首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The expression of acidic and basic keratins, and of some keratinization marker proteins such as filaggrin, loricrin, involucrin, and trichohyalin, is known for the epidermis of only a few eutherian species. Using light and high-resolution immunocytochemistry, the presence of these proteins has been studied in two monotreme and five marsupial species and compared to that in eutherians. In both monotreme and marsupial epidermis lamellar bodies occur in the upper spinosus and granular layers. Development of the granular layer varies between species and regionally within species. There is great interspecific variation in the size (0.1-3.0 microm) of keratohyalin granules (KHGs) associated with production of orthokeratotic corneous tissues. Those skin regions lacking hairs (platypus web), or showing reduced pelage density (wombat) have, respectively, minute or indiscernible KHGs, associated with patchy, or total, parakeratosis. Ultrastructural analysis shows that monotreme and marsupial KHGs comprise irregular coarse filaments of 25-40 nm that contact keratin filaments. Except for parakeratotic tissues of platypus web, distribution of acidic and basic proteins in monotreme and marsupial epidermis as revealed by anti-keratin antibodies AE1, AE2, and AE3 resembles that of eutherian epidermis. Antibodies against human or rat filaggrins have little or no cross-reactivity with epidermal proteins of other mammals: only sparse areas of wombat and rabbit epidermis show a weak immunofluorescence in transitional cells and in the deepest corneous tissues. Of the available, eutherian-derived antibodies, that against involucrin shows no cross-reactivity with any monotreme and marsupial epidermal tissues and that against trichohyalin cross-reacts only with cells in the inner root sheath and medulla of hairs. These results suggest that if involucrin and trichohyalin are present throughout noneutherian epidermis, they may have species-specific molecular structures. By contrast, eutherian-derived anti-loricrin antibodies show a weak to intense cross-reactivity to KHGs and corneous tissues of both orthokeratotic and parakeratotic epidermis in monotremes and marsupials. High-resolution immunogold analysis of loricrin distribution in immature keratinocytes of platypus parakeratotic web epidermis identifies labeled areas of round or irregular, electron-pale granules within the denser keratohyalin component and keratin network. In the deepest mature tissues, loricrin-like labeling is diffuse throughout the cytoplasm, so that cells lack the preferential distribution of loricrin along the corneous envelope that characterizes mature eutherian keratinocytes. Thus, the irregular distribution of loricrin in platypus parakeratotic tissues more resembles that which has been described for reptilian and avian keratinocytes. These observations on the noneutherian epidermis show that a stratum granulosum is present to different degrees, even discontinuous within one tissue, so that parakeratotic and orthokeratotic areas may alternate: this might imply that parakeratotic monotreme epidermis reflects the primitive pattern of amniote alpha-keratogenesis. Absent from anamniote epidermis and all sauropsid beta-keratogenic tissues, the ubiquitous presence of a loricrin-like protein as a major component of other amniote corneous tissues suggests that this is a primitive feature of amniote alpha-keratogenesis. The apparent lack of specific regionalization of loricin near the plasma membranes of monotreme keratinocytes could be an artifactual result of the immunofluorescence technique employed, or there may be masking of the antigenicity of loricrin-like proteins once they are incorporated into the corneous envelope. Nevertheless, the mechanism of redistribution of such proteins during maturation of monotreme keratinocytes is different from, perhaps more primitive, or less specialized, than that in the epidermis of eutherian mammals.  相似文献   

2.
The epidermis of representative mammalian species including humans has been examined for the presence of sulfhydryl oxidase, an enzyme likely involved in the oxidation of corneous proteins containing sulfhydryl groups in the epidermis. A database search indicates that the enzyme shares common sequences in numerous mammalian species so that an antibody against the human sulfhydryl oxidase 2 has been utilized on other species. The immunofluorescent study on the epidermis of the platypus (monotreme), red kangaroo (marsupials), hamster and human (placentals) reveals a prevalent labelling in the granular, transitional and lowermost part of the stratum corneous layer. The detailed ultrastructural immunogold study of the human epidermis reveals a diffuse and uneven labelling in the paler component of the composite keratohyalin granules or among keratin filaments of the transitional layer while the labelling disappears in the corneous layer. The study supports the hypothesis of the participation of the enzyme in the oxidative process that determines the formation of stable disulphide groups among keratins and other corneous proteins of the stratum corneum. This process gives rise to the resistant cell corneous envelope of keratinocytes in addition to the isopeptide bonds that derive from the catalytic action of epidermal transglutaminase on several corneous proteins.  相似文献   

