首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We investigated the metabolism of very low density lipoprotein (VLDL), intermediate density lipoprotein (IDL), and low density lipoprotein (LDL) apolipoprotein B (apoB) in seven patients with combined hyperlipidemia (CHL), using 125I-labeled VLDL and 131I-labeled LDL and compartmental modeling, before and during lovastatin treatment. Lovastatin therapy significantly reduced plasma levels of LDL cholesterol (142 vs 93 mg/dl, P less than 0.0005) and apoB (1328 vs 797 micrograms/ml, P less than 0.001). Before treatment, CHL patients had high production rates (PR) of LDL apoB. Three-fourths of this LDL apoB flux was derived from sources other than circulating VLDL and was, therefore, defined as "cold" LDL apoB flux. Compared to baseline, treatment with lovastatin was associated with a significant reduction in the total rate of entry of apoB-containing lipoproteins into plasma in all seven CHL subjects (40.7 vs. 25.7 mg/kg.day, P less than 0.003). This reduction was associated with a fall in total LDL apoB PR and in "cold" LDL apoB PR in six out of seven CHL subjects. VLDL apoB PR fell in five out of seven CHL subjects. Treatment with lovastatin did not significantly alter VLDL apoB conversion to LDL apoB or LDL apoB fractional catabolic rate (FCR) in CHL patients. In three patients with familial hypercholesterolemia who were studied for comparison, lovastatin treatment increased LDL apoB FCR but did not consistently alter LDL apoB PR. We conclude that lovastatin lowers LDL cholesterol and apoB concentrations in CHL patients by reducing the rate of entry of apoB-containing lipoproteins into plasma, either as VLDL or as directly secreted LDL.  相似文献   

2.
Essential fatty acids (EFA) are important structural and functional components of cell membranes. Their deficiency has been associated with several clinical and biochemical abnormalities. In the present study, the lipid profile as well as the concentration, composition, and metabolism of lipoproteins were examined in rats rendered EFA-deficient over a period of 12 weeks. Changes in plasma fatty acids mainly induced an increase of palmitoleic (16:1 n-7) and eicosatrienoic (20:3 n-9) acids, while linoleic (18:2 n-6), arachidonic (20:4 n-6), linolenic (18:3 n-3), and docosahexaenoic (22:6 n-3) acids were decreased. The results show increased concentrations of free fatty acids (FFA) (P less than 0.001), triglycerides (P less than 0.001), total cholesterol (P less than 0.02), free cholesterol (P less than 0.005), and phospholipids (P less than 0.05) when compared to pair-fed controls. Similar levels of cholesteryl esters were found in the two groups, and lecithin: cholesterol acyltransferase activity (nmol/100 microliters plasma per h) (8.98 +/- 1.44 vs 8.72 +/- 0.50) did not differ. On the other hand, postheparin extrahepatic lipoprotein lipase (LPL) activity was significantly (P less than 0.002) decreased (5.96 +/- 0.29 vs 7.29 +/- 0.68 mumol FFA/ml per h) and could account for the hypertriglyceridemia as well for the relative triglyceride enrichment of very low density lipoprotein, intermediate density lipoprotein, and low density lipoprotein particles. This enzymatic depletion of LPL was mainly due to the adipose tissue, since a higher level (P less than 0.001) of hepatic lipase (325.8 +/- 16.0 vs 130.8 +/- 9.5 nmol FFA/mg protein per h) was found in liver acetone powder extracts.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Atorvastatin, a synthetic HMG-CoA reductase inhibitor used for the treatment of hyperlipidemia and the prevention of coronary artery disease, significantly lowers plasma cholesterol and low-density lipoprotein cholesterol (LDL-C) levels. It also reduces total plasma triglyceride and apoE concentrations. In view of the direct involvement of apoE in the pathogenesis of atherosclerosis, we have investigated the effect of atorvastatin treatment (40 mg/day) on in vivo rates of plasma apoE production and catabolism in six patients with combined hyperlipidemia using a primed constant infusion of deuterated leucine. Atorvastatin treatment resulted in a significant decrease (i.e., 30-37%) in levels of total triglyceride, cholesterol, LDL-C, and apoB in all six patients. Total plasma apoE concentration was reduced from 7.4 +/- 0.9 to 4.3 +/- 0.2 mg/dl (-38 +/- 8%, P < 0.05), predominantly due to a decrease in VLDL apoE (3.4 +/- 0.8 vs. 1.7 +/- 0.2 mg/dl; -42 +/- 11%) and IDL/LDL apoE (1.9 +/- 0.3 vs. 0.8 +/- 0.1 mg/dl; -57 +/- 6%). Total plasma lipoprotein apoE transport (i.e., production) was significantly reduced from 4.67 +/- 0.39 to 3.04 +/- 0.51 mg/kg/day (-34 +/- 10%, P < 0.05) and VLDL apoE transport was reduced from 3.82 +/- 0.67 to 2.26 +/- 0.42 mg/kg/day (-36 +/- 10%, P = 0.057). Plasma and VLDL apoE residence times and HDL apoE kinetic parameters were not significantly affected by drug treatment. Percentage decreases in VLDL apoE concentration and VLDL apoE production were significantly correlated with drug-induced reductions in VLDL triglyceride concentration (r = 0.99, P < 0.001; r = 0.88, P < 0.05, respectively, n = 6). Our results demonstrate that atorvastatin causes a pronounced decrease in total plasma and VLDL apoE concentrations and a significant decrease in plasma and VLDL apoE rates of production in patients with combined hyperlipidemia.  相似文献   

