首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Vertucci CW 《Plant physiology》1989,90(3):1121-1128
In an attempt to correlate freezable water with freezing injury, the thermal behavior of pea (Pisum sativum L.) and soybean (Glycine max L. Merr) seed parts at different moisture contents were compared with survival of the seeds when exposed to low temperatures. Thermal transitions between −150 and 10°C were studied using differential scanning calorimetry. In pea, reduction of germinability, after exposure of seeds to temperatures between − 18 and − 180°C, occurred at a constant moisture content (about 0.33 gram H2O/gram dry weight) regardless of the temperature; this moisture level was above that at which freezable water was first detectable by differential scanning calorimetry (0.26 gram H2O/gram dry weight). In contrast, damage to soybean seeds was observed at progressively lower moisture contents (from 0.33 to 0.20 gram H2O/gram dry weight) when the temperature was decreased from −18°C to −50°C. At −18 and −30°C, moisture contents at which damage to soybean seeds was evident were above that at which freezable water was first detectable (0.23 gram H2O/gram dry weight). However, at −50, −80, and −180°C, damage was evident even when freezable water was not detectable. The data suggest that, while the quantity of water is important in the expression of freezing injury, the presence of freezable water does not account for the damage.  相似文献   

2.
Cold Acclimation in Arabidopsis thaliana   总被引:27,自引:13,他引:14       下载免费PDF全文
The abilities of two races of Arabidopsis thaliana L. (Heyn), Landsberg erecta and Columbia, to cold harden were examined. Landsberg, grown at 22 to 24°C, increased in freezing tolerance from an initial 50% lethal temperature (LT50) of about −3°C to an LT50 of about −6°C after 24 hours at 4°C; LT50 values of −8 to −10°C were achieved after 8 to 9 days at 4°C. Similar increases in freezing tolerance were obtained with Columbia. In vitro translation of poly(A+) RNA isolated from control and cold-treated Columbia showed that low temperature induced changes in the population of translatable mRNAs. An mRNA encoding a polypeptide of about 160 kilodaltons (isoelectric point about 4.5) increased markedly after 12 to 24 h at 4°C, as did mRNAs encoding four polypeptides of about 47 kilodaltons (isoelectric points ranging from 5-5.5). Incubation of Columbia callus tissue at 4°C also resulted in increased levels of the mRNAs encoding the 160 kilodalton polypeptide and at least two of the 47 kilodalton polypeptides. In vivo labeling experiments using Columbia plants and callus tissue indicated that the 160 kilodalton polypeptide was synthesized in the cold and suggested that at least two of the 47 kilodalton polypeptides were produced. Other differences in polypeptide composition were also observed in the in vivo labeling experiments, some of which may be the result of posttranslational modifications of the 160 and 47 kilodalton polypeptides.  相似文献   

3.
The survival after freezing of ice nucleation-active (INA) and genetically engineered non-INA strains of Pseudomonas syringae was compared. Each strain was applied to oat seedlings and allowed to colonize for 3 days, and the plants were subjected to various freezing temperatures. Plant leaves were harvested before and after freezing on two consecutive days, and bacterial populations were determined. Populations of the INA wild-type strain increased 15-fold in the 18 h after the oat plants incurred frost damage at −5 and −12°C. Plants colonized by the non-INA strain were undamaged at −5°C and exhibited no changes in population size after two freeze trials. As freezing temperatures were lowered (−7, −9, and −12°C), oat plants colonized by the non-INA strain suffered increased frost damage concomitant with bacterial population increases following 18 h. At −12°C, both strains behaved identically. The data show a relationship between frost damage to plants and increased bacterial population size during the following 18 h, indicating a potential competitive advantage of INA strains of P. syringae over non-INA strains in mild freezing environments.  相似文献   