3.
The process of cornification in the shell and non-shelled areas of the epidermis of the turtle Chrysemys picta was analyzed by light and ultrastructural immunohistochemistry for keratins, filaggrin and loricrin. Beta-keratin (hard keratin) was only present in the corneus layer of the plastron and carapace. The use of a beta-keratin antibody, developed against a specific chick scale beta-keratin, demonstrated that avian and reptilian hard keratins share common amino acid sequences. In both, shelled and non-shelled epidermis, acidic alpha keratin (AE1 positive) was limited to tonofilament bundles of the basal and suprabasal layer, while basic keratin (AE3 positive) was present in basal, suprabasal, and less intensely, pre-corneus layers, but tended to disappear in the corneus layer. The AE2 antibody, which in mammalian epidermis recognizes specific keratins of cornification, did not stain turtle shell but only the corneus layer of non-shelled (soft) epidermis. Two and four hours after an injection of tritiated histidine, the labelling was evenly distributed over the whole epidermis of both shelled and non-shelled areas, but was absent from the stratum corneum. In the areas of growth at the margin of the scutes of the shell, the labelling increased in precorneus layers. This suggests that histidine uptake is only related to shell growth and not to the production of a histidine-rich protein involved in keratinization. No filaggrin-like and loricrin-like immunoreactivity was seen in the carapace or plastron epidermis. However, in both proteins, some immunoreactivity was found in the transitional layer and in the lower level of the corneus layer of non-shelled areas. Loricrin- and filaggrin-like labelling was seen in small organelles (0.05-0.3 mum) among keratin bundles, identified with mucous-like granules and vesicular bodies. These organelles, present only in non-shelled epidermis, were more frequent along the border with the corneus layer, and labelling was low to absent in mature keratinocytes. This may be due to epitope masking or degradation. The immunolabelling for filaggrin was seen instead in the extracellular space among mature keratinocytes, over a material previously identified as mucus. The possibility that this labelling identified some epitopes derived from degraded portions of a filaggrin-like molecule is discussed. The present study suggests that proteins with some filaggrin- and loricrin-immunoreactivity are present in alpha-keratinocytes but not in beta-keratin cells of the shell.  相似文献   

4.
Lorenzo Alibardi 《Protoplasma》2014,251(4):827-837
The differentiation of the corneous layers of lizard epidermis has been analyzed by ultrastructural immunocytochemistry using specific antibodies against alpha-keratins and keratin associated beta-proteins (KAbetaPs, formerly indicated as beta-keratins). Both beta-cells and alpha-cells of the corneous layer derive from the same germinal layer. An acidic type I alpha-keratin is present in basal and suprabasal layers, early differentiating clear, oberhautchen, and beta-cells. Type I keratin apparently disappears in differentiated beta- and alpha-layers of the mature corneous layers. Conversely, a basic type II alpha-keratin rich in glycine is absent or very scarce in basal and suprabasal layers and this keratin likely does not pair with type I keratin to form intermediate filaments but is weakly detected in the pre-corneous and corneous alpha-layer. Single and double labeling experiments show that in differentiating beta-cells, basic KAbetaPs are added and replace type-I keratin to form the hard beta-layer. Epidermal alpha-keratins contain scarce cysteine (0.2–1.4 %) that instead represents 4–19 % of amino acids present in KAbetaPs. Possible chemical bonds formed between alpha-keratins and KAbetaPs may derive from electrostatic interactions in addition to cross-linking through disulphide bonds. Both the high content in glycine of keratins and KAbetaPs may also contribute to increase the hydrophobicy of the beta- and alpha-layers and the resistance of the corneous layer. The increase of gly-rich KAbetaPs amount and the bonds to the framework of alpha-keratins give rise to the inflexible beta-layer while the cys-rich KAbetaPs produce a pliable alpha-layer.  相似文献   

5.
Two modalities of keratinization are present in lizard epidermis: alpha (soft-pliable corneous layers) and beta (hard and inflexible corneous layers). While beta-keratinization is probably due to the synthesis of a new (beta)-keratin gene product, alpha keratinization resembles in part that of mammalian epidermis. The goal of this study was to test whether a sulfur-rich molecule similar to the mammalian corneous cell envelope protein loricrin is also present in lizard epidermis. This was done using X-ray microanalysis and immunocytochemical and ultrastructural methods. In the epidermis of the lizard Podarcis muralis small (0.1-0.3 microm) to large (1-5 microm) keratohyalin-like granules (KHLGs) are produced in alpha-keratinizing cells, especially in the clear layer. Small KHLGs contain sulfur and show weak filaggrin-like and stronger loricrin-like immunoreactivities. The latter is also present in keratinizing alpha-layers but is absent in the beta layers. Large KHLGs in the clear layer derive from the aggregation of the small granules with other components, including lipid material. These large granules show some loricrin-like immunoreactivity and contain sulfur and phosphorous, histidine, but not filaggrin-like immunoreactivity. It is suggested here that phosphorous derives from their phospholipid component. The present study shows that the modality of alpha-keratinization of lizard epidermis resembles that of mammals and suggests that the basic molecular mechanisms of keratin aggregation and formation of the corneous cell envelope were already present in the therapsid line of reptiles from which mammals evolved.  相似文献   

