首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Mouse resident peritoneal macrophages stimulated in vitro by purified bacterial lipopolysaccharide (LPS) produced both prostaglandin E2 (PGE2) and prostaglandin I2 (PGI2), the latter detected as its stable metabolite, 6-keto PGF1 alpha. Maximum production, induced in each case by 1 ng/ml purified LPS, was in the range of 10(-7)M for PGI2 and 3 x 10(-8)M for PGE2. A quantitatively similar increase in intracellular levels of macrophage cyclic AMP (measured on a whole cell basis), with a similar duration of effect, was stimulated by PGE2 and PGI2; however, only PGE2 had a negative regulatory effect on macrophage activation for tumor cell killing. These data confirm that more than a whole cell increase in the concentration of cyclic AMP is needed to shut off nonspecific tumor cell killing mediated by LPS-activated resident peritoneal macrophages.  相似文献   

2.
Intact rings and homogenates of aorta from spontaneously hypertensive rats (SHR) contain enhanced capacity over normal rats (NR) to convert arachidonic acid into PGI2. The PGI2 synthetic system in SHR is stimulated to a greater extent than NR by norepinephrine. Indomethacin blocks this stimulation. PGE2 and PGF2alpha were detected in much smaller amounts in homogenates (undetected in rings) but their formation was not enhanced by the hypertensive tissue. The identity of PGI2 was based on 1) direct pharmacological assay on the rat blood pressure. In this system identical vasodepressor responses to PGI2 are observed after intracarotid and intrajugular administration 2) indirectly as 6-keto PGF1alpha isolated after incubation of aortic homogenates with tritiated arachidonic acid and 3) indirectly by GC-MS assay of PGE2, PGF2alpha and 6-keto PGF1alpha formed during incubation of aortic homogenates with excess unlabeled arachidonic acid. These results provide additional support to our recent hypothesis that PGI2, of aortic origin, might actively participate in the regulation of systemic blood pressure. Its enhanced formation by intact hypertensive vascular tissue reflects an increase in the number of enzyme molecules immediately available to the substrate. This could probably be an adaptive response to the elevated levels of catecholamines in the circulation.  相似文献   

3.
This is the first report to show that epidermal growth factor (EGF) and 12-O-tetradecanoylphorbol 13-acetate (TPA) stimulate the production of PGE2 and 6-keto PGF1 alpha, an end metabolite of PGI2, in the thyroid gland. In cultured porcine thyroid cells, EGF and TPA stimulate PGE2 and 6-keto PGF1 alpha production; the maximum PG levels were obtained after 3-4 h incubation with EGF or TPA; the addition of as little as 10(-11) M EGF or 5 X 10(-11) M TPA resulted in increases in PGE2 and 6-keto PGF1 alpha, and the maximum levels were obtained with 10(-8)-10(-7) M EGF or TPA. This report also shows that EGF and TPA stimulate [3H] thymidine incorporation.  相似文献   

4.
The regulation of prostacyclin (PGI2) synthesis by cultured human umbilical vein endothelium (HUVEC) was investigated. HUVEC monolayer generation of PGI2 was monitored by RIA of 6-keto PGF1 alpha and dose-dependent increases observed with human alpha- and gamma-thrombins, histamine, or arachidonate. Alpha thrombin (10 nM) produced levels of 6-keto PGF1 alpha approximating responses with 1 microM gamma-thrombin, 5 microM arachidonate, or 10 microM histamine. Diisopropyl phosphorofluoridate-inactivated alpha-thrombin did not stimulate PGI2 release, demonstrating that catalytic activity was required for thrombin-stimulated PGI2 release. Sodium fluoride (NaF), at concentrations known to activate guanine nucleotide regulatory proteins (G proteins), directly stimulated HUVEC PGI2 synthesis in a dose-dependent and time-dependent manner (20 mM NaF, 4.4 +/- 0.5-fold increase at 10 min, 11.9 +/- 1.5-fold increase at 30 min). Neither alpha-thrombin nor NaF-stimulated PGI2 release was dependent upon the availability of extracellular Ca++). The hypothesis that G proteins are involved in agonist-stimulated PGI2 synthesis was further supported by studies using digitonin-permeabilized HUVEC monolayers challenged with another G protein activator, guanosine 5'-0-3-thiotrisphosphate (GTP gamma S), which effected significant dose-dependent increases in PGI2 synthesis compared with control levels of 6-keto PGF1 alpha. In contrast, the G-protein inhibitor GDP beta S, (guanosine 5'-0-2-thiodiphosphate), attenuated alpha-thrombin-mediated prostaglandin generation. Treatment of HUVEC monolayers with pertussis toxin (1 microgram/ml) did not inhibit the PGI2 synthesis stimulated by either alpha-thrombin, NaF, or histamine but catalyzed the ADP ribosylation of a 40 kDa membrane protein which cross-reacted with antisera against a synthetic peptide corresponding to an amino acid sequence common to the alpha-subunit of other G-proteins. Preincubation of HUVEC microsomal membranes with alpha-thrombin diminished pertussis toxin-catalyzed ADP ribosylation in a time-dependent manner. These data suggest that thrombin stimulation of PGI2 synthesis by HUVEC monolayers requires the catalytically functional enzyme and further suggests that the thrombin-occupied receptor is coupled to phospholipase activities by a pertussis toxin-insensitive guanine nucleotide regulatory protein in human endothelial cell membranes.  相似文献   