4.
The effect of alloxan-induced insulin deficiency on high density lipoprotein (HDL) metabolism was studied in rabbits. Rabbits with alloxan-induced diabetes had significantly higher (P less than 0.001, mean +/- SEM) plasma concentrations of glucose (541 +/- 13 vs. 130 +/- 2 mg/dl), triglyceride (2851 +/- 332 vs. 101 +/- 10 mg/dl), and total plasma cholesterol (228 +/- 55 vs. 42 +/- 4 mg/dl) than did normal control rabbits. However, diabetic rabbits had lower plasma HDL-cholesterol (7.2 +/- 1 vs. 51.3 +/- 1.3 mg/dl, P less than 0.001) and HDL apoA-I (38.3 +/- 6.0 vs. 87.2 +/- 4.3 mg/dl, P less than 0.001) concentrations. HDL kinetics were compared in diabetic and normal rabbits, using either 125I-labeled HDL or HDL labeled with 125I-labeled apoA-I, and it was demonstrated that HDL fractional catabolic rate (FCR) was slower and residence time was longer in the diabetic rabbits when either tracer was used. The slow FCR and the low apoA-I pool size led to reduced apoA-I/HDL synthetic rate in diabetic rabbits (0.97 +/- 0.11 vs. 0.34 +/- 0.07 mg per kg per hr). Thus, the reduced plasma HDL-cholesterol concentrations seen in rabbits with alloxan-induced insulin deficiency was associated with a lower total apoA-I/HDL synthetic rate. Since insulin treatment restored to normal all of the changes in plasma lipoprotein concentration and kinetics seen in diabetic rabbits, it is unlikely that the phenomena observed were secondary to a nonspecific toxic effect of alloxan. These data strongly support the view that insulin plays an important role in regulation of HDL metabolism.  相似文献   

5.
To study the role of the two postheparin plasma lipolytic enzymes, lipoprotein lipase (LPL) and hepatic lipase (HL) in high density lipoprotein (HDL) metabolism at a population level, we determined serum lipoproteins, apoproteins A-I, A-II, B, and E, and postheparin plasma LPL and HL activities in 65 subjects with a mean HDL-cholesterol of 34 mg/dl and in 62 subjects with a mean HDL-cholesterol of 87 mg/dl. These two groups represented the highest and lowest 1.4 percentile of a random sample consisting 4,970 subjects. The variation in HDL level was due to a 4.1-fold difference in the HDL2 cholesterol (P less than 0.001) whereas the HDL3 cholesterol level was increased only by 32% (P less than 0.001) in the group with high HDL-cholesterol. Serum apoA-levels were 128 +/- 2.2 mg/dl and 210 +/- 2.8 mg/dl (mean +/- SEM) in hypo- and hyper-HDL cholesterolemia, respectively. Serum apoA-II concentration was elevated by 28% (P less than 0.001) in hyperalphalipoproteinemia. The apoA-I/A-II ratio was elevated only in women with high HDL-cholesterol but not in men, suggesting that elevation of apoA-I is involved in hyperalphalipoproteinemia in females, whereas both apoA proteins are elevated in men with high HDL cholesterol. Serum concentration of apoE and its phenotype distribution were similar in the two groups. The HL activity was reduced in the high HDL-cholesterol group (21.2 +/- 1.5 vs. 38.5 +/- 1.8 mumol/h/ml, P less than 0.001), whereas the LPL activity was elevated in the group with high HDL-cholesterol compared to subjects with low HDL-cholesterol (27.8 +/- 1.3 vs. 19.9 +/- 0.8 mumol/h/ml, P less than 0.001). The HL and LPL activities correlated in opposing ways with the HDL2 cholesterol (r = 0.57, P less than 0.001 and r = 0.51, P less than 0.001, respectively), and this appeared to be independent of the relative ponderosity by multiple correlation analysis. The results demonstrate major influence of both HL and LPL on serum HDL cholesterol concentration at a population level.  相似文献   

