首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Sea urchin development is inhibited in the presence of mycostatin, a fungicidal antibiotic believed to alter cell membranes. Pretreatment of eggs inhibits fertilization inL. pictus, but not inS. purpuratus. The doses resulting in abnormal development inS. purpuratus increase as the treatment is started later in development. AH tissues are sensitive to mycostatin at high concentrations, but the endodermal and mesenchyme derivatives are most sensitive at lower concentrations. The results suggest the heterogeneity of cell membranes and also indicate that membranes change with time of development.This work was supported by San Fernando Valley State College Foundation Grants No 4.267.01, No 4.268.05.  相似文献   

2.
3-Hydroxy-3-methylglutaryl-coenzyme A reductase activity is developmentally regulated in the sea urchin Strongylocentrotus purpuratus (Woodward, H. D., Allen, J. M. C., and Lennarz, W. J. (1988) J. Biol. Chem. 263, 2513-2517). To study the structural and regulatory properties of this enzyme, we isolated and sequenced a 3-kb cDNA encoding the sea urchin embryo reductase. The deduced amino acid sequence of this cDNA predicted a protein structure consisting of a hydrophobic N-terminal region containing seven potential membrane-spanning domains and a somewhat less hydrophobic C-terminal domain joined by a hydrophilic linker region. Comparison with reductase from mammalian sources revealed that the N-terminal membrane domain and the C-terminal cytoplasmic domain exhibited high sequence similarity, whereas the domain that linked these two showed little or no sequence similarity. We investigated the possibility that sterols or sterol derivatives might be involved in the marked change that occurs in the level of reductase activity over development. Enzyme activity and reductase mRNA levels measured in extracts from embryos cultured in the presence of cholesterol, 25-hydroxycholesterol, dolichol, or mevalonic acid were found to be virtually unchanged as compared to control embryos. Similar experiments with mevinolin, a competitive inhibitor of reductase, failed to show a drug-induced change in enzyme or mRNA level. Thus, despite structural similarities the sea urchin embryo enzyme differs markedly from the mammalian enzyme with respect to regulation, since its level is neither repressed by sterols nor induced by mevinolin. Moreover, it appears unlikely that sterols or sterol derivatives play a role in the striking change in the level of this enzyme that occurs during development.  相似文献   

3.
The localization of sialoglycosphingolipids in the plasma membrane of sea urchin spermatozoa was studied by employing immunological methods including immunolysis of liposomal model membranes. The antibodies produced against these complex lipids were found to agglutinate various sea urchin spermatozoa differently. Both species differences and species similarities in the agglutination were found in spermatozoa of the echinoderm, the sea urchin and the starfish. The agglutination of the sea urchin spermatozoa was inhibited specifically by ceratain carbohydrates. Only a limited number of molecular species of sialoglycosphingolipid were localized at the surface of the plasma membrane of sea urchin spermatozoa cells. Moreover, topographical differences were found in the localization of the sialoglycosphingolipids at the cell surface of spermatozoa.  相似文献   

4.
Fertilization of sea urchin eggs results in a large stimulation of protein synthesis. This increase in protein synthesis is mediated by the mobilization of stored maternal mRNA (mRNPs) into polysomes, but the details of the molecular mechanisms which regulate this process are not well understood. Using a sea urchin egg cell-free translation system, evidence has been obtained which indicates that the capacity to initiate protein synthesis on new mRNAs is limited. Addition of exogenous mRNAs failed to stimulate overall protein synthesis, whereas supplementing the system with a nuclease-treated reticulocyte lysate, an S-100 supernatant fraction, or purified eIF-2 stimulated nearly twofold. In addition, the levels of 43 S preinitiation complexes containing a 40 S ribosomal subunit and methionyl-tRNA were increased at pH 7.4 compared to pH 6.9, or when reticulocyte S-100 was added. However, other experiments showed clearly that mRNA availability may also regulate translation in the sea urchin egg. Sea urchin lysates only stimulated poorly the nuclease-treated reticulocyte lysate system, and the mRNPs in the sea urchin lysate did not bind to reticulocyte 43 S preinitiation complexes. Since purified sea urchin egg mRNA was active in both assays, the bulk of sea urchin mRNA must be masked in the egg, and remain masked in the in vitro assays. Thus, protein synthesis appears to be regulated at both the level of mRNA availability and the activity of components of the translational machinery.  相似文献   

