首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Histamine-containing enterochromaffin-like (ECL) cells are numerous in the gastric mucosa. They operate under the control of gastrin. ECL-cell tumors (gastric carcinoids) may arise as a consequence of sustained hypergastrinemia. For reasons unknown, such tumors have a female preponderance both in laboratory animals and humans. The present study consisted of four experiments exploring the possibility that gender-related factors might affect rat ECL cells. 1) A gender difference in terms of serum gastrin concentration and oxyntic mucosal histidine decarboxylase (HDC) activity appeared in Sprague-Dawley but not Wistar rats. Ultrastructural appearance of the ECL cells did not differ between genders. 2) During the different phases of the estrous cycle, the serum gastrin concentration, HDC activity and histamine concentration did not change. 3) During pregnancy, the serum gastrin concentration was suppressed, while it was increased during lactation. The HDC activity and the histamine concentration of the oxyntic mucosa were correlated with the levels of circulating gastrin. 4) Twelve-month treatment with estrogen-like agents, dieldrin and/or toxaphene (alone or in combination) was without any effect on the ECL cells neither in male nor in female rats. In conclusion, the ECL cells are under the control of gastrin, but probably not hormones that involve in the estrous cycle and pregnancy and lactation in rats. Possible gender-related factors behind the female preponderance of ECL-cell tumors remain unknown.  相似文献   

2.
Gastrin-recognizing CCK2 receptors are expressed in parietal cells and in so-called ECL cells in the acid-producing part of the stomach. ECL cells are endocrine/paracrine cells that produce and store histamine and chromogranin A (CGA)-derived peptides, such as pancreastatin. The ECL cells are the principal cellular transducer of the gastrin-acid signal. Activation of the CCK2 receptor results in mobilization of histamine (and pancreastatin) from the ECL cells with consequent activation of the parietal cell histamine H2 receptor. Thus, release of ECL-cell histamine is a key event in the process of gastrin-stimulated acid secretion. The oxyntic mucosal histidine decarboxylase (HDC) activity and the serum pancreastatin concentration are useful markers for the activity of the gastrin-ECL cell axis. Powerful and selective CCK2 receptor antagonits have been developed from a series of benzodiazepine compounds. These agents are useful tools to study how gastrin controls the ECL cells. Conversely, the close control of ECL cells by gastrin makes the gastrin-ECL cell axis well suited for evaluating the antagonistic potential of CCK2 receptor antagonists with the ECL-cell HDC activity as a notably sensitive and reliable parameter. The CCK2 receptor antagonists YF476, YM022, RP73870, JB93182 and AG041R were found to cause prompt inhibition of ECL-cell histamine and pancreastatin secretion and synthesis. The circulating pancreastatin concentration is raised, was lowered when the action of gastrin on the ECL cells was blocked by the CCK2 receptor antagonists. These effects were associated with inhibition of gastrin-stimulated acid secretion. In addition, sustained receptor blockade was manifested in permanently decreased oxyntic mucosal HDC activity, histamine concentration and HDC mRNA and CGA mRNA concentrations. CCK2 receptor blockade also induced hypergastrinemia, which probably reflects the impaired gastric acid secretion (no acid feedback inhibition of gastrin release). Upon withdrawal of the CCK2 receptor antagonists, their effects on the ECL cells were readily reversible. In conclusion, gastrin mobilizes histamine from the ECL cells, thereby provoking the parietal cells to secrete acid. While CCK2 receptor blockade prevents gastrin from evoking acid secretion, it is without effect on basal and vagally stimulated acid secretion. We conclude that specific and potent CCK2 receptor antagonists represent powerful tools to explore the functional significance of the ECL cells.  相似文献   