6.
With the advent of nocturnal intragastric feeding which protects against acute metabolic complications and promotes growth, patients with glycogen storage disease type I are attracting less attention. However, several biochemical alterations persist and suggest that the long-term risk of atherosclerotic heart disease remains high. Persisting hypertriglyceridemia and hypercholesterolemia were found in seven glycogen storage disease type I subjects, six of them following 5-6 yr of nocturnal intragastric feeding. When compared to ten age-matched controls, the patients showed significantly (P less than 0.001) higher low density lipoprotein cholesterol (LDL-C) (247.7 +/- 46.8 vs. 115.3 +/- 5.0 mg/dl) and lower high density lipoprotein cholesterol (HDL-C) (26.4 +/- 3.4 vs. 55.8 +/- 2.9 mg/dl). Triglyceride (TG) enrichment with cholesteryl ester depletion characterized the lipoprotein classes. The diameters of very low density lipoproteins (VLDL) and LDL were larger, while that of HDL was smaller and consistent with the predominance of the HDL3 subclass and a lower apoA-I/apoA-II ratio. The raised levels of TG appeared attributable not only to the well-described lipogenesis, but also to impaired catabolism of fat, as evidenced by the significantly (P less than 0.001) decreased activity of both peripheral lipoprotein lipase (3.17 +/- 0.43 vs. 14.15 +/- 0.50 mumol FFA.ml-1.hr-1) and hepatic lipase (1.88 +/- 0.30 vs. 4.83 +/- 0.90). This may well explain the high concentration of intermediate density lipoprotein (IDL) and the impaired conversion of HDL3 to HDL2. Low apoC-II/apoC-III1 could be related to defective lipoprotein lipase activity. These data suggest that glycogen storage disease type I patients on nocturnal intragastric feeding remain at risk for atherosclerosis and its complications.  相似文献   

7.
Plasma lipids, lipoproteins, and lipoprotein cholesterol levels were studied in a group (n = 8) of prepubertal growth hormone-deficient patients before and after growth hormone (GH) administration. Determination of plasma lipoproteins by a sensitive agarose gel electrophoretic technique demonstrated: (a) in the patients with two prebeta bands an intensification of the fast prebeta lipoprotein fraction after growth hormone administration; and (b) in the patients with one prebeta band the appearance of a second prebeta band after growth hormone administration. The mean (+/- SD) plasma triglyceride level before GH was 86 +/- 60 mg/dl and 158 +/- 95 mg/dl after GH (P less than 0.01). Mean (+/- SD) plasma cholesterol level before GH was 196 +/- 25 mg/dl and 174 +/- 28 mg/dl after GH (P less than 0.05). High-density lipoprotein cholesterol concentrations decreased significantly (P less than 0.001) from mean (+/- SD) 55 +/- 12 mg/dl before GH to 37 +/- 10 mg/dl after GH. Very-low-density lipoprotein cholesterol concentrations increased significantly (P less than 0.05) from mean (+/- SD) 13 +/- 12 mg/dl before GH to 23 +/- 15 mg/dl after GH. Low-density lipoprotein cholesterol concentrations decreased (N.S.) from mean (+/- SD) 123 +/- 15 mg/dl before GH to 114 +/- 15 mg/dl after GH. These lipid and lipoprotein changes could be mediated through the insulin antagonism, hyperinsulinemia, and a decrease in lipoprotein lipase activity caused by growth hormone.  相似文献   