5.
Agrobacterium-mediated transformation of higher plants is a well-known and powerful tool for transgene delivery to plant cells. In the present work, we studied whether Agrobacterium can transfer genetic information to animal (sea urchin) embryos. Sea urchin embryos were co-cultivated with A. tumefaciens strains carrying binary vectors containing the nptII marker gene and agrobacterial rolC and rolB oncogenes. Bacterial plasmid T-DNA-sea urchin DNA junction sites were identified in the genome of these embryos, thus indicating successful transformation. The nptII and both rol genes were expressed in the transformed embryos. The processes of transgene integration and transgene expression were suppressed when Agrobacteria contained mutated virA, virB or virG genes, suggesting that Agrobacterium transforms sea urchin cells by a mechanism similar to that which mediates T-DNA transfer to plants. Some of the embryos co-cultivated with Agrobacterium developed teratoma-like structures. The ability of Agrobacterium strains to trigger formation of teratoma-like structures was diminished when they contained the mutated vir genes. In summary, our results demonstrate that Agrobacterium is able to transform animal (sea urchin) embryonic cells, thus indicating a potential of this natural system for gene delivery to animal hosts. We also discuss the possibility of horizontal gene transfer from Agrobacterium to marine invertebrates.  相似文献   

6.
Surface membrane glycoproteins have been postulated in many mammalian cells to be involved in external surface membrane functions such as cell adhesion, cell-cell recognition, and cell movement. In developing echinoderm embryos, cell adhesion, recognition, and movement of individual cell types have been attributed to differences in the external surface membranes of these cells. Results reported here suggest that the three cell types of 16-cell sea urchin embryos have a mechanism that could establish differences in the carbohydrate portion of glycoproteins located in the external surface membrane. The results demonstrate 1) that glycoproteins are synthesized during early sea urchin development and 2) that slightly different rates of glycoprotein synthesis exist for the three types of blastomeres from 16-cell sea urchin embryos.  相似文献   

7.
8.
9.
Cell division is an essential process for heredity, maintenance and evolution of the whole living kingdom. Sea urchin early development represents an excellent experimental model for the analysis of cell cycle checkpoint mechanisms since embryonic cells contain a functional DNA-damage checkpoint and since the whole sea urchin genome is sequenced. The DNA-damaged checkpoint is responsible for an arrest in the cell cycle when DNA is damaged or incorrectly replicated, for activation of the DNA repair mechanism, and for commitment to cell death by apoptosis in the case of failure to repair. New insights in cancer biology lead to two fundamental concepts about the very first origin of cancerogenesis. Cancers result from dysfunction of DNA-damaged checkpoints and cancers appear as a result of normal stem cell (NCS) transformation into a cancer stem cell (CSC). The second aspect suggests a new definition of "cancer", since CSC can be detected well before any clinical evidence. Since early development starts from the zygote, which is a primary stem cell, sea urchin early development allows analysis of the early steps of the cancerization process. Although sea urchins do not develop cancers, the model is alternative and complementary to stem cells which are not easy to isolate, do not divide in a short time and do not divide synchronously. In the field of toxicology and incidence on human health, the sea urchin experimental model allows assessment of cancer risk from single or combined molecules long before any epidemiologic evidence is available. Sea urchin embryos were used to test the worldwide used pesticide Roundup that contains glyphosate as the active herbicide agent; it was shown to activate the DNA-damage checkpoint of the first cell cycle of development. The model therefore allows considerable increase in risk evaluation of new products in the field of cancer and offers a tool for the discovery of molecular markers for early diagnostic in cancer biology. Prevention and early diagnosis are two decisive elements of human cancer therapy.  相似文献   