3.
The ECL cells in the oxyntic mucosa of rat stomach produce histamine and chromogranin A-derived peptides such as pancreastatin. The cells respond to gastrin via cholecystokinin-2 (CCK2) receptors. A CCK2 receptor blockade was induced by treatment (for up to 8 weeks) with two receptor antagonists, YM022 and YF476. Changes in ECL-cell morphology were examined by immunocytochemistry and electron microscopy, while changes in ECL cell-related biochemical parameters were monitored by measuring serum pancreastatin and oxyntic mucosal pancreastatin, and histamine concentrations, and histidine decarboxylase (HDC) activity. The CCK2 receptor blockade reduced the ECL-cell density only marginally, if at all, but transformed the ECL cells from slender, elongated cells with prominent projections to small, spherical cells without projections. The Golgi complex and the rough endoplasmic reticulum were diminished. Secretory vesicles were greatly reduced in volume density in the trans Golgi area. Circulating pancreastatin concentration and oxyntic mucosal HDC activity were lowered within a few hours. Oxyntic mucosal histamine and pancreastatin concentrations were reduced only gradually. The CCK2 receptor blockade was found to prevent the effects of omeprazole-evoked hypergastrinaemia on the ECL-cell activity and density. In conclusion, gastrin, acting on CCK2 receptors, is needed to maintain the shape, size and activity of the ECL cells, but not for maintaining the ECL-cell population.  相似文献   

4.
The significance of the enterochromaffin-like (ECL) cell as a critical endocrine regulator of gastric fundic mucosal function has only recently been recognized. Although the percentage of these cells present in the human fundic mucosa is less than that in rodents, the observation that they secrete histamine and are probably important modulators of parietal cell function has resulted in their attaining some considerable biological significance. The further identification of gastrin and somatostatin receptors on the surface of the ECL cells has suggested that other neurohormonal influences may be significant in the regulation of parietal cell function, utilizing the ECL cell as an intermediate modifier. While abnormalities of ECL cells in the human stomach (hyperplasia/neoplasia) have been mostly confined to observations in patients with pernicious anemia and atrophic gastritis, the recent recognition of hyperplasia in pharmacotherapeutically induced achlorhydric or hypochlorhydric states has excited considerable interest. It has been proposed that the generation of luminal hypo- or achlorhydria by powerful acid inhibitory pharmacotherapy may result in hypergastrinemia. This condition is responsible initially for the development of hyperplasia and, subsequently, possibly even neoplasia of the ECL system of the fundic mucosa. This phenomenon seems to be prevalent in rodents but has so far been only rarely observed in humans, e.g., pernicious anemia, atrophic gastritis. In particular, patients with the gastrinoma component of the multiple endocrine neoplasia type I syndrome exhibit ECL-cell hyperplasia and neoplasia after exposure to acid inhibitory pharmacotherapy. It is therefore likely that an underlying genomic phenomenon is necessary prior to the induction of hyperplasia and subsequent neoplastic transformation. The scientific evaluation of the relationship between gastrin, ECL-cell function, and the development of hyperplasia and neoplasia may provide some important information in regard to the molecular evolution of gastrointestinal neuroendocrine disease states. It is possible that the future pharmacotherapy of acid secretory disease may require regulation not only of parietal cell but of ECL-cell function.  相似文献   

5.
Gastrin is both stimulatory and trophic to the cells of the gastric fundus--parietal and peptic cells, and enterochromaffin-like (ECL) cells which are major intermediaries of the gastrin effect. Gastrin (from the antrum) and acid (from the fundus) represent the interactive positive and negative limbs of a feedback loop. The nature and extent of sub-loops, perhaps involving the vagus, acetylcholine, histamine, and other peptides and cell products are at present unclear or unknown. Loss of either gastrin or acid has predictable consequences. Absent acid, as in pernicious anemia or as a result of omeprazole, leads to hypergastrinemia. In rats, such hypergastrinemia (gastrin > 1,000 pg/ml) causes fundic ECL hyperplasia and, eventually, carcinoids; in humans with pernicious anemia, hypergastrinemia causes ECL-cell hyperplasia, which may progress to carcinoids that are reversible upon withdrawal of gastrin, illustrated by three cases described here. Loss of gastrin by antrectomy for duodenal ulcer leads to fundic involution and marked reduction in basal acid output, maximal acid output, and fundic histamine. An uncontrolled excess of gastrin, as from a gastrinoma outside the negative feedback loop, causes acid and pepsin hypersecretion with upper GI mucosal damage, the Zollinger-Ellison syndrome. This paper summarizes the abnormal regulation of gastrin and the biology, natural history, diagnosis, and management of ZE syndrome by medical and surgical means.  相似文献   