8.
Significant cholesterol synthesis occurs in gut mucosa of animals and humans. However, the role of gut synthesis in hypercholesterolemia and the effect of drugs on this function have not been defined. We obtained jejunal biopsies and bile samples from 21 Type II hypercholesterolemic subjects (mean serum cholesterol = 331 mg/dl) on a low fat diet after an over-night fast. Whole gut mucosal homogenate was assayed for activity of 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase, the rate-determining enzyme of cholesterol synthesis. Mean reductase activity (pmol/mg per min) was 5.5 +/- 1.0 (n = 21) in hypercholesterolemic subjects versus 11.3 +/- 1.0 in 52 normal subjects (P less than 0.01). This is consistent with the hypothesis that the primary defect in these patients is not excessive cholesterol synthesis but decreased low density lipoprotein (LDL) clearance. It implies that high LDL levels down-regulate gut reductase activity. After treatment of 7 patients with lovastatin (40-80 mg/day for at least 6-13 weeks), gut reductase activity decreased from 7.7 +/- 2.6 to 3.6 +/- 0.5 (P less than 0.05), in biopsies obtained 12 hr after the last drug dose. Inhibition of reductase activity by this drug was detected 12 hr after a dose, and the enzyme was not measurably induced during 6-13 weeks of therapy. In keeping with the decrease in serum cholesterol (332----239 mg/dl) and mucosal reductase activity during lovastatin therapy, mean gallbladder bile cholesterol saturation index also decreased (1.045 +/- 0.112 vs. 0.883 +/- 0.109, n = 7).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Inhibitors of 3-hydroxy-3-methyl glutaryl coenzyme A (HMG-CoA) reductase have been approved for treatment of hypercholesterolemia in humans. This class of therapeutic agents, in addition to lowering plasma cholesterol, reduces plasma triglyceride levels. We have investigated the mechanism of triglyceride-lowering effect of lovastatin in the hypertriglyceridemic state by using a rodent model of hypertriglyceridemia and obesity, the Zucker obese (fa/fa) rat. Lovastatin treatment (4 mg/kg), as compared to placebo, caused a 338% reduction in plasma triglyceride (146 +/- 5 vs. 494 +/- 76 mg/dl), a 58% decrease in total cholesterol (99 +/- 13 vs. 156 +/- 18 mg/dl), and a 67% reduction in high density lipoprotein (HDL)-cholesterol (69 +/- 8 vs. 115 +/- 15 mg/dl). The fall seen in plasma triglyceride was due to a decrease in hepatic secretion of very low density lipoproteins (VLDL), determined after blocking the clearance of triglyceride-rich lipoproteins with Triton WR-1339. Lovastatin treatment did not affect either the activities of hepatic lipogenic enzymes, glucose-6-phosphate dehydrogenase, or malic enzyme, or the activities of the lipolytic enzymes of adipose tissue, lipoprotein lipase, or liver, hepatic triglyceride lipase. Supplementation of mevalonolactone in the diet partially reversed the changes in plasma triglyceride (265 +/- 37 vs. 146 +/- 5 mg/dl), but not in total or HDL-cholesterol. These data demonstrate that, in the hypertriglyceridemic Zucker rat model, HMG-CoA reductase inhibitors reduce the rate of secretion of VLDL and this effect can be partially reversed by administration of mevalonolactone.  相似文献   

10.
To evaluate factors regulating the concentrations of plasma low density lipoproteins (LDL), apolipoprotein B metabolism was studied in nine Pima Indians (25 +/- 2 yr, 191 +/- 20% ideal wt) with low LDL cholesterol (77 +/- 7 mg/dl) and apoB (60 +/- 4 mg/dl) and in eight age- and weight-matched Caucasians with similar very low density lipoprotein (VLDL) concentrations, but higher LDL (cholesterol = 104 +/- 18; apoB = 82 +/- 10; P less than 0.05). Subjects received autologous 131I-labeled VLDL and 125I-labeled LDL, and specific activities of VLDL-apoB, intermediate density lipoprotein (IDL)-apoB, and LDL-apoB were analyzed using a multicompartmental model. Synthesis of LDL-apoB was similar (1224 +/- 87 mg/d in Pimas vs 1218 +/- 118 mg/d in Caucasians) but in Pimas the fractional catabolic rate (FCR) for LDL-apoB was higher (0.48 +/- 0.02 vs 0.39 +/- 0.04 d-1, P less than 0.05). In the Pimas, a much higher proportion of VLDL-apoB was catabolized without conversion to LDL (47 +/- 3 vs 30 +/- 5%, P less than 0.01). When all subjects were considered together, LDL-apoB concentrations were negatively correlated with both FCR for LDL-apoB (r = -0.79, P less than 0.0001) and the non-LDL pathway (r = -0.43, P less than 0.05). Also, the direct removal (non-LDL) path was correlated with VLDL-apoB production (r = 0.49, P = 0.03), and the direct removal pathway and FCR for LDL-apoB were correlated (r = 0.49, P = 0.03). In conclusion, plasma LDL appear to be regulated by both the catabolism of LDL and the extent of metabolism of VLDL without conversion to LDL; both of these processes may be mediated by the apoB/E receptor, and appear to increase in response to increasing VLDL production.  相似文献   

