during the 1st, 4th, 7th, and the 10th min following exercise for the determination of blood lactate (LA) concentration. The VO2 was higher during CT than during MT at rest and during nearly every exercise intensity. At CT, lactate anaerobic threshold (LAT), determined from a marked increase of LA above resting level, increased significantly by 49% expressed as absolute VO2, and 27% expressed as exercise intensity as compared with MT. The LA tended to be higher for light exercise intensities and lower for heavy exercise intensities during CT than during MT. The E and NE concentrations increased during exercise, regardless of ambient temperature. Furthermore, at rest and at exhaustion E concentrations did not differ between both conditions, while NE concentrations were greater during CT than during MT. Moreover, an increase off FFA was found only during CT.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Arterial blood lactate concentrations were measured on 19 subjects before, during, and after a 3-min bicycle exercise at several work rates, and the concentrations during the recovery phases were fitted to a biexponential time function consisting of a rapidly increasing and a slowly decreasing component. Highly significant correlations with the work rate of the exercise preceding the recovery were found for all the parameters of the fitted equation. The two velocity constants show inverse linear relationships, whereas the other parameters vary according to a definite power function. A functional meaning has been given to the two velocity constants, namely the ability of the tissues to exchange and to remove lactate. For the group of subjects studied, after exercises at work rates below about 3.5 W/kg, the tissue's ability to utilize, and possibly to exchange lactate, increases over values generally reported for resting conditions, whereas after exercises at higher work rates the inverse occurs. Lactate kinetics during recovery appear to be the result of two underlying processes, one enhancing the ability of the tissues to exchange and remove lactate and the other restraining it.  相似文献   

13.
Several studies have described high correlation of salivary and blood lactate level during exercise. Measuring the effectiveness and intensity of training, lactate concentration in blood, and lately in saliva are used.The aim of our study was to evaluate the correlation between the concentration and timing of salivary and blood lactate level in endurance athletes and non-athletes after a maximal treadmill test, and to identify physiological and biochemical factors affecting these lactate levels.Sixteen volunteers (8 athletes and 8 non-athletes) performed maximal intensity (Astrand) treadmill test. Anthropometric characteristics, body composition and physiological parameters (heart rate, RR-variability) were measured in both studied groups. Blood and whole saliva samples were collected before and 1, 4, 8, 12, 15, 20 min after the exercise test. Lactate level changes were monitored in the two groups and two lactate peaks were registered at different timeperiods in athletes. We found significant correlation between several measured parameters (salivary lactate - total body water, salivary lactate - RR-variability, maximal salivary lactate - maximal heart rate during exercise, salivary- and blood lactate -1 min after exercise test). Stronger correlation was noted between salivary lactate and blood lactate in athletes, than in controls.  相似文献   

14.
The deflection point (DP) of the heart rate in relation to the work rate (WR) of 8 male endurance-trained paraplegics and 11 male physically active sports students was investigated during nonsteady-state incremental arm cranking ergometry (IT) and compared to the 4 mmol · l−1 blood lactate concentration threshold and to blood lactate concentration in steady-state exercise (SST). Heart rate, and lactate concentration from capillary blood, were determined at rest, during IT and SST. The DP was calculated by linear regression analysis of the heart rate during IT. The SST consisted of three consecutive exercise intensities over a period of 8 min at exercise intensities of 10 W below, and at 10 W above the work rate at deflection point (WRDP). No difference was found between the paraplegics and non-handicapped subjects regarding heart rate and blood lactate concentration at rest and during exercise. A DP was established in all the paraplegics and in 72.7% of the non-handicapped subjects, but lactate accumulation was observed in 75% of the paraplegics and in 62.5% of the non-handicapped subjects at the lowest intensity of SST. In summary, endurance-trained paraplegics with an injury level below T5 showed heart rate and blood lactate concentration values comparable to non-handicapped subjects during IT. A linear increase at moderate exercise intensities and a levelling-off at higher to maximal intensities could be identified in all the paraplegics and in 72.7% of non-handicapped subjects. The determination of the anaerobic threshold by DP should be applied with caution, since no causal relationship of DP and the anaerobic threshold was found and the WRDP tended to overestimate threshold values. Accepted: 9 February 1998  相似文献   

15.
Venous blood lactate concentrations [1ab] were measured every 30 s in five athletes performing prolonged exercise at three constant intensities: the aerobic threshold (Thaer), the anaerobic threshold (Than) and at a work rate (IWR) intermediate between Thaer and Than. Measurements of oxygen consumption (VO2) and heart rate (HR) were made every min. Most of the subjects maintained constant intensity exercise for 45 min at Thaer and IWR, but at Than none could exercise for more than 30 min. Relationships between variations in [1ab] and concomitant changes in VO2 or HR were not statistically significant. Depending on the exercise intensity (Thaer, IWR, or Than) several different patterns of change in [1ab] have been identified. Subjects did not necessarily show the same pattern at comparable exercise intensities. Averaging [1ab] as a function of relative exercise intensity masked spatial and temporal characteristics of individual curves so that a common pattern could not be discerned at any of the three exercise levels studied. The differences among the subjects are better described on individual [1ab] curves when sampling has been made at time intervals sufficiently small to resolve individual characteristics.  相似文献   