5.
The effects of 2-(2 dimethylaminoethyl) 5-benzylidene 6-methyl (2H,4H)-3-pyridazinone (III) were studied on the biosynthesis of TXA2 and PGI2 in vitro the TXA2 and PGI2 synthetase activity of heart tissue. Biosyntheses of TXA2 and PGI2 were carried out using arachidonic acid as a substrate and horse platelet and aorta microsomes as sources of TXA2 and PGI2 synthetases respectively. TXB2 and 6-keto PGF1 alpha were determined by RIA. III--did not significantly modify either the biosynthesis of PGI2 in vitro or the PGI2 synthetase activity of heart tissue. did not significantly inhibit TXA2 biosynthesis in vitro but markedly reduced the TXA2 synthetase activity of heart tissue: for a microsomal fraction concentration of 100 micrograms protein, the ID50 was 6.37 X 10(-5) M +/- 1.29 X 10(-8) M. Thus III behaves as a specific inhibitor of the TXA2 synthetase activity of heart tissue and could have a beneficial use in therapeutics.  相似文献   

6.
The relationship between renin secretion and PGI2 production, in response to intrarenal infusion of norepinephrine, was examined in the isolated perfused rat kidney. Infusion of norepinephrine in a dose which caused substantial vasoconstriction (100 ng/min), markedly increased urinary excretion of 6-keto PGF1 alpha, the stable derivative of PGI2, without significantly altering renin secretion measured in the effluent perfusate. No change in urinary 6-keto PGF1 alpha occurred when vasoconstriction was prevented by infusing the alpha-adrenoceptor blocking drug phenoxybenzamine (2 x 10(3) ng/min) alongside norepinephrine (100 ng/min). However, under these conditions there was marked stimulation of renin secretion which, as has been demonstrated previously, is mediated by a beta-adrenoceptor. There were significant increases in urine flow rates during both vasoconstrictor and non-vasoconstrictor infusions. These findings clearly indicate that in the rat kidney prostacyclin production and renin release in response to norepinephrine are dissociated.  相似文献   

7.
The present studies were undertaken to investigate the effect of prostaglandins (PGs) on renin release from the submaxillary glands of mice. Pooled mouse submaxillary gland slices were incubated in Krebs-Henseleit buffer solution following a preincubation period, and renin release was measured by a radioimmunoassay for the direct measurement of submaxillary gland renin. Arachidonic acid (AA) significantly stimulated renin release at 10, 20, and 30 min of incubation. These increases of renin release were abolished by the presence of indomethacin. The synthetic prostaglandin endoperoxide analogue (EPA) strongly stimulated renin release at 10, 20, and 30 min of incubation. However, at a higher concentration the stimulating effect of EPA virtually disappeared. PGI2 caused the highest increase of renin release at 10 and 20 min of incubation. At higher concentrations the effect of PGI2 on renin release was drastically reduced, although it was still statistically significant. PGE2 and PGF2 alpha also exerted a significant increase in renin release; however, the extent of this effect was much less than that of EPA and PGI2. Other prostaglandins such as PGE1, PGA2, PGD2, PGF1 alpha, and 6-keto-PGF1 alpha were found to have no significant effect on renin release. These results suggest that the prostaglandin system directly affects renin release from submaxillary gland independent of systemic hemodynamic and neurogenic influences.  相似文献   