6.
Alibardi L  Toni M 《Tissue & cell》2005,37(6):423-433
The distribution and molecular weight of epidermal proteins of gecko lizards have been studied by ultrastructural, autoradiographic, and immunological methods. Setae of the climbing digital pads are cross-reactive to antibodies directed against a chick scutate scale beta-keratin but not against feather beta-keratin. Cross-reactivity for mammalian loricrin, sciellin, filaggrin, and transglutaminase are present in alpha-keratogenic layers of gecko epidermis. Alpha-keratins have a molecular weight in the range 40-58 kDa. Loricrin cross-reactive bands have molecular weights of 42, 50, and 58 kDa. Bands for filaggrin-like protein are found at 35 and 42 kDa, bands for sciellin are found at 40-45 and 50-55 kDa, and bands for transglutaminase are seen at 48-50 and 60 kDa. The specific role of these proteins remains to be elucidated. After injection of tritiated histidine, the tracer is incorporated into keratin and in setae. Tritiated proline labels the developing setae of the oberhautchen and beta layers, and proline-labeled proteins (beta-keratins) of 10-14, 16-18, 22-24 and 32-35 kDa are extracted from the epidermis. In whole epidermal extract (that includes the epidermis with corneous layer and the setae of digital pads), beta-keratins of low-molecular weight (10, 14-16, and 18-19 kDa) are prevalent over those at higher molecular weight (34 and 38 kDa). In contrast, in shed epidermis of body scales (made of corneous layer only while setae were not collected), higher molecular weight beta-keratins are present (25-27 and 30-34 kDa). This suggests that a proportion of the small beta-keratins present in the epidermis of geckos derive from the differentiating beta layer of scales and from the setae of digital pads. Neither small nor large beta-keratins of gecko epidermis cross-react with an antibody specifically directed against the feather beta-keratin of 10-12 kDa. This result shows that the 10 and 14-16 kDa beta-keratins of gecko (lepidosaurian) have a different composition than the 10-12 kDa beta-keratin of feather (archosaurian). It is suggested that the smaller beta-keratins in both lineages of sauropsids were selected during evolution in order to build elongated bundles of keratin filaments to make elongated cells. Larger beta-keratins in reptilian scales produce keratin aggregations with no orientation, used for mechanical protection.  相似文献   

7.
The differentiation of the epidermis in sarcopterigian fish may reveal some trend of keratinization followed by amphibian ancestors to adapt their epidermis to land. Therefore, the process of keratinization of the epidermis of the Australian lungfish Neoceratodus forsteri was studied by histochemistry, electron microscopy, and keratin immunocytochemistry. The epidermis is tri-stratified in a 2-3-month-old tadpole but becomes 6-8 stratified in young adults. Keratin filaments increase from basal to external cells where loose tonofilament bundles are present. This is shown also by the comparison of positivity to sulfhydryl groups and increasing immunoreactivity to alpha-keratins in more external layers of the epidermis. Two broad-spectrum anti alpha-keratin monoclonal antibodies (AE1 and AE3) stain all epidermal layers as they do in actinopterigian fish. In the adult epidermis, but not in that of the larva, the AE2 antibody (a marker of keratinization in mammalian epidermis) often immunolabels more heavily the external keratinized layers where sulfhydryl groups are more abundant. Mucous granules are numerous and concentrate on the external surface of the epidermis to be discharged and contribute to cuticle formation. Keratin is therefore embedded in a mucus matrix, but neither compact keratin masses nor cell corneous envelope were seen in external cells. It is not known whether specific matrix proteins are associated with mucus. There was no immunolocalization of the keratin-associated proteins, filaggrin and loricrin, which suggests that the epidermis of this species lacks the matrix and cell corneus envelope proteins characteristic of that of amniotes. In conclusion, while specific keratins (AE2 positive) are probably produced in the uppermost layers as in amphibian epidermis, no interkeratin, matrix proteins seem to be present in external keratinocytes of the lungfish other than mucus.  相似文献   