6.
Gastrin is one of the main factors controlling enterochromaffin-like (ECL) cell endocrine function and growth. Long-standing hypergastrinemia may give rise to ECL cell carcinoids in the gastric corpus in man and in experimental models. We have analysed the expression and function of CCK-B/gastrin receptors in normal ECL cells and in ECL cell tumours (gastric carcinoids) of the African rodent Mastomys natalensis. Hypergastrinemia induced by short-term (5 days) histamine2-receptor blockade (loxtidine) resulted in increased histidine decarboxylase (HDC) mRNA expression in the gastric oxyntic mucosa. This increase was significantly and dose-dependently reversed by selective CCK-B/gastrin receptor blockade (YM022). Long-term (12 months) hypergastrinemia, induced by histamine2-receptor blockade, gave rise to ECL cell carcinoids in the gastric oxyntic mucosa. CCK-B/gastrin receptor mRNA was only slightly elevated while HDC mRNA expression was eight-fold elevated in ECL cell carcinoids and was not influenced by CCK-B/gastrin receptor blockade. Thus CCK-B/gastrin receptor blockade of hypergastrinemic animals reduces the HDC mRNA expression in normal mucosa but not in ECL cell carcinoids. These results demonstrate that HDC mRNA expression in neoplastic ECL cells is not controlled by CCK-B/gastrin receptors.  相似文献   

7.
ECL cells in the oxyntic mucosa of stomach control gastric acid secretion by mobilizing histamine in response to gastrin. They respond to gastrin also with hypertrophy and hyperplasia. ECL cells exhibit functional impairment upon long-term gastrin stimulation. The impairment is manifested in a gradual decline of the activity of the histamine-forming enzyme per individual ECL cell and in a failure of gastrin to mobilize histamine. The mechanism behind this impairment is unknown. In the present study, rats were treated with the proton pump inhibitor pantoprazole for 45 days to induce sustained hypergastrinemia. The ECL cells were isolated from normogastrinemic and hypergastrinemic rats and size-separated from other mucosal cells by the elutriation technique. The total ECL cell number was twofold higher in hypergastrinemic rats than in normogastrinemic rats, and most of the cells appeared in elutriation fractions where large cells predominate. The ECL cells of the different fractions were analyzed by quantitative electron microscopy. Normal-sized ECL cells from hypergastrinemic rats displayed a reduced number of secretory vesicles (probably because of degranulation) compared with normal-sized ECL cells from normogastrinemic rats. Hypertrophic ECL cells from hypergastrinemic rats had an unchanged number of secretory vesicles, supporting the view that such cells fail to respond to gastrin with degranulation. Although both normal-sized and hypertrophic ECL cells from hypergastrinemic rats contained vacuoles, those in the hypertrophic ECL cells were larger and more numerous. In addition, hypertrophic ECL cells were found to contain numerous, prominent lipofuscin bodies which are the presumed end product of crinophagia. Conceivably therefore, large vacuoles and lipofuscin bodies cause functional impairment of the hypertrophic ECL cells.  相似文献   

8.
In the oxyntic mucosa of the mammalian stomach, histamine is stored in ECL cells and in mucosal mast cells. In the rat, at least 80 percent of oxyntic mucosal histamine resides in the ECL cells. Histamine is a key factor in the regulation of gastric acid secretion. Following depletion of ECL-cell histamine by treatment with alpha-fluoromethylhistidine (alpha-FMH), basal acid secretion was reduced, and gastrin-stimulated acid secretion was abolished. Vagally-induced acid secretion (by insulin injection or pylorus ligation) was unaffected by alpha-FMH treatment but inhibited by an H2 antagonist. These results suggest that gastrin stimulates acid secretion via release of ECL-cell histamine, whereas vagally-induced acid secretion--although histamine-dependent--does not rely on ECL-cell histamine. Gastrin is known to have a trophic effect on the oxyntic mucosa. By combining long-term hypergastrinemia with continuous infusion of alpha-FMH, we were able to show that gastrin-evoked trophic effects in the stomach do not depend on ECL-cell histamine.  相似文献   