8.
Cholesteryl esters are the major lipids that accumulate in arteries during atherogenesis. The mechanisms responsible for this lipid accretion have not been completely defined. Our previous experiments have shown that prostacyclin (PGI2) enhances cholesteryl ester catabolism by increasing cyclic AMP in cultured arterial smooth muscle cells. However, PGI2 is rapidly degraded under physiologic conditions and endogenous levels of PGI2 in the human circulation are extremely low. These findings suggest that it is not a circulating hormone. We tested the hypothesis that stable PGI2 metabolites alter cholesteryl ester metabolism and cellular lipid accumulation. Ten to 100 nM dinor-6-keto PGF1 alpha, 13,14-dihydro-6,15-diketo PGF1 alpha, and 6,15-diketo PGF1 alpha increased cyclic AMP levels significantly two- to threefold with a concomitant enhancement of both lysosomal and cytoplasmic cholesteryl ester hydrolytic activities. Cholesteryl ester synthesis was unchanged by the PGI2 metabolites. When cyclic AMP concentrations were maintained at basal levels by an adenylate cyclase inhibitor, no effect on cholesteryl ester hydrolysis was observed following addition of PGI2 metabolites to the cells. Furthermore, addition of PGI2 metabolites during a 1-week culture period reduced free and esterified cholesterol by 50%. These data suggest that PGI2 metabolites: 1) decrease intracellular cholesterol accumulation by increasing cholesteryl ester catabolism; 2) act via enhancement of cyclic AMP; and, 3) may represent circulating regulators of arterial cholesteryl ester metabolism.  相似文献   

9.
Noradrenaline (NA) and the alpha 2-adrenergic agonists clonidine, BHT-920, and UK 14304-18 inhibit potassium-evoked release of [3H]NA from rat occipital cortex tissue chops with similar potencies. NA (10(-5) M) was most effective as up to 85% inhibition could be observed compared with 75%, 55%, and 35% for UK 14304-18, clonidine, and BHT-920, respectively, all at 10(-5) M. Potassium-evoked release was enhanced by both forskolin (10(-5) M) and 1 mM dibutyryl cyclic AMP. Pretreatment of tissue chops with 1 mM dibutyryl cyclic AMP in the presence of 3-isobutyl-1-methylxanthine partially reversed the alpha 2-adrenergic agonist inhibition of NA release. No reversal of inhibition was observed following pretreatment with 10(-5) M forskolin. The effects of clonidine, BHT-920, UK-14308-18, and NA on cyclic AMP formation stimulated by (a) forskolin, (b) isoprenaline, (c) adenosine, (d) potassium, and (e) NA were examined. Only cAMP formation stimulated by NA was inhibited by these alpha 2-adrenergic agonists. These results suggest that only a small fraction of adenylate cyclase in rat occipital cortex is coupled to alpha 2-adrenergic receptors. These results are discussed in relation to recent findings that several alpha 2-adrenergic receptor subtypes occur, not all of which are coupled to the inhibition of adenylate cyclase, and that alpha 2-adrenergic receptors inhibit NA release in rat occipital cortex by a mechanism that does not involve decreasing cyclic AMP levels.  相似文献   

10.
Detailed analysis of the action of prostaglandins (PGs) on the corpus luteum in primate species is very limited. In this study we examined the response of the adenylate cyclase system to PGs in homogenates prepared from the corpus luteum of rhesus monkeys at midluteal phase of the menstrual cycle. The conversion of [alpha 32p] ATP to [32p] cyclic AMP (cAMP) was assessed in the absence (control activity; 50 microM GTP) and presence of various concentrations of seven PGs and arachidonic acid, either alone or in combination with 250 nM hCG. Cyclic AMP production increased up to three-fold in the presence of PGD2, PGE2, PGI2 or PGF2 alpha; however PGA2, PGB2, 13, 14-dihydro-15-keto PGE2 and arachidonic acid alone did not alter cAMP levels. In dose-response studies, adenylate cyclase was 10 and 100-fold more sensitive to PGD2 (Vmax at 1 X 10(-5) M) than to PGE2 or to PGI2 and PGF2 alpha, respectively. Activity in the presence of hCG plus either PGD2, PGE2, PGI2 or PGF2 alpha did not differ from that for hCG (or the PG) alone. In contrast, addition of PGA2 or arachidonate inhibited (p less than 0.05) hCG-stimulated cAMP production by 50 and 100 percent. We conclude that the gonadotropin-sensitive adenylate cyclase of the macaque corpus luteum is also modulated by several PGs. These factors may either mimic (e.g., PGD2, PGE2, PGI2) or suppress (PGA2) gonadotropin-stimulated cAMP production and possibly cAMP-mediated events in luteal cells.  相似文献   