8.
Alibardi L 《Tissue & cell》2001,33(5):439-449
Keratinization in the epidermis of amphibians and the lungfish has been studied by electron microscopy, autoradiography and immunocytochemistry to determine whether histidine-rich proteins, filaggrin and loricrin are present. In the lungfish and amphibian tadpoles, anti-keratin antibodies (AE1 and AE3) stain the whole epidermis but not the AE2 antibody, a marker for keratinization. In adult epidermis, the AE2 antibody mainly stains keratinized layers, AE1 mainly stained basal cells, less suprabasal cells and no pre-keratinized and keratinized layers, and AE3 stains all epidermal layers. This staining pattern resembles that of amniote epidermis. Little tritiated histidine is taken up in toad epidermis at 4-6 h post-injection but 24 h after injection the radioactivity is most concentrated in the replacement layer beneath the corneus. This indicates that protein synthesis takes place in the epidermis but, due to the metabolic conversion that takes place in 24 h, it is unlikely that histidine-rich proteins are formed. Neither filaggrin-like nor loricrine-like immunoreactivities are present in amphibian and lungfish epidermis. This indicates absence of histidine-rich matrix proteins and corneous cell envelope proteins and only mucus is present among keratin filaments. Filaggrine-like and loricrin-like proteins are characteristic of amniotes epidermis and might have originated in basic amniotes (cotylosaurs).  相似文献   

9.
The characteristics of scaled skin of reptiles is one of their main features that distinguish them from the other amniotes, birds and mammals. The different scale patterns observed in extant reptiles result from a long evolutive history that allowed each species to adapt to its specific environment. The present review deals with comparative aspects of epidermal keratinization in reptiles, chelonians (turtles and tortoises), lepidosaurian (lizards, snakes, sphenodontids), archosaurians (crocodilians). Initially the morphology and cytology of reptilian scales is outlined to show the diversity in the epidermis among different groups. The structural proteins (alpha-keratins and associated proteins), and enzymes utilized to form the corneous layer of the epidermis are presented. Aside cytokeratins (alpha-keratins), used for making the cytoskeleton, reptilian alpha-keratinocytes produce interkeratin (matrix) and corneous cell envelope proteins. Keratin bundles and degraded cell organelles constitute most of the corneous material of alpha-keratinocytes. Matrix, histidine-rich and sulfur-rich proteins are produced in the soft epidermis and accumulated in the cornified cell envelope. Main emphasis is given to the composition and to the evolution of the hard keratins (beta-keratins). Beta-keratins constitute the hard corneous material of scales. These small proteins are synthesized in beta-keratinocytes and are accumulated into small packets that rapidly merge into a compact corneous material and form densely cornified layers. Beta-keratins are smaller proteins (8-20 kDa) in comparison to alpha-keratins (40-70 kDa), and this size may determine their dense packing in corneocytes. Both glycine-sulfur-rich and glycine-proline-rich proteins have been so far sequenced in the corneous material of scales in few reptilian species. The latter keratins possess C- and N-amino terminal amino acid regions with sequence homology with those of mammalian hard keratins. Also, reptilian beta-keratins possess a central core with homology with avian scale/feather keratins. Multiple genes code for these proteins and their discovery and sequentiation is presently an active field of research. These initial findings however suggest that ancient reptiles already possessed some common genes that have later diversified to produce the specific keratin-associated proteins in their descendants: extant reptiles, birds and mammals. The evolution of these small proteins in lepidosaurians, chelonians and archosaurians represent the next step to understand the evolution of cornification in reptiles and derived amniotes (birds and mammals).  相似文献   

10.
The sequence of differentiation of the epidermis of scutes during embryogenesis in the tortoise Testudo hermanni was studied using autoradiography, electron microscopy and immunocytochemistry. The study was mainly conducted on the epidermis of the carapace, plastron and nail. Epidermal differentiation resembles that described for other reptiles, and the embryonic epidermis is composed of numerous cell layers. In the early stages of differentiation of the carapacial ridge, cytoplasmic blebs of epidermal cells are in direct contact with the extracellular matrix and mesenchymal cells. The influence of the dermis on the formation of the beta‐layer is discussed. The dermis becomes rich in collagen bundles at later stages of development. The embryonic epidermis is formed by a flat periderm and four to six layers of subperidermal cells, storing 40–70‐nm‐thick coarse filaments that may represent interkeratin or matrix material. Beta‐keratin is associated with the coarse filaments, suggesting that the protein may be polymerized on their surface. The presence of beta‐keratin in embryonic epidermis suggests that this keratin might have been produced at the beginning of chelonian evolution. The embryonic epidermis of the scutes is lost around hatching and leaves underneath the definitive corneous beta‐layer. Beneath the embryonic epidermis, cells that accumulate typical large bundles of beta‐keratin appear at stage 23 and at hatching a compact beta‐layer is present. The differentiation of these cells shows the progressive replacement of alpha‐keratin bundles with bundles immunolabelled for beta‐keratin. The nucleus is degraded and electron‐dense nuclear material mixes with beta‐keratin. In general, changes in tortoise skin when approaching terrestrial life resemble those of other reptiles. Lepidosaurian reptiles form an embryonic shedding layer and crocodilians have a thin embryonic epidermis that is rapidly lost near hacthing. Chelonians have a thicker embryonic epidermis that accumulates beta‐keratin, a protein later used to make a thick corneous layer.  相似文献   