11.
Pre-beta1-HDL, a putative discoid-shaped high density lipoprotein (HDL) of approximately 67-kDa mass that migrates with pre-beta mobility in agarose gel electrophoresis, contains apolipoprotein A-I (apoA-I), phospholipids, and unesterified cholesterol. It participates in the retrieval of cholesterol from peripheral tissues. In this study we established a new sandwich enzyme immunoassay (EIA) for measuring plasma pre-beta1-HDL using mouse anti-human pre-beta1-HDL monoclonal antibody (MAb 55201) and goat anti-human apoA-I polyclonal antibody. MAb 55201 reacted with apoA-I in lipoprotein [A-I] with molecular mass less than 67 kDa, and with pre-beta1-HDL separated by nondenaturing two-dimensional electrophoresis, whereas it did not react with apoA-I in alpha-HDL. Pre-beta1-HDL levels measured by this method declined when incubated at 37 degrees C for 2 h, whereas this decrease was not observed in the presence of 2 mM lecithin:cholesterol acyltransferase inhibitor 5,5'-dithiobis (2-nitrobenzoic acid). To clarify the clinical significance of measuring pre-beta1-HDL by this method, 47 hyperlipidemic subjects [male/female 22/25; age 55 +/- 14 years; body mass index 25 +/- 4.5 kg/m(2); total cholesterol (TC) 245 +/- 64 mg/dl; triglyceride (TG) 232 +/- 280 mg/dl; HDL cholesterol (HDL-C) 51 +/- 23 mg/dl] and 25 volunteers (male/female 15/10; age 36 +/- 9.3 years; body mass index 23 +/- 3.5 kg/m(2); TC 183 +/- 28 mg/dl; TG 80 +/- 34 mg/dl; HDL-C 62 +/- 15 mg/dl) were involved. Plasma pre-beta1-HDL levels were significantly higher in hyperlipidemic subjects than in volunteers (39.3 +/- 10.1 vs. 22.5 +/- 7.5 mg/ml, P < 0.001) whereas plasma apoA-I levels did not differ (144.2 +/- 28.4 vs. 145.3 +/- 16.3 mg/dl).These results indicate that this sandwich EIA method specifically recognizes apoA-I associated with pre-beta1-HDL.  相似文献   

12.
Mechanisms responsible for hypertriglyceridemia in Tangier disease were elucidated by an analysis of the plasma post-heparin lipolytic activities and the structural and metabolic properties of very low (VLDL) and low (LDL) density lipoproteins. The levels of lipoprotein lipase activity in six Tangier patients were significantly lower (P less than 0.001) than in 40 control subjects (8.1 +/- 3.3 (+/- S.D.) vs. 14.1 +/- 3.7 units/ml). In contrast, the levels of hepatic triacylglycerol lipase were higher (P less than 0.01) than in normal controls (14.4 +/- 3.9 vs. 9.3 +/- 4.0 units/ml). Because kinetic parameters such as Km or Vmax cannot be obtained with naturally occurring triacylglycerol-rich lipoproteins, the pseudo-first-order rate constant (k1) of triacylglycerol hydrolysis was used to assess the effectiveness of triacylglycerol-rich lipoproteins as substrates for lipoprotein lipase. The k1 values for Tangier VLDL (k1 = 0.017 +/- 0.002 min-1) were significantly lower (P less than 0.001) than the k1 values (0.036 +/- 0.008 min-1) for control VLDL. Both the Tangier and control LDL2 are similar in their resistance to the action of lipoprotein lipase, as shown by their low k1 values (0.002 +/- 0.001 and 0.001 +/- 0.001 min-1, respectively). The major compositional difference between the lipoproteins of Tangier disease and normal subjects was a significant increase in the percent content of apolipoprotein A-II in all lipoprotein particles with d less than 1.063 g/ml, with the greatest increase occurring in VLDL and the lowest in LDL2. These results were interpreted as indicating that, in Tangier disease, there is a lower reactivity of VLDL with lipoprotein lipase which may in part be attributed to the abnormal apolipoprotein composition. This finding, in conjunction with the reduced levels of lipoprotein lipase activity, may explain the hypertriglyceridemia in Tangier disease.  相似文献   