11.
The in vivo metabolism of 6-keto PGF1 alpha was investigated in rats. Following continuous intravenous infusion for 14 days the urinary metabolites were isolated and identified. A substantial amount of unchanged 6-keto PGF1 alpha was recovered in the urine. The metabolic pattern very closely resembles that of PGI2 in rats. Metabolites were found which represented 15-dehydrogenation, beta-oxidation, omega and omega-1-hydroxylation and oxidation. Previous work showed that 6-keto PGF1 alpha is very poorly oxidized by 15-PGDH. We administered 15-[H3]-PGI2 and 15-[H3]-6-keto PGF1 alpha to rats and measured urinary tritiated water as an index for in vivo 15-PGDH activity. The results showed that PGI2 and 6-keto PGF1 alpha were both oxidized to the 15-keto product, although the rate of oxidation of PGI2 was greater than that of 6-keto PGF1 alpha. We concluded that the administered PGI2 was oxidized by 15-PGDH before hydrolysis to 6-keto PGF1 alpha. A portion of the dose is probably hydrolzyed before 15-dehydrogenation.  相似文献   

12.
Prostacyclin (PGI2) produced a biphasic response in canine isolated basilar arteries. In low doses (1 X 10(-8)M-1 X 10(-7)M) PGI2 caused a slight but consistent relaxation of resting muscle tone. In low concentrations (1 X 10(-8)M-1 X 10(-6)M) PGI2 antagonized muscle contractions caused by serotonin or prostaglandin (PG) F2 alpha. This relaxant effect with low doses of PGI2 on the isolated cerebral artery contrasts with findings obtained with other PGs and supports the hypothesis that PGI2 is a mediator of vasodilatation. However, in 1 X 10(-5)M concentrations PGI2 contracted the arterial muscle and did not antagonize contractions induced by serotonin or PGF2 alpha.  相似文献   

13.
Previous studies have shown that the natural prostanoids, PGE2, PGE1 and PGF2 alpha are potent stimulators of bone resorption. In this study, we have examined the effects of alterations in the cyclopentane ring of these prostanoids for their effect on the resorptive response of cultured long bones from 19-day fetal rats as measured by the release of previously incorporated 45Ca. Indomethacin (10(-6)M) was added to minimize endogenous prostaglandin production. In this system PGE2 and PGE1, the 9 keto, 11 alpha hydroxy compounds, were approximately equally effective at concentrations of 10(-8) to 10(-6) M. The 9 alpha hydroxy, 11 alpha hydroxy compound, PGF2 alpha, was active at 10(-7) to 10(-5) M. In contrast, the 9 alpha hydroxy, 11-keto compound, PGD2, showed only a minimal stimulation of bone resorption at 10(-5) M. While these data suggested that the 11 alpha hydroxy group was important for bone resorbing activity, 11 beta PGE2 and 11-deoxy PGE1 were only slightly less potent than their physiologic counterparts. Both 9 beta, 11 alpha PGF2 and 9 alpha, 11 beta PGF2 were less potent than PGF2 alpha but did cause substantial stimulation of bone resorption and were equally effective at 10(-6) to 10(-5) M. 9 alpha, 11 beta PGF2 alpha is of particular interest since it is major metabolite of PGD2. These results suggest that the binding of prostanoids to the receptor which mediates bone resorption is affected by changes at the 9 and 11 positions of the pentane ring but do not support the hypothesis that the 11 alpha OH function is essential for this biological activity.  相似文献   