10.
Development of protocols and media for culturing immune cells from marine invertebrates has not kept pace with advancements in mammalian immune cell culture, the latter having been driven by the need to understand the causes of and develop therapies for human and animal diseases. However, expansion of the aquaculture industry and the diseases that threaten these systems creates the need to develop cell and tissue culture methods for marine invertebrates. Such methods will enable us to better understand the causes of disease outbreaks and to develop means to avoid and remedy epidemics. We report a method for the short-term culture of phagocytes from the purple sea urchin, Strongylocentrotus purpuratus, by modifying an approach previously used to culture cells from another sea urchin species. The viability of cultured phagocytes from the purple sea urchin decreases from 91.6% to 57% over six days and phagocyte morphology changes from single cells to aggregates leading to the formation of syncytia-like structures. This process is accelerated in the presence of lipopolysaccharide suggesting that phagocytes are capable of detecting this molecular pattern in culture conditions. Sea urchin immune response proteins, called Sp185/333, are expressed on the surface of a subset of phagocytes and have been associated with syncytia-like structures. We evaluated their expression in cultured phagocytes to determine their possible role in cell aggregation and in the formation of syncytia-like structures. Between 0 and 3 hr, syncytia-like structures were observed in cultures when only ∼10% of the cells were positive for Sp185/333 proteins. At 24 hr, ∼90% of the nuclei were Sp185/333-positive when all of the phagocytes had aggregated into syncytia-like structures. Consequently, we conclude that the Sp185/333 proteins do not have a major role in initiating the aggregation of cultured phagocytes, however the Sp185/333 proteins are associated with the clustered nuclei within the syncytia-like structures.  相似文献   

11.
Sea urchin spermatozoa are model cells for studying signal transduction events underlying flagellar motility and the acrosome reaction. We previously described the sea urchin sperm receptor for egg jelly 1 (suREJ1) which consists of 1450 amino acids, has one transmembrane segment and binds to the fucose sulfate polymer of egg jelly to induce the sperm acrosome reaction. We also cloned suREJ3 which consists of 2681 amino acids and has 11 putative transmembrane segments. Both these proteins localize to the plasma membrane over the acrosomal vesicle. While cloning suREJ1, we found suREJ2, which consists of 1472 amino acids, has two transmembrane segments and is present in the entire sperm plasma membrane, but is concentrated over the sperm mitochondrion. Experimental evidence suggests that, unlike suREJ1 and suREJ3, suREJ2 does not project extracellularly from the plasma membrane, but is an intracellular plasma membrane protein. All three sea urchin sperm REJ proteins possess a protein module of > 900 amino acids, termed 'the REJ module', that is shared by the human autosomal dominant polycystic kidney disease protein, polycystin-1, and PKDREJ, a testis-specific protein in mammals whose function is unknown. In the present study, we describe the sequence, domain structure and localization of suREJ2 and speculate on its possible function.  相似文献   

12.
Sperm hyaluronidase is thought to assist in penetration of the extracellular matrix (ECM) between the cumulus and corona radiata cells surrounding mammalian oocytes. The question was asked: Can motile cells which lack hyaluronidase penetrate the hamster oocyte cumulus complex (OCC)? Sea urchin (Strongylocentrotus purpuratus) and frog (Rana catesbeiana) sperm and the unicellular, biflagellated, green alga Chlamydomonas reinhardtii were extracted and found to contain no hyaluronidase activity. Moreover, none of these cells was able to disperse the cumulus cells of hamster OCC, nor did they affect the ultrastructure of the ECM between cells. Fresh hamster OCC were challenged with suspensions of each cell type. Frog and sea urchin sperm penetrated to the zona pellucida surface in less than 5 min. A cell wall-less mutant of Chlamydomonas also penetrated to the zona surface but required longer than 5 min. Wild-type Chlamydomonas penetrated only halfway to the zona, perhaps because its cell wall adhered to the ECM between the cumulus cells and retarded its movement. The motility of the frog and sea urchin sperm was not affected by the ECM of the OCC. Frog sperm exhibited slow lethargic motility yet had no difficulty penetrating to the zona; this indicates that hyperactivated motility is not required for penetration of the ECM. None of the challenge cells penetrated the zona pellucida, although the frog sperm did compress the weave of the zona. These data show that motile cells which lack the enzyme hyaluronidase can readily penetrate the ECM of the hamster cumulus and corona radiata and suggest that the significance of hyaluronidase in fertilization should be reevaluated.  相似文献   

13.
In protostomes, cell polarity is present after fertilization whereas most deuterostome embryos show minimal polarity during the early cleavages. We now show establishment of cell polarity as early as the first cleavage division in sea urchin embryos. We find, using the apical markers GM1, integrins, and the aPKC-PAR6 complex, that cells are polarized upon insertion of distinct basolateral membrane at the first division. This early apical-basolateral polarity, similar to that found in much larger cleaving amphibian zygotes, reflects precocious functional epithelial cell polarity. Isolated cleavage blastomeres exhibit polarized actin-dependent fluid phase endocytosis only on the GM1, integrin, microvillus-containing apical surface. A role for a functional PAR complex in cleavage plane determination was shown with experiments interfering with aPKC activity, which results in several spindle defects and compromised blastula development. These studies suggest that cell and embryonic polarity is established at the first cleavage, mediated in part by the Par complex of proteins, and is achieved by directed insertion of basolateral membrane in the cleavage furrow.  相似文献   