11.
In the stratum granulosum of mammalian epidermis, histidin-rich proteins (filaggrins) determine keratin clumping and matrix formation into terminal keratinocytes of the stratum corneum. The nature of matrix, interkeratin proteins in the epidermis of nonmammalian vertebrates, and in particular in that of reptilian, mammalian progenitors are unknown. The present biochemical study is the first to address this problem. During a specific period of the renewal phase of the epidermis of lizards and during epidermal regeneration, keratohyalin-like granules are formed, at which time they take up tritiated histidine. The latter also accumulate in cells of the alpha-keratin layer (soft keratin). This pattern of histidine incorporation resembles that seen in keratohyalin granules of the stratum granulosum of mammalian epidermis. After injection of tritiated histidine, we have analysed the distribution of the radioactivity by histoautoradiography and electrophoretic gel autoradiography of epidermal proteins. Extraction and electrophoretic separation of interfilamentous matrix proteins from regenerating epidermis 3-48 hours post-injection reveals the appearance of protein bands at 65-70, 55-58, 40-43, 30-33, 25-27, and 20-22 kDa. Much weaker bands were seen at 100, 140-160, and 200 kDa. A weak band at 20-22 kDa or no bands at all are seen in the normal epidermis in resting phase and in the dermis. In regenerating epidermis at 22 and 48 hours post-injection, little variation in bands is detectable, but low molecular weight bands tend to increase slightly, suggesting metabolic turnover. Using anti-filaggrin antibodies against rat, human, or mouse filaggrins, some cross-reactivity was seen with more reactive bands at 40-42 and 33 kDa, but it was reduced or absent at 140, 95-100, 65-70, 50-55, and 25 kDa. This suggests that different intermediate degradative proteins of lizard epidermis may share some epitopes with mammalian filaggrins and are different from keratins with molecular weight ranging from 40 to 65-68 kDa. The immunocytochemical observation confirms that a weak filaggrin-like immunoreactivity characterizes differentiating alpha-keratogenic layers in normal and regenerating tail. A weak filaggrin labeling is discernable in small keratohyalin-like granules but is absent from the larger granules and from mature keratinocytes. The present results indicate, for the first time, that histidine-rich proteins are involved in the process of alpha-keratinization in reptilian epidermis. The cationic, interkeratin matrix proteins implicated may be fundamentally similar in both theropsid-derived and sauropsid amniotes.  相似文献   

12.
During epidermal differentiation in mammals, keratins and keratin-associated matrix proteins rich in histidine are synthesized to produce a corneous layer. Little is known about interkeratin proteins in nonmammalian vertebrates, especially in reptiles. Using ultrastructural autoradiography after injection of tritiated proline or histidine, the cytological process of synthesis of beta-keratin and interkeratin material was studied during differentiation of the epidermis of lizards. Proline is mainly incorporated in newly synthesized beta-keratin in beta-cells, and less in oberhautchen cells. Labeling is mainly seen among ribosomes within 30 min postinjection and appears in beta-keratin packets or long filaments 1-3 h later. Beta-keratin appears as an electron-pale matrix material that completely replaces alpha-keratin filaments in cells of the beta-layer. Tritiated histidine is mainly incorporated into keratohyalin-like granules of the clear layer, in dense keratin bundles of the oberhautchen layer, and also in dense keratin filaments of the alpha and lacunar layer. The detailed ultrastructural study shows that histidine-labeling is localized over a dense amorphous material associated with keratin filaments or in keratohyalin-like granules. Large keratohyalin-like granules take up labeled material at 5-22 h postinjection of tritiated histidine. This suggests that histidine is utilized for the synthesis of keratins and keratin-associated matrix material in alpha-keratinizing cells and in oberhautchen cells. As oberhautchen cells fuse with subjacent beta-cells to form a syncytium, two changes occur : incorporation of tritiated histidine, but uptake of proline increases. The incorporation of tritiated histidine in oberhautchen cells lowers after merging with cells of the beta-layer, whereas instead proline uptake increases. In beta-cells histidine-labeling is lower and randomly distributed over the cytoplasm and beta-keratin filaments. Thus, change in histidine uptake somehow indicates the transition from alpha- to beta-keratogenesis. This study indicates that a functional stratum corneum in the epidermis of amniotes originates only after the association of matrix and corneous cell envelope proteins with the original keratin scaffold of keratinocytes.  相似文献   