9.
Histamine-producing ECL cells and ghrelin-producing A-like cells are endocrine/paracrine cell populations in the acid-producing part of the rat stomach. While the A-like cells operate independently of gastrin, the ECL cells respond to gastrin with mobilization of histamine and chromogranin A (CGA)-derived peptides, such as pancreastatin. Gastrin is often assumed to be the driving force behind the postnatal development of the gastric mucosa in general and the ECL cells in particular. We tested this assumption by examining the oxyntic mucosa (with ECL cells and A-like cells) in developing rats under the influence of YF476, a cholecystokinin-2 (CCK(2)) receptor antagonist. The drug was administered by weekly subcutaneous injections starting at birth. The body weight gain was not affected. Weaning occurred at days 15-22 in both YF476-treated and age-matched control rats. Circulating gastrin was low at birth and reached adult levels 2 weeks after birth. During and after weaning (but not before), YF476 greatly raised the serum gastrin concentration (because of abolished acid feedback inhibition of gastrin release). The weight of the stomach was unaffected by YF476 during the first 2-3 weeks after birth. From 4 to 5 weeks of age, the weight and thickness of the gastric mucosa were lower in YF476-treated rats than in controls. Pancreastatin-immunoreactive cells (i.e. all endocrine cells in the stomach) and ghrelin-immunoreactive cells (A-like cells) were few at birth and increased gradually in number until 6-8 weeks of age (control rats). At first, YF476 did not affect the development of the pancreastatin-immunoreactive cells, but a few weeks after weaning, the cells were fewer in the YF476 rats. The ECL-cell parameters (oxyntic mucosal histamine and pancreastatin concentrations, the histidine decarboxylase (HDC) activity, the HDC mRNA levels and serum pancreastatin concentration) increased slowly until weaning in both YF476-treated and control rats. From then on, there was a further increase in the ECL-cell parameters in control rats but not in YF476 rats. The postnatal development of the ghrelin cells (i.e. the A-like cells) and of the A-like cell parameters (the oxyntic mucosal ghrelin concentration and the serum ghrelin concentrations) was not affected by YF476 at any point.We conclude that gastrin affects neither the oxyntic mucosa nor the endocrine cells before weaning. After weaning, CCK(2) receptor blockade is associated with a somewhat impaired development of the oxyntic mucosa and the ECL cells. While gastrin stimulation is of crucial importance for the onset of acid secretion during weaning and for the activation of ECL-cell histamine formation and secretion, the mucosal and ECL-cell growth at this stage is only partly gastrin-dependent. In contrast, the development of the A-like cells is independent of gastrin at all stages.  相似文献   

10.
Pharmacological inhibition of gastric acid secretion and subsequent hypergastrinemia in Mastomys natalensis is an experimental model well suited for the study of gastric carcinoid formation. The genetic susceptibility of Mastomys to develop such tumors is a feature reminiscent of the situation in patients with the MEN-1 Zollinger Ellison syndrome, in whom tumor-induced hypergastrinemia, promotes the development of gastric carcinoids. Chronic hypergastrinemia, induced by the irreversible H2-receptor antagonist loxtidine will cause carcinoid formation in Mastomys already after four to six months. As in humans, gastric carcinoids in Mastomys are mainly composed of enterochromaffinlike (ECL) cells and have low malignant potential. Administration of exogenous gastrin to normal young animals increases the expression of histidine decarboxylase (HDC) mRNA in the oxyntic mucosa within 30 minutes. Endogenous hypergastrinemia, induced by short-time loxtidine treatment (three to 29 days) enhances the expression of HDC mRNA, histamine contents and ECL cell numbers in the oxyntic mucosa. Long-term loxtidine treatment (seven to 21 months) results in sustained hypergastrinemia and tumor formation. Tumor-bearing animals exhibited an increase in HDC mRNA and histamine content in the oxyntic mucosa as well as increased urinary excretion of the main histamine metabolite, tele-methylimidazole acetic acid (MeImAA). Subsequent to cessation of loxtidine treatment for two weeks, all parameters of histamine metabolism were normalized in tumor-bearing animals. These results indicate that gastric carcinoids developing during hypergastrinemia are well-differentiated neoplasms whose histamine synthesis and metabolism is regulated by plasma gastrin.  相似文献   