13.
Plasma lipoprotein profile and composition in atherosclerosis-susceptible White Carneau and atherosclerosis-resistant Show Racer pigeons were investigated while consuming a regular pigeon chow diet free of cholesterol. Plasma was studied by analytical and preparative ultracentrifugation and paper electrophoresis. Lipid composition of each lipoprotein was determined by combined TLC-GLC techniques. The major plasma lipoprotein of both breeds was high density lipoprotein (HDL) with some low density lipoprotein (LDL) and no very low density lipoprotein (VLDL). Cholesterol was mainly found in the HDL in both breeds (71.7%), and no difference was noticed in the total cholesterol content of whole plasma or in various lipoproteins. The LDL fraction in White Carneaux showed a significantly lower (P less than 0.05) percentage of cholesterol esters compared with Show Racers (58.63 +/- 4.9 in White Carneaux vs. 72.12 +/- 2.1 in Show Racers). In LDL, the percentage of the triglyceride concentration in White Carneaux was significantly lower (P less than 0.01) than that of Show Racers while the percentage of protein content in White Carneaux was higher than in Show Racers. No significant differences were observed in fatty acid composition of steryl esters phospholipids, and triglycerides in the lipoprotein fractions of the two breeds. These studies show important differences in the cholesterol esters, protein, and triglyceride content of LDL in the atherosclerosis-susceptible breed of pigeons.  相似文献   

14.
Normal rats fed an isocaloric sucrose-rich diet (SRD) for 3 weeks developed high levels of triacylglycerol in plasma (P) (mmol triacylglycerol I-1) heart (H) and liver (L) tissues (mumol triacylglycerol mg DNA-1) as compared to control rats fed the standard chow (STD) (X +/- SEM; P: SRD 1.32 +/- 0.06 vs STD 0.49 +/- 0.05, P less than 0.001; H: SRD 2.1 +/- 0.17 vs STD 0.94 +/- 0.01, P less than 0.001; L: SRD 8.48 +/- 1.47 vs STD 1.71 +/- 0.12, P less than 0.001). A simultaneous drop in the activities (mumol glycerol ml-1 hr-1) of several plasma post heparin lipolytic enzymes was observed; total triglyceride lipase (T-TGL): SRD 5.32 +/- 0.34 vs STD 7.48 +/- 0.64, P less than 0.01; lipoprotein lipase (LPL): SRD 1.61 +/- 0.26 vs STD 2.42 +/- 0.41, P less than 0.05; hepatictriglyceride lipase (H-TGL): SRD 3.71 +/- 0.28 vs STD 5.05 +/- 0.69, P less than 0.05 and monoglyceride hydrolase (MGH) (mumol glycerol I-1 min-1): SRD 558 +/- 108 vs STD 1165 +/- 45, P less than 0.001. Rats fed the SRD presented glucose intolerance after i.v. glucose (Kg X 10(-2); 1.06 +/- 0.09 vs 2.61 +/- 0.14 of STD, P less than 0.001) in spite of the presence of hyperinsulinism (sigma plasma IRI microU/ml from 0 to 30 min: 184.6 +/- 23.6 vs 100.5 +/- 9.7 of STD, P less than 0.01) suggesting that a state of insulin resistance had developed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The effect of frozen storage on lipoprotein distribution of apolipoprotein C-III (apoC-III) and apoE was investigated by measuring apoC-III and apoE by ELISA in HDL and apoB-containing lipoproteins of human plasma samples (n = 16) before and after 2 weeks of frozen storage (-20 degrees C). HDLs were separated by heparin-manganese precipitation (HMP) or by fast-protein liquid chromatography (FPLC). Total plasma apoC-III and apoE levels were not affected by frozen storage. HDL-HMP apoC-III and apoE levels were significantly higher in frozen versus fresh samples: 7.7 +/- 0.7 versus 6.7 +/- 0.7 mg/dl (P < 0.05) and 2.0 +/- 0.1 versus 1.2 +/- 0.1 mg/dl (P < 0.001), respectively. HDL-FPLC apoC-III and apoE, but not triglyceride (TG) or cholesterol, levels were also higher in frozen samples: 12.0 +/- 1.2 versus 7.5 +/- 0.6 mg/dl (P < 0.001) and 2.7 +/- 0.2 versus 1.6 +/- 0.2 mg/dl (P < 0.001), respectively. Frozen storage led to a decrease in apoC-III (-17 +/- 9%) and apoE (-19 +/- 9%) in triglyceride-rich lipoprotein. Redistribution of apoC-III and apoE was most evident in samples with high TG levels. HDL apoC-III and apoE levels were also significantly higher when measured in plasma stored at -80 degrees C. Our results demonstrate that lipoprotein distribution of apoC-III and apoE is affected by storage of human plasma, suggesting that analysis of frozen plasma should be avoided in studies relating lipoprotein levels of apoC-III and/or apoE to the incidence of coronary artery disease.  相似文献   