13.
蝙蝠是一种唯一能够飞行的哺乳动物,其皮肤的超微结构尚未见报道。在电镜下观察了白边油蝠(Pipistrellus kuhlii)背部和翼膜皮肤的超微结构。表皮的厚度较低(10~12μm),角质层下有1~2层的刺细胞,该刺细胞由相似于鸟类无羽表皮的纤细角化细胞形成。颗粒层不连续且仅有少量小型透明角质颗粒(<0.3μm)。在翼膜的若干区域,表皮简化为一层与角质层相连的基底层。过渡期的角化细胞几乎不存在,提示其角质化过程非常迅速。基底膜上的无数半桥粒在真皮下面形成密集的附着点。大量胶原纤维直接维系在半桥粒和基底膜的致密层上,稀疏的弹性纤维使得蝙蝠表皮在飞行时易于伸展、在飞行后易于迅速折叠而不会受到损伤。与鸟类的表皮相似,蝙蝠角化细胞富有大量的脂质。由于脂质有助于蝙蝠皮肤在飞行中与冷空气流的传热绝缘,大量脂质的存在可能是为补偿蝙蝠翼膜的真皮缺乏厚的脂肪层。研究还表明,毛发较薄(4~7μm),并具有与皮层相似的突状物组成的精细表皮,其表皮细胞形成钩状抓握点使毛发紧紧粘结在一起,通过这种方式毛皮保持紧凑以恒定体温。  相似文献   

14.
Lorenzo Alibardi 《Protoplasma》2016,253(6):1405-1420
The epidermis of lizards is made of multiple alpha- and beta-layers with different characteristics comprising alpha-keratins and corneous beta-proteins (formerly beta-keratins). Three main modifications of body scales are present in the lizard Anolis carolinensis: gular scales, adhesive pad lamellae, and claws. The 40 corneous beta-proteins present in this specie comprise glycine-rich and glycine-cysteine-rich subfamilies, while the 41 alpha-keratins comprise cysteine-poor and cysteine-rich subfamilies, the latter showing homology to hair keratins. Other genes for corneous proteins are present in the epidermal differentiation complex, the locus where corneous protein genes are located. The review summarizes the main sites of immunolocalization of beta-proteins in different scales and their derivatives producing a unique map of body distribution for these structural proteins. Small glycine-rich beta-proteins participate in the formation of the mechanically resistant beta-layer of most scales. Small glycine-cysteine beta-proteins have a more varied localization in different scales and are also present in the pliable alpha-layer. In claws, cysteine-rich alpha-keratins prevail over cysteine-poor alpha-keratins and mix to glycine-cysteine-rich beta-proteins. The larger beta-proteins with a molecular mass similar to that of alpha-keratins participate in the formation of the fibrous meshwork present in differentiating beta-cells and likely interact with alpha-keratins. The diverse localization of alpha-keratins, beta-proteins, and other proteins of the epidermal differentiation complex gives rise to variably pliable, elastic, or hard corneous layers in different body scales. The corneous layers formed in the softer or harder scales, in the elastic pad lamellae, or in the resistant claws possess peculiar properties depending on the ratio of specific corneous proteins.  相似文献   

15.
Epidermal-dermal interactions influence morphogenesis and expression of the beta keratin gene family during development of scales in the embryonic chick. The underlying mechanisms by which these interactions control beta keratin expression are not understood. However, the present study of beta keratin gene expression during avian epidermal differentiation contributes new information with which to investigate the role of tissue interactions in this process. Using beta keratin-specific synthetic oligonucleotide probe, beta keratin mRNA was hybrid-selected from total poly A+ RNA of scutate scales. Seven beta keratin polypeptides were translated in vitro and could be identified by their positions in two-dimensional gels among the detergent-insoluble extracts of scutate scale epidermis. In vivo phosphorylation studies suggested that an additional three beta keratin polypeptides were present as phosphoproteins. The temporal appearance of beta keratin mRNA and the corresponding polypeptides was followed during scutate scale development. Polyclonal antiserum made against two of the beta keratin polypeptides was used for immunohistochemical and immunogold electron-microscopic analysis of beta keratin tissue distribution. Immunological reactivity was observed specifically along the outer scale surface in epidermal cells above the stratum germinativum. Immunogold beads were localized on 3-nm filament bundles. In situ hybridization with a beta keratin-specific RNA probe demonstrated that mRNA accumulated in the same regional manner as the polypeptides. This selective expression of beta keratin genes in specific regions of the developing scutate scale suggests that epidermal-dermal interactions provide not only for morphological events, but also for control of complex patterns of histogenesis and biochemical differentiation.  相似文献   