11.
12.
Rat stomach ECL cells are rich in histamine and chromogranin A-derived peptides, such as pancreastatin. Gastrin causes the parietal cells to secrete acid by flooding them with histamine from the ECL cells. In the past, gastric histamine release has been studied using anaesthetized, surgically manipulated animals or isolated gastric mucosa, glands or ECL cells. We monitored gastric histamine mobilization in intact conscious rats by subjecting them to gastric submucosal microdialysis. A microdialysis probe was implanted into the submucosa of the acid-producing part of the stomach (day 1). The rats had access to food and water or were deprived of food (48 h), starting on day 2 after implantation of the probe. On day 4, the rats received food or gastrin (intravenous infusion), and sampling of microdialysate commenced. Samples (flow rate 1.2 microl min(-1)) were collected every 20 or 60 min, and the histamine and pancreastatin concentrations were determined. The serum gastrin concentration was determined in tail vein blood. Exogenous gastrin (4-h infusion) raised microdialysate histamine and pancreastatin dose-dependently. This effect was prevented by gastrin receptor blockade (YM022). Depletion of ECL-cell histamine by alpha-fluoromethylhistidine, an irreversible inhibitor of the histamine-forming enzyme, suppressed the gastrin-evoked release of histamine but not that of pancreastatin. Fasting lowered serum gastrin and microdialysate histamine by 50%, while refeeding raised serum gastrin and microdialysate histamine and pancreastatin 3-fold. We conclude that histamine mobilized by gastrin and food intake derives from ECL cells because: 1) Histamine and pancreastatin were released concomitantly, 2) histamine mobilization following gastrin or food intake was prevented by gastrin receptor blockade, and 3) mobilization of histamine (but not pancreastatin) was abolished by alpha-fluoromethylhistidine. Hence, gastric submucosal microdialysis allows us to monitor the mobilization of ECL-cell histamine in intact conscious rats under various experimental conditions not previously accessible to study. While gastrin receptor blockade lowered post-prandial release of ECL-cell histamine by about 80%, unilateral vagotomy reduced post-prandial mobilization of ECL-cell histamine by about 50%. Hence, both gastrin and vagal excitation contribute to the post-prandial release of ECL-cell histamine.  相似文献   

13.
14.
ECL cells are endocrine/paracrine cells in the oxyntic mucosa. They produce, store and secrete histamine and chromogranin A-derived peptides such as pancreastatin. The regulation of ECL-cell secretion has been studied by several groups using purified ECL cells, isolated from rat stomachs. Reports from different laboratories often disagree. The purpose of the present study was to re-evaluate the discrepancies by studying histamine (or pancreastatin) secretion from standardized preparations of pure, well-functioning ECL cells. Cells from rat oxyntic mucosa were dispersed by pronase digestion, purified by repeated counter-flow elutriation and subjected to density gradient centrifugation. The final preparation consisted of more than 90% ECL cells (verified by histamine and/or histidine decarboxylase immunocytochemistry). They were maintained in primary culture for 48 h before they were exposed to candidate stimulants and inhibitors for 30 min after which the medium was collected for determination of mobilized histamine (or pancreastatin). Gastrin-17 and sulphated cholecystokinin octapeptide (CCK-8s) raised histamine secretion 4-fold, the EC(50) for both peptides being around 100 pM. The neuropeptide pituitary adenylate cyclase activating peptide (PACAP-27) (5-fold increase) and the related neuropeptides vasoactive intestinal peptide (VIP) and peptide histidine isoleucine (PHI) (3-fold increase) mobilized histamine with similar potency (EC(50) ranging from 80 to 140 pM). Adrenaline, isoprenaline and terbutaline stimulated secretion by activating a beta2 receptor subtype, while acetylcholine and carbachol were without effect. Secretion experiments were invariably run in parallel with a gastrin standard curve. Somatostatin, prostaglandin E2 (PGE2) and the PGE1 congener misoprostol inhibited PACAP- and gastrin-stimulated secretion by more than 90%, with IC(50) values ranging from 90-720 (somatostatin) to 40-200 (misoprostol) pM. The neuropeptide galanin inhibited secretion by 60-70% with a potency similar to that of somatostatin. Proposed inhibitors such as peptide YY, neuropeptide Y and the cytokines interleukin 1-beta and tumor necrosis factor alpha induced at best a moderate inhibition of gastrin- or PACAP-stimulated secretion at high concentrations, while calcitonin gene-related peptide, pancreatic polypeptide and histamine itself were without effect. Inhibition of gastrin- or PACAP-stimulated secretion was routinely compared to a somatostatin standard curve. In conclusion, gastrin, PACAP, VIP/PHI and adrenaline stimulated secretion. Somatostatin and PGE2 were powerful inhibitors of both gastrin- and PACAP-stimulated secretion; although equally potent, galanin was less effective than somatostatin and PGE2.  相似文献   