16.
The goal of the current study was to determine the mechanism of the hypocholesterolemic effect of psyllium using a randomized, double-blind, crossover design. Twenty males (age 44 +/- 4 yr, weight 79 +/- 10 kg) with moderate hypercholesterolemia (total 265 +/- 17 mg/dl, low density lipoprotein (LDL) 184 +/- 15 mg/dl) were studied at baseline (B) and after randomization to receive a 40-day course of 15 g/day of either psyllium (Ps) or placebo (Pl) (cellulose). After a washout period (11 +/- 2 days), subjects were crossed over to the other fiber treatment for an additional 40 days and restudied. Intestinal cholesterol absorption, cholesterol synthesis in isolated peripheral blood mononuclear cells, bile acid kinetics, gallbladder motility, and intestinal transit were measured at each study period. Psyllium lowered LDL cholesterol (x:184 (B), 169 (Ps), and 179 (Pl) mg/dl; Ps vs. B,Pl: P less than 0.004, P less than 0.02), decreased relative cholesterol absorption (x:51 (B), 45 (Ps), and 49 (Pl) %; Ps vs. B,Pl: P less than 0.03, P less than 0.03), did not alter absolute cholesterol absorption, and increased the fractional turnover of both chenodeoxycholic acid (x:0.176 (B), 0.203 (Ps), and 0.170 (Pl) day-1; Ps vs. B,Pl: P less than 0.0001, P less than 0.01) and cholic acid (x:0.303 (B), 0.411 (Ps), and 0.301 (Pl) d-1; Ps vs. B, Pl: P less than 0.006, P less than 0.002). Bile acid synthesis increased in subjects whose LDL cholesterol was lowered by more than 10% (Ps vs. B: 1304 +/- 489 vs 992 +/- 307 mumol/day, P less than 0.006; Ps vs. PI: 1304 +/- 489 vs. 914 +/- 321 mumol/day, P less than 0.0002). We conclude that psyllium lowers LDL cholesterol primarily via stimulation of bile acid synthesis.  相似文献   

17.
The effects of growth hormone (GH) replacement on plasma lecithin:cholesterol acyltransferase (LCAT), cholesteryl ester transfer protein (CETP), and phospholipid transfer protein (PLTP), factors involved in high density lipoprotein (HDL) metabolism, are unknown. We carried out a 6 months study in 24 GH-deficient adults who were randomized to placebo (n = 8), low dose GH (1 U daily, n = 8), and high dose GH (2 U daily, n = 8), followed by a 6 months open extension study with high dose GH (1 drop-out). No significant changes in plasma lipoproteins, LCAT, CETP, and PLTP activities, cholesterol esterification (EST) and cholesteryl ester transfer (CET) were observed after placebo. After 6 months of GH (combined data, n = 24), very low + low density lipoprotein (VLDL + LDL) cholesterol (P < 0.05) and apolipoprotein B (P < 0.05) decreased, whereas HDL cholesterol and HDL cholesteryl ester increased (P < 0. 05). Prolonged treatment showed comparable effects. Plasma apolipoprotein A-I and Lp[a] remained unchanged. Plasma LCAT (P < 0. 01) and CETP activities (P < 0.01), as well as EST (P < 0.01) and CET decreased (P < 0.01) after 12 months of GH (n = 15), but PLTP activity did not significantly change. Changes in EST and CET after 12 months of treatment were independently related to changes in plasma LCAT (P = 0.001 and CETP activity (P = 0.01). In conclusion, GH replacement therapy improves the lipoprotein profile in GH-deficient adults. Chronic GH replacement lowers plasma LCAT and CETP activities, contributing to a decrease in cholesterol esterification and cholesteryl ester transfer. These effects may have consequences for HDL metabolism and reverse cholesterol transport.  相似文献   

18.
Lipid composition of plasma lipoproteins and erythrocyte ghost membranes has been studied in 16 healthy normolipidaemic subjects and in 16 patients affected by primary lipoprotein lipase deficiency, resulting in severe chylomicronaemia and in cholesterol-depleted low-density lipoproteins and high-density lipoproteins. A significant decrease in membrane cholesterol/phospholipid ratio was observed in lipoprotein lipase deficient patients compared to controls (3.27 +/- 0.33 vs. 3.95 +/- 0.50, mean +/- S.D.; P less than 0.0001). There was also an increase in the erythrocyte membrane phosphatidylcholine/sphingomyelin ratio in lipoprotein lipase deficient patients compared to controls (1.53 +/- 0.10 vs. 1.05 +/- 0.13; P less than 0.0001) due to a concurrent increase in phosphatidylcholine and decrease in sphingomyelin relative concentrations in these patients. Erythrocyte ghost membrane fluidity was determined by fluorescence anisotropy and found to be higher in membranes from lipoprotein lipase deficient patients. This increase in membrane fluidity can be attributed in part to changes in membrane cholesterol and phospholipid concentrations in response to abnormal plasma lipoprotein composition.  相似文献   