16.
Epithelial-mesenchymal interactions play important roles in morphogenesis, histogenesis, and keratinization of the vertebrate integument. In the anterior metatarsal region of the chicken, morphogenesis results in the formation of distinct overlapping scutate scales. Recent studies have shown that the dermis of scutate scales is involved in the expression of the beta keratin gene products, which characterize terminal differentiation of the epidermis on the outer scale surface (Sawyer et al.: Dev. Biol. 101:8-18, '84; Shames and Sawyer: Dev. Biol. 116:15-22, '86; Shames and Sawyer: In A.A. Moscona and A. Monroy (eds), R.H. Sawyer (Vol. ed): Current Topics in Developmental Biology. Vol. 22: The Molecular and Developmental Biology of Keratins. New York: Academic Press, pp. 235-253, '87). Since alpha and beta keratins are both found in the scutate scale and are members of two different multigene families, it is important to know the precise location of these distinct keratins within the epidermis. In the present study, we have used protein A-gold immunoelectron microscopy with antisera made against avian alpha and beta keratins to specifically localize these keratins during development of the scutate scale to better understand the relationship between dermal cues and terminal differentiation. We find that the bundles of 3-nm filaments, characteristic of tissues known to produce beta keratins, react specifically with antiserum which recognizes beta keratin polypeptides and are found in the embryonic subperiderm that covers the entire scutate scale and in the stratum intermedium and stratum corneum making up the platelike beta stratum of the outer scale surface. Secondly, we find that 8-10-nm tonofilaments react specifically with antiserum that recognizes alpha keratin polypeptides and are located in the germinative basal cells and the lowermost cells of the stratum intermedium of the outer scale surface, as well as in the embryonic alpha stratum, which is lost from the outer surface of the scale at hatching. The alpha keratins are found throughout the epidermis of the inner surface of the scale and the hinge region. Thus, the present study further supports the hypothesis that the tissue interactions responsible for the formation of the beta stratum of scutate scales do not directly activate the synthesis of beta keratins in the germinative cells but influence these cells so that they or their progeny will activate specific beta keratin genes at the appropriate time and place.  相似文献   

17.
Alibardi L  Toni M 《Tissue & cell》2007,39(5):311-323
Crocodilian keratinocytes accumulate keratin and form a corneous cell envelope of which the composition is poorly known. The present immunological study characterizes the molecular weight, isoelectric point (pI) and the protein pattern of alpha- and beta-keratins in the epidermis of crocodilians. Some acidic alpha-keratins of 47-68 kDa are present. Cross-reactive bands for loricrin (70, 66, 55 kDa), sciellin (66, 55-57 kDa), and filaggrin-AE2-positive keratins (67, 55 kDa) are detected while caveolin is absent. These proteins may participate in the formation of the cornified cell membranes, especially in hinge regions among scales. Beta-keratins of 17-20 kDa and of prevalent basic pI (7.0-8.4) are also present. Acidic beta-keratins of 10-16 kDa are scarce and may represent altered forms of the original basic proteins. Crocodilian beta-keratins are not recognized by a lizard beta-keratin antibody (A68B), and by a turtle beta-keratin antibody (A685). This result indicates that these antibodies recognize specific epitopes in different reptiles. Conversely, crocodilian beta-keratins cross-react with the Beta-universal antibody indicating they share a specific 20 amino acid epitope with avian beta-keratins. Although crocodilian beta-keratins are larger proteins than those present in birds our results indicate presence of shared epitopes between avian and crocodilian beta-keratins which give good indication for the future determination of the sequence of these proteins.  相似文献   