15.
Many physiological functions of the stomach depend on an intact mucosal integrity; function reflects structure and vice versa. Histamine in the stomach is synthesized by histidine decarboxylase (HDC), stored in enterochromaffin-like (ECL) cells, and released in response to gastrin, acting on CCK(2) receptors on the ECL cells. Mobilized ECL cell histamine stimulates histamine H(2) receptors on the parietal cells, resulting in acid secretion. The parietal cells express H(2), M(3), and CCK(2) receptors and somatostatin sst(2) receptors. This review discusses the consequences of disrupting genes that are important for ECL cell histamine release and synthesis (HDC, gastrin, and CCK(2) receptor genes) and genes that are important for "cross-talk" between H(2) receptors and other receptors on the parietal cell (CCK(2), M(3), and sst(2) receptors). Such analysis may provide insight into the functional significance of gastric histamine.  相似文献   

16.
Histamine in the rat stomach resides in enterochromaffin-like (ECL) cells and mast cells. The ECL cells are peptide-hormone-producing endocrine cells known to release histamine and chromogranin-A-derived peptides (such as pancreastatin) in response to gastrin. Ischemia (induced by clamping of the celiac artery or by gastric submucosal microinfusion of the vasoconstrictor endothelin) mobilizes large amounts of ECL-cell histamine in a burst-like manner. This report examines the ECL-cell response to ischemia and compares it with that induced by gastrin in rats. Arterial clamping (30 min) and gastric submucosal microinfusion (3 h) of endothelin, vasopressin, or adrenaline caused ischemia, manifested as a raised lactate/pyruvate ratio and mucosal damage. Whereas microinfusion of gastrin released both histamine and pancreastatin, ischemia mobilized histamine only. The mucosal concentrations of histamine and pancreastatin, the number and immunostaining intensity of the ECL cells, and the ultrastructure of the ECL cells were unchanged following ischemia. The long-term effects of ischemia and reperfusion (60-90 min) on gastric mucosa were examined in rats treated with the proton pump inhibitor omeprazole for 4 days. The activity of the ECL cells was suppressed (reflected in low histamine-forming capacity) but returned to normal within 1 week, illustrating the ability of the ECL cells to recover. We suggest that ischemia mobilizes cytosolic ECL-cell histamine without affecting the storage of histamine (and pancreastatin) in the secretory organelles and without causing lasting ECL-cell impairment.  相似文献   

17.
The ECL cells constitute the predominant endocrine cell population in the mucosa of the acid-secreting part of the stomach (fundus). They are rich in chromogranin A (CGA), histamine and histidine decarboxylase (HDC). They secrete CGA-derived peptides and histamine in response to gastrin. The objective of this investigation was to examine the expression of pancreastatin (rat CGA266-314) and WE14 (rat CGA343-356) in rat stomach ECL cells. The distribution and cellular localisation of pancreastatin- and WE14-like immunoreactivities (LI) were analysed by radioimmunoassay and immunohistochemistry with antibodies against pancreastatin, WE14 and HDC. The effect of food deprivation on circulating pancreastatin-LI was examined in intact rats and after gastrectomy or fundectomy. Rats received gastrin-17 (5 nmol/kg/h) by continuous intravenous infusion or omeprazole (400 μmol/kg) once daily by the oral route, to induce hypergastrinemia. CGA-derived peptides in the ECL cells were characterised by gel permeation chromatography. The expression of CGA mRNA was examined by Northern blot analysis. Among all of the endocrine cells in the body, the ECL cell population was the richest in pancreastatin-LI, containing 20–25% of the total body content. Food deprivation and/or surgical removal of the ECL cells lowered the level of pancreastatin-LI in serum by about 80%. Activation of the ECL cells by gastrin infusion or omeprazole treatment raised the serum level of pancreastatin-LI, lowered the concentrations of pancreastatin- and WE14-LI in the ECL cells and increased the CGA mRNA concentration. Chromatographic analysis of the various CGA immunoreactive components in the ECL cells of normal and hypergastrinemic rats suggested that these cells respond to gastrin with a preferential release of the low-molecular-mass forms.  相似文献   