4.
The response of cortical microtubules to low temperature and freezing was assessed for root tips of cold-acclimated and non-acclimated winter rye (Secale cereale L. cv Puma) seedlings using indirect immunofluorescence microscopy with antitubulin antibodies. Roots cooled to 0 or −3°C were fixed for immunofluorescence microscopy at these temperatures or after an additional hour at 4°C. Typical arrays of cortical microtubules were present in root-tip cells of seedlings exposed to the cold-acclimation treatment of 4°C for 2 days. Microtubules in these cold-acclimated cells were more easily depolymerized by a 0°C treatment than microtubules in root-tip cells of nonacclimated, 22°C-grown seedlings. Microtubules were still present in some cells of both nonacclimated and cold-acclimated roots at 0 and −3°C; however, the number of microtubules in these cells was lower than in controls. Microtubules remaining during the −3°C freeze were shorter than microtubules in unfrozen control cells. Repolymerization of microtubules after both the 0 and −3°C treatments occurred within 1 h. Root tips of nonacclimated seedlings had an LT-50 of −9°C. Cold acclimation lowered this value to −14°C. Treatment of 22°C-grown seedlings for 24 h with the microtubule-stabilizing drug taxol caused a decrease in the freezing tolerance of root tips, indicated by a LT-50 of −3°C. Treatment with D-secotaxol, an analog of taxol that was less effective in stabilizing microtubules, did not alter the freezing tolerance. We interpret these data to indicate that a degree of depolymerization of microtubules is necessary for realization of maximum freezing tolerance in root-tip cells of rye.  相似文献   

5.
It is widely considered that most organisms cannot survive prolonged exposure to temperatures below 0°C, primarily because of the damage caused by the water in cells as it freezes. However, some organisms are capable of surviving extreme variations in environmental conditions. In the case of temperature, the ability to survive subzero temperatures is referred to as cryobiosis. We show that the ozobranchid leech, Ozobranchus jantseanus, a parasite of freshwater turtles, has a surprisingly high tolerance to freezing and thawing. This finding is particularly interesting because the leach can survive these temperatures without any acclimation period or pretreatment. Specifically, the leech survived exposure to super-low temperatures by storage in liquid nitrogen (−196°C) for 24 hours, as well as long-term storage at temperatures as low as −90°C for up to 32 months. The leech was also capable of enduring repeated freeze-thaw cycles in the temperature range 20°C to −100°C and then back to 20°C. The results demonstrated that the novel cryotolerance mechanisms employed by O. jantseanus enable the leech to withstand a wider range of temperatures than those reported previously for cryobiotic organisms. We anticipate that the mechanism for the observed tolerance to freezing and thawing in O. jantseanus will prove useful for future studies of cryopreservation.  相似文献   

6.
Taking advantage of their optical transparency, we clearly observed the third stage infective juveniles (IJs) of Steinernema feltiae freezing under a cryo-stage microscope. The IJs froze when the water surrounding them froze at −2°C and below. However, they avoid inoculative freezing at −1°C, suggesting cryoprotective dehydration. Freezing was evident as a sudden darkening and cessation of IJs'' movement. Freeze substitution and transmission electron microscopy confirmed that the IJs of S. feltiae freeze intracellularly. Ice crystals were found in every compartment of the body. IJs frozen at high sub-zero temperatures (−1 and −3°C) survived and had small ice crystals. Those frozen at −10°C had large ice crystals and did not survive. However, the pattern of ice formation was not well-controlled and individual nematodes frozen at −3°C had both small and large ice crystals. IJs frozen by plunging directly into liquid nitrogen had small ice crystals, but did not survive. This study thus presents the evidence that S. feltiae is only the second freeze tolerant animal, after the Antarctic nematode Panagrolaimus davidi, shown to withstand extensive intracellular freezing.  相似文献   

7.
Under subzero degree conditions, free water contained in biological cells tends to freeze and then most living things die due to low temperatures. We examined the effect of a variable magnetic field on Drosophila under supercooled conditions (a state in which freezing is not caused even below the freezing point). Under such supercooled conditions with the magnetic field at 0°C for 72 hours, −4°C for 24 hours and −8°C for 1 hour, the Drosophila all survived, while all conversely died under the supercooled conditions without the magnetic field. This result indicates a possibility that the magnetic field can reduce cell damage caused due to low temperatures in living things.  相似文献   