14.
The effects of antiinflammatory steroids on arachidonic acid metabolite release from human lung fragments were analyzed. Incubation of lung fragments for 24 hr with 10(-6) M dexamethasone inhibited the net release of the prostacyclin metabolite 6-keto-PGF1 alpha, PGE2, and PGF2 alpha from lung fragments stimulated with anti-IgE but failed to inhibit the anti-IgE-induced release of PGD2, TXB2, and iLTC4. The IC50 of dexamethasone for inhibition of both spontaneous and anti-IgE-induced 6-keto-PGF1 alpha release was approximately 2 X 10(-8) M, and a 6-hr preincubation with the drug was required for 50% inhibition of prostaglandin release. Other agents were tested for activity in stimulating arachidonic acid metabolite release from human lung fragments. FMLP (fmet-leu-phe) stimulated the release of all metabolites tested (6-keto-PGF1 alpha, PGD2, PGE2, PGF2 alpha, TXB2, iLTC4); platelet-activating factor (PAF), but not lysoPAF, stimulated the release of PGD2, TXB2, and iLTC4. In contrast to the case with anti-IgE, where dexamethasone failed to inhibit net PGD2 and TXB2 release, the steroid inhibited the release of these metabolites stimulated by both FMLP and PAF. The steroid inhibited iLTC4 release induced by the highest concentration of PAF (10(-6)M) but did not inhibit iLTC4 release stimulated by either 10(-7) M PAF, FMLP, or anti-IgE. Because neither FMLP nor PAF caused the release of PGD2 or TXB2 from purified human lung mast cells, and because they also failed to induce histamine release from lung fragments, it is suggested that these stimuli produce PGD2 and TXB2 release in lung fragments through an action on a cell distinct from the mast cell. This suggestion is supported by the selective inhibition of the release of these arachidonic acid metabolites by dexamethasone. We suggest that the inhibitory action of steroids on arachidonic acid metabolite in human lung fragments contributes to their therapeutic efficacy in pulmonary diseases.  相似文献   

15.
The effect of inhibition of prostaglandin (PG) synthesis with indomethacin on basal and isoproterenol-stimulated renin secretion was examined in the isolated perfused rabbit kidney. 6-keto PGF1 alpha' the stable metabolite of prostacyclin, was measured in urine by radioimmunoassay using 125I labelled histamine coupled to 6-keto PGF1 alpha as ligand. The level in urine, prior to isolation and perfusion of the kidney, was 10.7 +/- 5.6 ng/min, and this was reduced to 0.32 +/- 0.25 ng/min (P less than 0.05) in rabbits treated with 2.0 mg/kg of indomethacin. Renin release was markedly stimulated by intrarenal infusion of isoproterenol (0.1 microgram/min) but urinary 6-keto PGF1 alpha did not change. These responses were not affected by indomethacin treatment. Renal perfusion pressure, perfusate flow rate and consequently renal vascular resistance, remained relatively constant during the course of perfusion and were unaltered by indomethacin treatment. These results therefore do not support a role for PGs, and in particular prostacyclin, in the renin response to beta-adrenergic stimulation with isoproterenol.  相似文献   

16.
Prostaglandins have been shown to be involved in the mechanism of renin secretion in a variety of situations. Both arachidonic acid and prostaglandin endoperoxide have been shown to release renin from cortical slices and to be converted to PGI2 by cortical microsomes. In the present studies PGI2 was found to cause a time dependent increase in renin release from rabbit renal cortical slices, a system isolated from any indirect effects that result from the administration of prostaglandins in vivo. The stimulation was linear up to 30 minutes and effective over a range of concentrations from 10(7 M to 10(-5) M. At similar concentrations 6-keto-prostaglandin F1alpha was not active on these slices. Thus, it is proposed that PGI2 exerts a direct effect on the release of renin from cortical cells and may be the mediator of arachidonate or prostaglandin endoperoxide stimulated renin secretion.  相似文献   

17.
Exogenous prostaglandins (PGs) have been shown to have differing effects on frog lung contractility. In this study, prostaglandin synthesis was measured in lung tissues from warm-acclimated (WA, 22 degrees C) and cold-acclimated (CA, 5 degrees C) American bullfrogs, Rana catesbeiana, incubated for 30 min at 5 degrees or 22 degrees C. Media were assayed by radioimmunoassay for PGE2, PGF2 alpha, 6-keto PGF 1 alpha (the metabolite of PGI2), and thromboxane (TX)B2 (the metabolite of TXA2). PGE2 was produced in greatest quantity by tissues from WA and CA animals, at both incubation temperatures. Epinephrine stimulated PGE2, PGF2 alpha, and TXB2 synthesis at 22 degrees C but only stimulated PGE2 production at 5 degrees C. In tissues from CA frogs, epinephrine did not stimulate prostaglandin synthesis at either incubation temperature. Ibuprofen (10(-5) M) inhibited basal and epinephrine-stimulated prostaglandin synthesis in tissues from WA frogs incubated at 22 degrees C. The beta receptor antagonist propranolol (10(-6) M) blocked the epinephrine-stimulated synthesis of PGE2, PGF2 alpha and TXB2, suggesting epinephrine stimulates prostaglandin synthesis through beta receptor activation. The absence of stimulation by epinephrine in lung from CA animals, but not in 5 degrees C incubations of tissues from WA animals, suggests that a modification of beta receptors occurs during prolonged cold exposure.  相似文献   