18.
Enterochromaffin-like (ECL) cells play a pivotal role in theperipheral regulation of gastric acid secretion as they respond to thefunctionally important gastrointestinal hormones gastrin andsomatostatin and neural mediators such as pituitary adenylate cyclase-activating peptide and galanin. Gastrin is the keystimulus of histamine release from ECL cells in vivo and in vitro.Voltage-gated K+ andCa2+ channels have been detectedon isolated ECL cells. Exocytosis of histamine following gastrinstimulation and Ca2+ entry acrossthe plasma membrane is catalyzed by synaptobrevin andsynaptosomal-associated protein of 25 kDa, both characterized as asoluble N-ethylmaleimide-sensitivefactor attachment protein receptor protein. Histamine release occursfrom different cellular pools: preexisting vacuolar histamineimmediately released by Ca2+ entryor newly synthesized histamine following induction of histidine decarboxylase (HDC) by gastrin stimulation. Histamine is synthesized bycytoplasmic HDC and accumulated in secretory vesicles byproton-histamine countertransport via the vesicular monoaminetransporter subtype 2 (VMAT-2). The promoter region of HDC containsCa2+-, cAMP-, and protein kinaseC-responsive elements. The gene promoter for VMAT-2, however, lacksTATA boxes but contains regulatory elements for the hormones glucagonand somatostatin. Histamine secretion from ECL cells is thereby under acomplex regulation of hormonal signals and can be targeted at severalsteps during the process of exocytosis.

  相似文献   

19.
The enterochromaffin-like (ECL) cells of the oxyntic mucosa (fundus) of the stomach produce, store and secrete histamine, chromogranin A-derived peptides such as pancreastatin, and an unanticipated but as yet unidentified peptide hormone. The cells are stimulated by gastrin and pituitary adenylate cyclase activating peptide and suppressed by somatostatin and galanin. Choline esters and histamine seem to be without effect on ECL cell secretion. The existence of a gastrin-ECL cell axis not only explains how gastrin stimulates acid secretion but also may help to explore the functional significance of the ECL cells with respect to the nature and bioactivity of its peptide hormone. From the results of studies of gastrectomized/fundectomized and gastrin-treated rats, it has been speculated that the anticipated ECL-cell peptide hormone acts on bone metabolism.  相似文献   

20.
Praomys (Mastomys) natalensis: a model for gastric carcinoid formation.   总被引:1,自引:0,他引:1  
The gastric carcinoid tumors of Praomys (Mastomys) natalensis have been reviewed with respect to histogenesis, development, biochemistry, and morphological properties. Multicentric gastric carcinoids frequently develop in the oxyntic mucosa of aging Mastomys. The development of these tumors can be significantly enhanced by drug-induced hypergastrinemia, e.g., histamine2-receptor blockade. Spontaneous and drug-induced gastric carcinoids are endocrine in nature, as evidenced by their argyrophilic staining properties and chromogranin A content. They are also rich in histidine decarboxylase activity and produce large amounts of histamine, although other hormones, such as peptide YY and enteroglucagon, have also been demonstrated in these tumors. Ultrastructurally, gastric carcinoids are composed of tumor cells with typical secretory granules resembling those of enterochromaffin-like (ECL) cells. A close examination of the gastric carcinoids in Mastomys reveals striking similarities with gastric carcinoids developing in humans suffering from chronic atrophic gastritis type A or from the Zollinger-Ellison syndrome in combination with multiple endocrine neoplasia type 1 (MEN-1). Both these conditions are associated with hypergastrinemia and a higher risk for developing multi-centric gastric carcinoids of ECL-cell origin. The Mastomys tumor model therefore appears to be a significant experimental model in which induction and formation of gastric carcinoid tumors can be studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号