8.
Stout DG 《Plant physiology》1988,86(1):275-282
The resistive and reactive components of electrical impedance were measured for birdsfoot trefoil (Lotus corniculatus L.) stems at freezing temperatures to −8°C. As temperature decreased the specific resistance at frequencies between 49 hertz and 1.11 megahertz of stems from cold acclimated plants increased more rapidly than from nonacclimated plants. This temperature dependence of specific resistance could be characterized by an Arrhenius activation energy; cold acclimated stems had a larger Arrhenius activation energy than nonacclimated stems. The low frequency resistance is believed to characterize the extracellular region of the stems and the high frequency resistance is believed to characterize the intracellular region of the stems. Cold acclimation increased the intracellular but not the extracellular resistance at nonfreezing temperatures. Cold acclimated stems were not injured by freezing to −8°C and thawing, but nonacclimated stems were injured by freezing to temperatures between −2.2 and −5.6°C and thawing. Injury to nonacclimated stems at freezing temperatures below −2.2°C was indicated by a decrease in the ratio of resistance at 49 Hz to that at 1.11 megahertz.  相似文献   

9.
Background and Aims Conservation of the genetic diversity afforded by recalcitrant seeds is achieved by cryopreservation, in which excised embryonic axes (or, where possible, embryos) are treated and stored at temperatures lower than −180 °C using liquid nitrogen. It has previously been shown that intracellular ice forms in rapidly cooled embryonic axes of Acer saccharinum (silver maple) but this is not necessarily lethal when ice crystals are small. This study seeks to understand the nature and extent of damage from intracellular ice, and the course of recovery and regrowth in surviving tissues.Methods Embryonic axes of A. saccharinum, not subjected to dehydration or cryoprotection treatments (water content was 1·9 g H2O g−1 dry mass), were cooled to liquid nitrogen temperatures using two methods: plunging into nitrogen slush to achieve a cooling rate of 97 °C s−1 or programmed cooling at 3·3 °C s−1. Samples were thawed rapidly (177 °C s−1) and cell structure was examined microscopically immediately, and at intervals up to 72 h in vitro. Survival was assessed after 4 weeks in vitro. Axes were processed conventionally for optical microscopy and ultrastructural examination.Key Results Immediately following thaw after cryogenic exposure, cells from axes did not show signs of damage at an ultrastructural level. Signs that cells had been damaged were apparent after several hours of in vitro culture and appeared as autophagic decomposition. In surviving tissues, dead cells were sloughed off and pockets of living cells were the origin of regrowth. In roots, regrowth occurred from the ground meristem and procambium, not the distal meristem, which became lethally damaged. Regrowth of shoots occurred from isolated pockets of surviving cells of peripheral and pith meristems. The size of these pockets may determine the possibility for, the extent of and the vigour of regrowth.Conclusions Autophagic degradation and ultimately autolysis of cells following cryo-exposure and formation of small (0·2–0·4 µm) intracellular ice crystals challenges current ideas that ice causes immediate physical damage to cells. Instead, freezing stress may induce a signal for programmed cell death (PCD). Cells that form more ice crystals during cooling have faster PCD responses.  相似文献   

10.
The heterogeneous ice nucleation characteristics and frost injury in supercooled leaves upon ice formation were studied in nonhardened and cold-hardened species and crosses of tuber-bearing Solanum. The ice nucleation activity of the leaves was low at temperatures just below 0°C and further decreased as a result of cold acclimation. In the absence of supercooling, the nonhardened and cold-hardened leaves tolerated extracellular freezing between −3.5° and −8.5°C. However, if ice initiation in the supercooled leaves occurred at any temperature below −2.6°C, the leaves were lethally injured.