16.
Blood lactate concentrations in capillary samples obtained from the ear lobe or from the finger tip are used indistinctly, since they are considered equivalents. The aim of the study reported in this paper was to verify whether that assumption is valid due to the practical implications which any possible differences between these two sampling sites would have in the planning and assessing of an athletic training program. Twenty six healthy male athletes competing in different sports at the national level (9 rowers, 7 cyclists and 10 runners) were studied during the performance of a graded exercise test up to the point of exhaustion, on specific ergometers. In each group, capillary blood samples were obtained simultaneously from both the ear lobe and the finger tip at three different times during the test: 1) in resting conditions; 2) when exercising at a submaximal work load and 3) seven minutes after the point of exhaustion. Significant differences were found between the blood lactate concentrations of samples obtained from the ear lobe and from the finger tip (p < 0.001). The method error of repeated measurements for lactate concentrations from paired samples obtained in resting conditions was 27%, when exercising at a submaximal work load, 16% and at maximal work load, 3%. Capillary blood samples collected from the finger tip consistently showed higher values in lactate concentration than those obtained, at the same time, from the ear lobe.  相似文献   

17.
The aim of the study was to investigate the distribution of lactate in plasma, whole blood, erythrocytes, and capillary finger blood, before and during submaximal exercise. Ten healthy male subjects performed submaximal graded cycle ergometer exercise for 20-25 min. Venous blood samples and capillary finger blood samples were taken before exercise and every 5th min during exercise for lactate determination. The plasma lactate concentration was significantly higher (P less than 0.001, approximately 50%) than in the erythrocytes. This difference was not altered by the venous blood lactate concentration or exercise intensity. A significant difference (P less than 0.01) in lactate concentration was also found between capillary whole blood and venous whole blood. It was concluded that direct comparisons between lactate in capillary finger blood, venous whole blood and plasma could not be made.  相似文献   

18.
Lactate metabolism was studied in six normal males using a primed continuous infusion of lactate tracer during continuous graded supine cycle ergometer exercise. Subjects exercised at 49, 98, 147, and 196 W for 6 min at each work load. Blood was sampled from the brachial artery, the iliac vein, and the brachial vein. Arteriovenous differences were determined for chemical lactate concentration and L-[1-14C]-lactate. Tracer-measured lactate extraction was determined from the decrease in lactate radioactivity per volume of blood perfusing the tissue bed. Net lactate release was determined from the change in lactate concentration across the tissue bed. Total lactate release was taken as the sum of tracer-measured lactate extraction and net (chemical) release. At rest the arms and legs showed tracer-measured lactate extraction, as determined from the isotope extraction, despite net chemical release. Exercise elicited an increase in both net lactate release and tracer-measured lactate extraction by the legs. For the legs the total lactate release (net lactate release + tracer-measured lactate extraction) was roughly equal to twice the net lactate release under all conditions. The tracer-measured lactate extraction by the exercising legs was positively correlated to arterial lactate concentration (r = 0.81, P less than 0.001) at the lower two power outputs. The arms showed net lactate extraction during exercise, which was correlated to the arterial concentration (r = 0.86). The results demonstrate that exercising skeletal muscle extracts a significant amount of lactate during net lactate release and that the working skeletal muscle appears to be a major site of blood lactate removal during exercise.  相似文献   

19.
Components of the factor VIII complex increase and activation of the fibrinolytic system occur during exercise. The relation between the duration and intensity of exercise and the relative changes in the VIII complex and fibrinolytic system have not been previously examined. Five healthy male subjects were exercised with three protocols: a graded progressive exercise test to exhaustion on a cycle ergometer with 50-W increments every 4 min, steady-state exercise, 15 min at 5 and 125 W each, and an acute 30-s maximal exercise test on a cycle ergometer. Venous blood samples were drawn at base line, during the last 30 s of each power output in the graded exercise, at 5-min intervals for the steady-state exercise, and for up to 1 h after completion of exercise in all three protocols. At the maximum exercise intensities, increases in plasma lactate concentration ([La]), O2 uptake, and [H+] were observed. Components of the VIII complex [VIII procoagulant, VIII procoagulant antigen, VIII-related antigen (VIIIR:Ag), VIII ristocetin cofactor activity] abruptly rose at only the highest work intensities, whereas the whole blood clot lysis time began to gradually shorten much earlier at low work intensities. There were no qualitative changes in the factor VIIIR:Ag on crossed immunoelectrophoresis nor was there evidence of thrombin generation as determined by fibrinopeptide A generation. We conclude that during exercise the changes observed in the coagulation and fibrinolytic systems are related to the intensity of the exercise, which is reflected by increases in plasma [La] and [H+], and that the fibrinolytic system is activated before the changes in the VIII complex are observed.  相似文献   

20.
This study was designed to determine whether patients with McArdle's disease, who do not increase their blood lactate levels during and after maximal exercise, have a slow "lactacid" component to their recovery O2 consumption (VO2) response after high-intensity exercise. VO2 was measured breath by breath during 6 min of rest before exercise, a progressive maximal cycle ergometer test, and 15 min of recovery in five McArdle's patients, six age-matched control subjects, and six maximal O2 consumption- (VO2 max) matched control subjects. The McArdle's patients' ventilatory threshold occurred at the same relative exercise intensity [71 +/- 7% (SD) VO2max] as in the control groups (60 +/- 13 and 70 +/- 10% VO2max) despite no increase and a 20% decrease in the McArdle's patients' arterialized blood lactate and H+ levels, respectively. The recovery VO2 responses of all three groups were better fit by a two-, than a one-, component exponential model, and the parameters of the slow component of the recovery VO2 response were the same in the three groups. The presence of the same slow component of the recovery VO2 response in the McArdle's patients and the control subjects, despite the lack of an increase in blood lactate or H+ levels during maximal exercise and recovery in the patients, provides evidence that this portion of the recovery VO2 response is not the result of a lactacid mechanism. In addition, it appears that the hyperventilation that accompanies high-intensity exercise may be the result of some mechanism other than acidosis or lung CO2 flux.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号