18.
Dose-response curves for several prostaglandins (PGI2; PGD2; PGF2 and PGE2); BaCl2 or prostaglandin metabolites (15-keto-PGF2 alpha; 13,14-diOH-15-keto-PGF2 alpha; 6-keto-PGF1 alpha and 6-keto PGE1 in quiescent (indomethacin-treated) uterine strips from ovariectomized rats, were constructed. All PGs tested as well as BaCl2, triggered at different concentrations, evident phasic contractions. Within the range of concentrations tested the portion of the curves for the metabolites of PGF2 alpha was shifted to the right of that for PGF2 alpha itself; the curve for 6-keto-PGF1 alpha was displaced to the right of the curve for PGI2 and that for 6-keto-PGE1 to the left. It was also demonstrated that the uterine motility elicited by 10(-5) M PGF2 alpha and its metabolites was long lasting (more than 3 hours) and so it was the activity evoked by PGI2;6-keto-PGF1 alpha and BaCl2, but not the contractions following 6-keto-PGE1, which disappeared much earlier. The contractile tension after PGF2 alpha; 15-keto-PGF2 alpha; 13,14-diOH-15-keto-PGF2 alpha and PGI2, increased as time progressed whilst that evoked by 6-keto-PGF1 alpha or BaCl2 fluctuated during the same period around more constant levels. The surprising sustained and gradually increasing contractile activity after a single dose of an unstable prostaglandin such as PGI2, on the isolated rat uterus rendered quiescent by indomethacin, is discussed in terms of an effect associated to its transformation into more stable metabolites (6-keto-PGF1 alpha, or another not tested) or as a consequence of a factor which might protects prostacyclin from inactivation.  相似文献   

19.
6-keto prostaglandin E1 (6KE) is a metabolite of PGI2, which we have shown previously inhibits spontaneous myometrial activity. In the present study we examined the effects of 6KE on uterine electrical and mechanical activity in non-pregnant ovariectomized sheep. 6KE stimulated uterine activity in a dose-dependent fashion. The effect was enhanced by pre-treatment with estradiol (E2). It was not influenced by pre-treatment with meclofenamic acid and was not associated with significant changes in the concentrations of 13,14 dihydro 15-keto PGF2 alpha in vena cava plasma. After E2 treatment, 6KE had 0.2-0.3 of the stimulatory activity of PGF2 alpha. In the absence of E2, the uterine response to both 6KE and PGF2 alpha was decreased. In animals in which spontaneous myometrial activity was inhibited by PGI2, the uterus remained responsive to 6KE. We conclude that in the ovariectomized non-pregnant sheep 6KE stimulates uterine activity, and that the effect is independent of endogenous PG production.  相似文献   

20.
The effects of prostaglandin E1 (PGE1) and prostaglandin F1 alpha (PGF1 alpha) were studied on perfused rat hearts and isolated rat atria. Both PGE1 and PGF1 alpha produced dose-dependent increases in right atrial rate but had no effect on left atrial tension development. PGE1 (10(-4) M) increased right atrial cyclic AMP content without changing phosphorylase a activity. PGF1 alpha (10(-4) M) did not change right atrial cyclic AMP or cyclic GMP content. Both prostaglandins had no effect on left atrial cyclic nucleotide content. When infused at a rate of 1 microgram/min, PGE1 produced a time-dependent increase in cyclic AMP content in the Langendorff perfused hearts but did not alter contractile force development or phosphorylase a activity. An infusion of PGF1 alpha produced a dose-dependent increase in tension development which was secondary to a negative chronotropic effect. PGF1 alpha (1 microgram/min) did not produce any changes in cyclic nucleotide levels or phosphorylase a activity in the Langendorff perfused hearts. These results show that PGE1 can selectively increase myocardial cyclic AMP content without altering contractile force or phosphorylase activity and that PGF1 alpha does not increase rat cardiac AMP levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号