To prevent supercooling in these leaves, various nucleants were tested for their ice nucleating ability. One% aqueous suspensions of fluorophlogopite and acetoacetanilide were found to be effective in ice nucleation of the Solanum leaves above −1°C. They had threshold temperatures of −0.7° and −0.8°C, respectively, for freezing in distilled H2O. Although freezing could be initiated in the Solanum leaves above −1°C with both the nucleants, 1% aqueous fluorophlogopite suspension showed overall higher ice nucleation activity than acetoacetanilide and was nontoxic to the leaves. The cold-hardened leaves survived between −2.5° and −6.5° using 1% aqueous fluorophlogopite suspension as a nucleant. The killing temperatures in the cold-hardened leaves were similar to those determined using ice as a nucleant. However, in the nonhardened leaves, use of fluorophlogopite as a nucleant resulted in lethal injury at higher temperatures than those estimated using ice as a nucleant.

  相似文献   

11.
The interactions between freezing kinetics and subsequent storage temperatures and their effects on the biological activity of lactic acid bacteria have not been examined in studies to date. This paper investigates the effects of three freezing protocols and two storage temperatures on the viability and acidification activity of Lactobacillus delbrueckii subsp. bulgaricus CFL1 in the presence of glycerol. Samples were examined at −196°C and −20°C by freeze fracture and freeze substitution electron microscopy. Differential scanning calorimetry was used to measure proportions of ice and glass transition temperatures for each freezing condition tested. Following storage at low temperatures (−196°C and −80°C), the viability and acidification activity of L. delbrueckii subsp. bulgaricus decreased after freezing and were strongly dependent on freezing kinetics. High cooling rates obtained by direct immersion in liquid nitrogen resulted in the minimum loss of acidification activity and viability. The amount of ice formed in the freeze-concentrated matrix was determined by the freezing protocol, but no intracellular ice was observed in cells suspended in glycerol at any cooling rate. For samples stored at −20°C, the maximum loss of viability and acidification activity was observed with rapidly cooled cells. By scanning electron microscopy, these cells were not observed to contain intracellular ice, and they were observed to be plasmolyzed. It is suggested that the cell damage which occurs in rapidly cooled cells during storage at high subzero temperatures is caused by an osmotic imbalance during warming, not the formation of intracellular ice.  相似文献   

12.
Seasonal variations in freezing tolerance, water content, water and osmotic potential, and levels of soluble sugars of leaves of field-grown Valencia orange (Citrus sinensis) trees were studied to determine the ability of citrus trees to cold acclimate under natural conditions. Controlled environmental studies of young potted citrus trees, spinach (Spinacia pleracea), and petunia (Petunia hybrids) were carried out to study the water relations during cold acclimation under less variable conditions. During the coolest weeks of the winter, leaf water content and osmotic potential of field-grown trees decreased about 20 to 25%, while soluble sugars increased by 100%. At the same time, freezing tolerance increased from lethal temperature for 50% (LT50) of −2.8 to −3.8°C. In contrast, citrus leaves cold acclimated at a constant 10°C in growth chambers were freezing tolerant to about −6°C. The calculated freezing induced cellular dehydration at the LT50 remained relatively constant for field-grown leaves throughout the year, but increased for leaves of plants cold acclimated at 10°C in a controlled environment. Spinach leaves cold acclimated at 5°C tolerated increased cellular dehydration compared to nonacclimated leaves. Cold acclimated petunia leaves increased in freezing tolerance by decreasing osmotic potential, but had no capacity to change cellular dehydration sensitivity. The result suggest that two cold acclimation mechanisms are involved in both citrus and spinach leaves and only one in petunia leaves. The common mechanism in all three species tested was a minor increase in tolerance (about −1°C) resulting from low temperature induced osmotic adjustment, and the second in citrus and spinach was a noncolligative mechanism that increased the cellular resistance to freeze hydration.  相似文献   