19.
Rabbits fed low-fat, cholesterol-free, semi-purified diets containing casein developed a marked hypercholesterolemia compared to rabbits fed a similar diet containing soy protein (plasma cholesterol 281 +/- 31 vs. 86 +/- 9 mg/dl; P less than 0.05). Turnover studies (three per dietary group) were carried out in which homologous 125I-labeled VLDL and 131I-labeled LDL were injected simultaneously into casein- (n = 8) or soy protein- (n = 9) fed rabbits. ApoB-specific activities were determined in VLDL, IDL and LDL isolated from the pooled plasma of two or three rabbits per dietary group. The production rate of VLDL apoB (1.20 +/- 0.3 vs. 1.09 +/- 0.1 mg/h per kg) was similar for the two dietary groups. The fractional catabolic rate of VLDL apoB was lower for the casein group (0.15 +/- 0.03 vs. 0.23 +/- 0.01.h-1; 0.05 less than P less than 0.10). Although the pool size of VLDL apoB was higher in the casein group (8 +/- 2 vs. 5 +/- 0.3 mg/kg), this value did not reach statistical significance. For LDL apoB, the increased pool size in casein-fed rabbits (30 +/- 5 vs. 5 +/- 1 mg/kg; P less than 0.01) was associated with a decreased fractional catabolic rate (0.03 +/- 0.005 vs. 0.08 +/- 0.008.h-1; P less than 0.01) and a 2-fold increase in the production rate of LDL apoB (1 +/- 0.3 vs. 0.4 +/- 0.06 mg/kg per h; 0.05 less than P less than 0.10) compared to rabbits fed soy protein. Analysis of precursor-product relationships between the various lipoprotein fractions showed that casein-fed rabbits synthesized a higher proportion of LDL apoB (95% +/- 2 vs. 67% +/- 2; P less than 0.001) independent of VLDL catabolism. These results support the concept that the hypercholesterolemia in casein-fed rabbits is associated with impaired LDL removal consistent with a down-regulation of LDL receptors. These changes do not occur when the casein is replaced by soy protein.  相似文献   

20.
The mechanism by which competitive inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase decrease serum cholesterol is incompletely understood. The few available data in humans suggest that chronic administration of the competitive inhibitor, lovastatin, decreases serum cholesterol with little or no change in total body sterol synthesis. To further define the effect of lovastatin on cholesterol synthesis in normal subjects, we investigated the effect of a single oral dose of lovastatin and a 4-week treatment period of lovastatin on mononuclear leukocyte (ML) sterol synthesis as a reflection of total body sterol synthesis. In parallel, we measured serum lipid profiles and HMG-CoA reductase activity in ML microsomes that had been washed free of lovastatin. ML sterol synthesis did not significantly decrease (23 +/- 5%, mean +/- SEM) at 3 h after a single 40-mg dose of lovastatin. With a single oral 80-mg dose, ML sterol synthesis decreased by 57 +/- 10% (P less than 0.05) and remained low for the subsequent 6 h. With both doses, total HMG-CoA reductase enzyme activity in microsomes prepared from harvested mononuclear leukocytes was induced 4.8-fold (P less than 0.01) over baseline values. Both the 20-mg bid dose and the 40-mg bid dose of lovastatin administered for a 4-week period decreased serum cholesterol by 25-34%. Lovastatin at 20 mg bid decreased ML sterol synthesis by 23 +/- 6% (P less than 0.02) and increased ML HMG-CoA reductase 3.8 times (P less than 0.001) the baseline values. Twenty four hours after stopping lovastatin, ML sterol synthesis and HMG-CoA reductase enzyme activity had returned to the baseline values. The higher dose of lovastatin (40 mg bid) decreased ML sterol synthesis by 16 +/- 3% (P less than 0.05) and induced HMG-CoA reductase to 53.7 times (P less than 0.01) the baseline value at 4 weeks. Stopping this higher dose effected a rebound in ML sterol synthesis to 140 +/- 11% of baseline (P less than 0.01), while HMG-CoA reductase remained 12.5 times baseline (P less than 0.01) over the next 3 days. No rebound in serum cholesterol was observed. From these data we conclude that in normal subjects lovastatin lowers serum cholesterol with only a modest effect on sterol synthesis. The effect of lovastatin on sterol synthesis in mononuclear leukocytes is tempered by an induction of HMG-CoA reductase enzyme quantity, balancing the enzyme inhibition by lovastatin.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号