18.
The proliferation of the epidermis in soft skin, claws, and scutes of the carapace and plastron in the tortoise (Testudo hermanni) and the turtle (Chrysemys picta) were studied using autoradiographic and immunocytochemical methods. During the growing season, a basal keratinocyte in the epidermis of soft skin and claws takes 5-9 days to migrate into the corneous layer. In the tortoise, during fall/winter (resting season) a few alpha-keratin cells are produced in soft epidermis and hinge regions among scutes and occasional beta-keratin cells in the outer scute surface. When growth is resumed in spring (growing season), cell proliferation is intense, mainly around hinge regions and tips of marginal scutes. No scute shedding occurs and numerous beta-keratin cells are produced around the hinge regions, while alpha-keratin cells disappear. Beta-cells form a new thick corneous layer around the hinge regions, which constitute the growing rings of scutes. Beta-keratin cells produced in more central parts of scutes maintain a homogeneous thickness of the corneous layer along the whole scute surface. In the turtle, a more complicated process of scute growth occurs than in the tortoise. At the end of the growing season (late fall) the last keratinocytes formed beneath the old stratum corneum of the outer scale surface and hinge regions produce more alpha- than beta-keratin. These thin alpha-keratin cells form a scission layer below the old stratum corneum, which extends from the hinge regions toward the center of scutes and the tip of marginal scutes. In the resting season (fall/winter) most cells remain within the germinative layer of the carapace and plastron and a few alpha-cells move in 7-9 days into the corneous layer above hinge regions. In the following spring/summer (growing season) a new generation of beta-keratin cells is produced beneath the scission layer from the hinge region and more central part of the scutes. The epidermis of the inner surface of scutes and hinge regions contains most of the cells incorporating thymidine and histidine, while the remaining outer scute surface is less active. It takes 5-9 days for a newly produced beta-cell to migrate into the corneous layer. These cells form a new corneous layer that extends the whole scute surface underneath the maturing scission layer. The latter contains lipids and eventually flakes off, determining shedding of the above outer corneous layer in late spring or summer.  相似文献   

19.
In amphibian epidermis mucus is thought to constitute the matrix material that links keratin filaments present in cells of the corneous layer. As contrast in mammals, and perhaps in all amniotes, histidine-rich proteins form the matrix material. In order to address the study of matrix molecules in the epidermis of the first tetrapods, the amphibians, an autoradiographic and electrophoretic study has been done after administration of tritiated histidine. Histological analysis of amphibian epidermis shows that histidine is taken up in the upper intermediate and replacement layers beneath the corneous layer. Ultrastructural autoradiographic analysis reveals that electron-dense interkeratin material is labeled after administration of tritiated histidine. Electrophoretic analysis of the epidermis shows labeled proteic bands at 58-61, 50-55, 40-45, and some only weakly labeled at 30 and 24-25 kDa at 4-48 hours after injection of tritiated histidine. Keratin markers show that bands at 40-61 kDa contain keratins. Most histidine is probably converted into other amino acids such as glutamate and glutamine that are incorporated into newly synthetized keratins. However, non-keratin histidine-incorporating proteins within the keratin range could also be formed. The bands at 30 and 24-25 kDa suggest that these putative histidine-rich proteins are not keratins. In fact, their molecular weigh is below the range of that for keratins. In contrast with the mammalian condition, but resembling reports for lizard epidermis, putative histidine-rich proteins in amphibians have no high molecular weight precursor. Although filaggrin is not detectable by immunofluorescence in sections of amphibian epidermis, protein extraction, electrophoresis and immunoblotting are more sensitive. In the epidermis of toad and frog, but only occasionally in that of newt, filaggrin cross-reactive proteic bands are seen at 50-55, 40-45, and sometimes at 25 kDa. This suggests that after extraction and unmasking of reactive sites in the epidermis of more terrestrial amphians (anurans), some HRPs with filaggrin-like cross-reactivity are present. The overlap that exists at 50-55 kDa between filaggrin-positive and AE2-positive keratins, but not that at 40-45 kDa further indicate that non-keratin, filaggrin-like proteins may be present in anuran epidermis. The present study suggests for the first time that very small amounts of histidine-rich proteins are produced among keratin filaments in upper intermediate, replacement and corneous layers of amphibian epidermis. Although the molecular composition of these proteins is unknown, precluding understanding of their relationship to those of mammals and reptiles, these cationic proteins might have originated in conjunction with the formation of a horny layer during the adaptation to land during the Carboniferous and were possibly refined later in the epidermis of amniotes.  相似文献   

20.
Cornification of developing claws in the brush possum has been analysed by electron microscopy and compared with the process in other tetrapods. Newborns from 3 to 60 days postparturition were studied. After formation of symmetric and round outgrowth in digits the epidermis becomes thicker in the dorsal with respect to the ventral digit tip. The claw elongates forming the unguis and a shorter subunguis. Spinosus keratinocytes in both unguis and subunguis accumulate tonofilaments that fill their cytoplasm. Keratohyaline‐like granules are formed in early stages of differentiation in both unguis and subunguis but they later disappear in highly cornified corneocytes. Tonofilaments become electron‐dense in keratinocytes of the precorneous layer in the large corneocytes of the unguis and in narrow corneocytes of the subunguis. Keratin bundles transform into an amorphous corneous material that embeds or masks the original keratin intermediate filaments. Nucleated corneocytes are accumulated in the unguis while thinner corneocytes are present in the subunguis. The latter contain a dense material, possibly containing high sulphur keratin associated proteins, as occurs during cornifcation of the cortex and cuticle hair cells and in the nail. The process of cornification of mammalian claws is compared with that of reptilian and avian claws.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号