13.
The freezing behavior of dimethylsulfoxide (DMSO) and sorbitol solutions and periwinkle (Catharanthus roseus) cells treated with DMSO and sorbitol alone and in combination was examined by nuclear magnetic resonance and differential thermal analysis. Incorporation of DMSO or sorbitol into the liquid growth medium had a significant effect in the temperature range for initiation to completion of ice crystallization. Compared to the control, less water crystallized at temperatures below −30°C in DMSO-treated cells. Similar results were obtained with sorbitol-treated cells, except sorbitol had less effect on the amount of water crystallized at temperatures below −25°C. There was a close association between the per cent unfrozen water at −40°C and per cent cell survival after freezing for 1 hour in liquid nitrogen. It appears that, in periwinkle suspension cultures, the amount of liquid water at −40°C is critical for a successful cryopreservation. The combination of DMSO and sorbitol was the most effective in preventing water from freezing. The results obtained may explain the cryoprotective properties of DMSO and sorbitol and why DMSO and sorbitol in combination are more effective as cryoprotectants than when used alone.  相似文献   

14.
Brassica napus suspension-cultured cells could be hardened in 6 days at 25°C by the addition of mefluidide or ABA to the culture medium. Cells treated with mefluidide (10 milligrams per liter) or ABA (50 micromolar) attained an LT50 of −17.5°C or −18°C, respectively, while the LT50 for the comparable nonhardened control (sucrose) was −10°C. The increased freezing tolerance of mefluidide-treated cells was paralleled by a 4- to 23-fold increase in ABA, as measured by gas-liquid chromatography using electron capture detection. Application of 1 milligram per liter of fluridone, an inhibitor of abscisic acid biosynthesis, prevented the mefluidide-induced increase in freezing tolerance and the accumulation of ABA. Both these inhibitory effects of fluridone were overridden by 50 micromolar ABA in the culture medium. On the basis of these results, we concluded that increased ABA levels are important for the induction of freezing tolerance in suspension-cultured cells.  相似文献   

15.
Freezing injury and root development in winter cereals   总被引:7,自引:5,他引:2       下载免费PDF全文
Upon exposure to 2°C, the leaves and crowns of rye (Secale cereale L. cv `Puma') and wheat (Triticum aestivum L. cv `Norstar' and `Cappelle') increased in cold hardiness, whereas little change in root cold hardiness was observed. Both root and shoot growth were severely reduced in cold-hardened Norstar wheat plants frozen to −11°C or lower and transplanted to soil. In contrast, shoot growth of plants grown in a nutrient agar medium and subjected to the same hardening and freezing conditions was not affected by freezing temperatures of −20°C while root growth was reduced at −15°C. Thus, it was apparent that lack of root development limited the ability of plants to survive freezing under natural conditions.

Generally, the temperatures at which 50% of the plants were killed as determined by the conductivity method were lower than those obtained by regrowth. A simple explanation for this difference is that the majority of cells in the crown are still alive while a small portion of the cells which are critical for regrowth are injured or killed.

Suspension cultures of Norstar wheat grown in B-5 liquid medium supplemented with 3 milligrams per liter of 2,4-dichlorophenoxyacetic acid could be cold hardened to the same levels as soil growth plants. These cultures produce roots when transferred to the same growth medium supplemented with a low rate of 2,4-dichlorophenoxyacetic acid (<1 milligram per liter). When frozen to −15°C regrowth of cultures was 50% of the control, whereas the percentage of calli with root development was reduced 50% in cultures frozen to −11°C. These results suggest that freezing affects root morphogenesis rather than just killing the cells responsible for root regeneration.

  相似文献   

16.
Correlating measurements from differential scanning calorimetry, freeze-fracture freeze-etch electron microscopy, and survival of twigs after two-step cooling experiments, we provide strong evidence that winter-hardened Populus balsamifera v. virginiana (Sarg.) resists the stresses of freezing below −28°C by amorphous solidification (glass formation) of most of its intracellular contents during slow cooling (≤5°C per hour). It is shown that other components of the intracellular medium go through glass transitions during slow cooling at about −45°C and below −70°C. This `three glass' model was then used to predict the results of differential scanning calorimetry, freeze-fracture freeze-etch electron microscopy, and biological experiments. This model is the first definitive explanation for the resistance of a woody plant to liquid N2 temperatures even if quench cooling (1200°C per minute) begins at temperatures as high as −20°C and warming is very slow (≤5°C per hour). It is also the first time high temperature natural intracellular glass formation has been demonstrated.  相似文献   