14.
Sea urchin overgrazing has caused widespread phase shifts from kelp forests to “urchin barrens” on many temperate reefs, reducing habitat complexity, productivity, and biodiversity. Sea urchin removal is increasingly used for kelp restoration; however, few studies have quantified the efficiency and effectiveness of different removal methods, resulting in limited understanding of their practicality. In this study, the efficiency (removal rate) and effectiveness (proportion removed) of four removal methods were evaluated in northeastern New Zealand. We compared culling or collecting sea urchins by either SCUBA or freediving in 128 small-scale plots (25 m2). We also evaluated the efficiency and effectiveness of culling in four large (1.6–2 ha) barren areas, scales relevant for restoration. On average, culling sea urchins was 1.9–4.4 times faster than collecting, and SCUBA was 1.5–3.3 times faster than freediving. Removal rates increased with sea urchin density, especially for culling on SCUBA, while freediving removal rates increased with experience. Effectiveness was lower in large-scale removals (86–93% of sea urchins ≥40 mm removed) compared to small-scale removals (98–99%), but sufficient for restoration objectives. Estimated time per area (using SCUBA culling) was similar across large-scale removals (49–57 hours/ha), despite an almost 2-fold variation in initial sea urchin densities (approximately 4–8 urchins/m2), suggesting area may better predict total removal time than simply number of sea urchins across low-density ranges. While sea urchin removal provides a rapid, feasible, and effective approach to restoring kelp in urchin barrens, restoration plans need to also address the causes of sea urchin overpopulation to ensure long-term benefits.  相似文献   

15.
16.
Prevention of polyspermic fertilization in sea urchins (Jaffe, 1976, Nature (Lond.). 261:68-71) and the worm Urechis (Gould-Somero, Jaffe, and Holland, 1979, J. Cell Biol. 82:426-440) involves an electrically mediated fast block. The fertilizing sperm causes a positive shift in the egg's membrane potential; this fertilization potential prevents additional sperm entries. Since in Urechis the egg membrane potential required to prevent fertilization is more positive than in the sea urchin, we tested whether in a cross-species fertilization the blocking voltage is determined by the species of the egg or by the species of the sperm. With some sea urchin (Strongylocentrotus purpuratus) females, greater than or equal to 90% of the eggs were fertilized by Urechis sperm; a fertilization potential occurred, the fertilization envelope elevated, and sometimes decondensing Urechis sperm nuclei were found in the egg cytoplasm. After insemination of sea urchin eggs with Urechis sperm during voltage clamp at +50 mV, fertilization (fertilization envelope elevation) occurred in only nine of twenty trials, whereas, at +20 mV, fertilization occurred in ten of ten trials. With the same concentration of sea urchin sperm, fertilization of sea urchin eggs occurred, in only two of ten trials at +20 mV. These results indicate that the blocking voltage for fertilization in these crosses is determined by the sperm species, consistent with the hypothesis that the fertilization potential may block the translocation within the egg membrane of a positively charged component of the sperm.  相似文献   

17.
Sea urchins are model non‐chordate deuterostomes, and studying the nervous system of their embryos can aid in the understanding of the universal mechanisms of neurogenesis. However, despite the long history of sea urchin embryology research, the molecular mechanisms of their neurogenesis have not been well investigated, in part because neurons appear relatively late during embryogenesis. In this study, we used the species Temnopleurus reevesii as a new sea urchin model and investigated the detail of its development and neurogenesis during early embryogenesis. We found that the embryos of T. reevesii were tolerant of high temperatures and could be cultured successfully at 15–30°C during early embryogenesis. At 30°C, the embryos developed rapidly enough that the neurons appeared at just after 24 h. This is faster than the development of other model urchins, such as Hemicentrotus pulcherrimus or Strongylocentrotus purpuratus. In addition, the body of the embryo was highly transparent, allowing the details of the neural network to be easily captured by ordinary epifluorescent and confocal microscopy without any additional treatments. Because of its rapid development and high transparency during embryogenesis, T. reevesii may be a suitable sea urchin model for studying neurogenesis. Moreover, the males and females are easily distinguishable, and the style of early cleavages is intriguingly unusual, suggesting that this sea urchin might be a good candidate for addressing not only neurology but also cell and developmental biology.  相似文献   