17.
The Formation and Distribution of Ice within Forsythia Flower Buds   总被引:1,自引:0,他引:1       下载免费PDF全文
Differential thermal analysis detected two freezing events when dormant forsythia (Forsythia viridissima Lindl.) flower buds were cooled. The first occurred just below 0°C, and was coincident with the freezing of adjacent woody tissues. The second exotherm appeared as a spike between −10 and −25°C and was correlated with the lethal low temperature. Although this pattern of freezing was similar to that observed in other woody species, differences were noted. Both direct observations of frozen buds and examination of buds freeze-fixed at −5°C demonstrated that ice formed within the developing flowers at temperatures above the second exotherm and lethal temperature. Ice crystals had formed within the peduncle and in the lower portions of the developing flower. Ice also formed within the scales. In forsythia buds, the developing floral organ did not freeze as a unit as noted in other species. Instead the low temperature exotherm appeared to correspond to the lethal freezing of supercooled water within the anthers and portions of the pistil.  相似文献   

18.
Rapid increase in deep supercooling of xylem parenchyma   总被引:5,自引:2,他引:3       下载免费PDF全文
Hong SG  Sucoff E 《Plant physiology》1982,69(3):697-700
Malus pumila Mill. twigs were collected from September through December and stored at 5°C until the low temperature exotherms of the xylem were determined by differential thermal analysis. During the differential thermal analysis, cooling was interrupted, and temperatures of 5 to −18°C were held for 0.4 to 10 hours before cooling to −50°C was resumed. Control twigs were cooled to −50°C without interruption. Holding the twigs at 1.3 to −5°C shifted the start of the low temperature exotherm from about −20 to −30°C. Slightly higher (2.6°C) and lower (−10°C) temperatures were occasionally effective. The shift began within 20 to 30 minutes and increased progressively to 150 minutes. The acclimation was reversibly inhibited by N2 atmosphere.  相似文献   

19.
Whey, a by-product of the dairy industry, has been found to protect the rhizobia cells during freezing and thawing. Cells of rhizobia grown on whey sustained freezing better at −18°C than did cells grown on mannitol or sucrose. Suspensions of cells grown on whey or mannitol that were suspended in whey performed equally well at −18 and −80°C, with 94 and 100% survival, respectively. Whey-grown rhizobia in pellets withstood desiccation better than did their mannitol-grown equivalents. Rhizobia that were grown on whey and then inoculated onto commercial peat showed a survival rate of 100% after 23 weeks at −4°C. Whey-grown cells in peat performed better at various temperatures during storage, even when they were exposed to desiccation, than did mannitol-grown cells in peat. Whey, therefore, offers interesting possibilities as a Rhizobium protectant for the inoculum industry.  相似文献   

20.
A 2-gram fresh weight inoculum of bromegrass (Bromus inermis Leyss. culture BG970) cell suspension culture treated with 7.5 × 10−5 molar abscisic acid (ABA) for 7 days at 25°C survived slow cooling to −60°C. Over 80% of the cells in ABA treated cultures survived immersion in liquid N2 after slow cooling to −40 or −60°C. In contrast, a 6-gram fresh weight inoculum only attained a hardiness level of −28°C after 5 days of ABA treatment. Ethanol (2 × 10−2 molar) added to the culture medium at the time of ABA addition, inhibited the freezing tolerance of bromegrass cells by 25°C. A 6-gram inoculum of both control and ABA treated bromegrass cells altered the pH of the medium more than a 2-gram inoculum. ABA inhibited the increase in fresh weight of bromegrass by 20% after 4 days. Both control and ABA (10−4 molar) treated alfalfa cells (Medicago sativa L.) grown at 25°C hardened from an initial LT50 of −5°C to an LT50 of −23°C by the third to fifth day after subculture. Thereafter, the cells dehardened but the ABA treated cells did not deharden to the same level as the control cells. ABA inhibited the increase in fresh weight of alfalfa by 50% after 5 days.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号