18.
The fine structure of the gametes in six sea urchin species of the Sea of Japan was studied. The sperm in Strongylocentrotus nudus, S. intermedius, Echinocardium cordatum, Scaphechinus mirabilis, Sc. griseus and Echinarachnius parma are species-specific. The conical head and symmetrically disposed ring-shape mitochondrion are common to regular sea urchin sperm cells. S. nudus is characterized by the bulb-shaped head of the sperm; S. intermedius, by a bullet-shaped one. The sperm spearhead and small amount of post-acrosome material are common to irregular sea urchins; the sperm width: length ratio varies for different species, with the highest for Sc. mirabilis. The sperm of Sc. griseus is characterized by two lipid drops in the middle part of sperm. Asymmetrical mitochondrion disposal is usual for E. parma. Actin filaments are found in the postacrosome material in the sperm of heart-shaped sea urchins. The differences in the fine structure of sperm in cosmopolitan species Ech. cordatum inhabiting the Sea of Japan and coastal areas of the Northeast Atlantic may bear record to the complex existence of species Ech. cordatum. The fine structure of sperm is unique for each of the studied families, Strongylocentrotidae, Scutellidae, and Loveniidae. The eggs of all the species are characterized by vitelline and jelly-like membranes. The vitelline membrane is formed by cytoplasm protrusions; the area between them is filled with fibrillar material. The jelly-like membrane is formed by fibrillar material associated with apical parts of microvilli of the vitelline membrane. The irregular sea urchins Sc. griseus, Sc. mirabilis and E. parma are characterized by chromatophores situated in the jelly-like membrane, with the highest abundance in Sc. mirabilis.  相似文献   

19.
It has been proposed that the apoptosis is an essential requirement for the evolution of all animals, in fact the apoptotic program is highly conserved from nematodes to mammals. Throughout development, apoptosis is employed by multicellular organisms to eliminate damaged or unnecessary cells. Here, we will discuss both developmental programmed cell death (PCD) under normal conditions and stress induced apoptosis, in sea urchin embryos. Sea urchin represent an excellent model system for studying embryogenesis and cellular processes involved in metamorphosis. PCD plays an essential role in sculpting and remodelling the embryos and larvae undergoing metamorphosis. Moreover, this marine organism directly interacts with its environment, and is susceptible to effects of several aquatic contaminants. Apoptosis can be adopted as a defence mechanism against any environmental chemical, physical and mechanical stress, for removing irreversibly damaged cells. This review, while not comprehensive in its reporting, aims to provide an overview of current knowledge on mechanisms to regulate physiological and the induced apoptotic program in sea urchin embryos.  相似文献   

20.
Sea urchin sperm plasma membranes isolated from heads and flagella were used to examine the presence of Gs (stimulatory guanine nucleotide-binding regulatory protein) and small G-proteins. Flagellar plasma membranes incubated with [32P]NAD and cholera toxin (CTX) displayed radiolabeling in a protein of 48 kDa, which was reactive by immunoblotting with a specific antibody against mammalian Gs. CTX-catalyzed [32P]ADP-ribosylation in conjunction with immunoprecipitation with anti-Gs, followed by electrophoresis and autoradiography, revealed one band of 48 kDa. Head plasma membranes, in contrast, did not show substrates for ADP-ribosylation by CTX. In flagellar and head plasma membranes pertussis toxin (PTX) ADP-ribosylated the same protein described previously in membranes from whole sperm; the extent of ADP-ribosylation by PTX was higher in flagellar than in head membranes. Small G-proteins were investigated by [32P]GTP-blotting. Both head and flagellar plasma membranes showed three radiolabeled bands of 28, 25 and 24 kDa. Unlabeled GTP and GDP, but not other nucleotides, interfered with the [α-32P]GTP-binding in a concentration-dependent manner. A monoclonal antibody against human Ras p21 recognized a single protein of 21 kDa only in flagellar membranes. Thus, sea urchin sperm contain a membrane protein that shares characteristics with mammalian Gs and four small G-proteins, including Ras . Gs, Gi and Ras are enriched in flagellar membranes while the other small G-proteins do not display a preferential distribution along the sea urchin sperm plasma membrane. The role of these G-proteins in sea urchin sperm is presently under investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号