首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The effect of cholesterol diet on the rate of mevalonic acid biosynthesis from 1-14C acetyl-CoA, 2-14C malonyl-CoA and the incorporation of these substrates into sterols and bile acids in rabbit liver were studied. Simultaneously, the activities of 3-hydroxy-3-methylglutaryl-CoA reductase (HMG-CoA reductase) and acetyl-CoA carboxylase and the biosynthesis of fatty acids from acetyl-CoA and malonyl-CoA were measured. Hypercholesterolemia was found to be concomitant with the inhibition of acetyl-CoA carboxylase activity only in cell-free (700 g) and mitochondrial fractions and slightly decreased the incorporation of acetyl-CoA and malonyl-CoA into fatty acids in the postmitochondrial fraction. The HMG-CoA reductase activity in all subcellular fractions except for the postmicrosomal one was inhibited under these conditions. A significant decrease of acetyl-CoA incorporation and an increase in malonyl-CoA incorporation into mevalonic acid in all liver fractions except for microsomal one were observed in rabbits with hypercholesterolemia. These data provide evidence for the existence of two pathways of mevalonic acid synthesis from the above-said substrates that are differently sensitive to cholesterol. Cholesterol feeding resulted in a decreased synthesis of the total unsaponified fraction including cholesterol from acetyl-CoA, malonyl-CoA and mevalonic acid. The rate of incorporation of these substrates into lanosterol was unchanged. All the indicated substrates (acetyl-CoA, malonyl-CoA, mevalonic acid) are precursors of bile acid synthesis in rabbit liver. Cholesterol feeding and the subsequent development of hypercholesterolemia resulted in bile acid synthesis stimulation, preferentially in the formation of the cholic + deoxycholic acids from these precursors.  相似文献   

2.
Mitochondrial membranes of adult Hymenolepis diminuta catalyzed inhibitor-sensitive ferricytochrome c reduction. Cytochrome c reductase activity was noted when NAD(P)H or succinate served as the reductant with the NADH-coupled reaction being most prominent. Both rotenone-sensitive and -insensitive reduced pyridine nucleotide-coupled activities were apparent. Ferrocytochrome c oxidase activity also was catalyzed by H. diminuta mitochondrial membranes and this reaction was sensitive to azide and cyanide. A cytochrome c peroxidase activity was associated primarily with the mitochondrial soluble fraction of adult H. diminuta. The possibility that the activities observed may contribute to the elimination of peroxide in the helminth system is considered.  相似文献   

3.
The effects of Triton WR 1339, starvation and cholesterol diet on the activities of 3-hydroxy-3-methylglutaryl-CoA reductase (HMG-CoA reductase) and acetyl-CoA carboxylase and on the rates of mevalonic acid (MVA) biosynthesis from acetyl-CoA and malonyl-CoA in the soluble (140 000 g) and microsomal fractions of rat liver, on the rate of incorporation of these substrates into squalene, cholesterol and lanosterol in the rat liver postmitochondrial fraction and on the rate of fatty acid biosynthesis was studied. The administration of Triton WR 1339 (200 mg per 100 g of body weight twice) stimulated the activity of HMG-CoA reductase and MVA biosynthesis from acetyl-CoA and malonyl-CoA in the intact and solubilized microsomal fractions and had no effect on these parameters in the soluble fraction. Starvation for 36 hrs did not cause inhibition of the reductase activity or MVA biosynthesis from both substrates in the soluble fraction. Alimentary cholesterol significantly increased the activity of HMG-CoA reductase, had no effect on the rate of MVA biosynthesis from acetyl-CoA and stimulated the malonyl-CoA incorporation in to MVA in the soluble fraction. Starvation an alimentary cholesterol inhibited the HMG-CoA reductase activity and MVA biosynthesis from both substrates in the solubilized microsomal fraction. Triton WR 1339 stimulated 4--19-fold the lipid formation in the total unsaponified fraction and its components i.e. squalene, lanosterol, cholesterol, from acetyl-CoA and only insignificantly (1,2--1,7-fold) increased malonyl-CoA incorporation into these compounds. Starvation and alimentary cholesterol repressed lanosterol and cholesterol biosynthesis from acetyl-CoA, decreased malonyl-CoA incorporation into these sterols and had no influence on squalene biosynthesis from the two substrates. Triton WR 1339 and starvation inhibited the acetyl-CoA carboxylase activity, unaffected by alimentary cholesterol. No significant changes in the rate of fatty acid biosynthesis from the substrates were observed. The data obtained provide evidence for the existence of autonomic pathways of MVA biosynthesis localized in the soluble and microsomal fractions of rat liver. The pathway of MVA biosynthesis in the soluble fraction is less sensitive to regulatory factors. Sterol biosynthesis from malonyl-CoA is also more resistant to regulatory effects than sterol biosynthesis from acetyl-CoA. This suggests that HMG-CoA reductase localized in the soluble fraction takes part in MVA and sterol biosynthesis from malonyl-CoA.  相似文献   

4.
Reductase kinase and mevalonate kinase are separated by: a) ammonium sulfate fractionation; b) chromatography on agarose-Procion Red HE3B; and c) chromatography on DEAE-Sephacel. Fractions containing only reductase kinase reversibly inactivated microsomal or homogeneous HMG-CoA reductase. Fractions containing only mevalonate kinase revealed artifactual reductase kinase activity in the absence of EDTA or mevalonic acid; however, addition of EDTA or mevalonate before reductase assay completely blocked any apparent decline in HMG-CoA reductase activity. Under these conditions no dephosphorylation (reactivation) was observed by phosphatase. The combined results demonstrate unequivocally that reductase kinase and mevalonate kinase are two different enzymes and inactivation of HMG-CoA reductase is catalyzed by ATP-Mg-dependent reductase kinase.  相似文献   

5.
The optimal conditions for identification of mevalonic acid as the product of 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase are described, as well as the effect of different buffer constituents on the enzyme activity. Under the chosen assay conditions, reductase activity from neonatal chick liver increased with the incubation time up to 60 min and was proportional to the amounts of protein added in a range of 0.1-0.5 mg. The specific activity was maximal in brain and liver and lower in intestine of 6-day-old chicks. Thermostability of hepatic reductase was studied. When microsomal preparations were maintained at 4 degrees C, reductase activity remained unchanged for 6 hr and decreased afterwards. Addition of 50 mM KF to the homogenization medium had no effect on the reductase activity. Similarly, preincubation of microsomal preparations with 105,000 g supernatants in the presence or absence of KF did not significantly increase the reductase activity. These results suggest that HMG-CoA reductase was isolated from neonatal chick in the fully activated form.  相似文献   

6.
The co-regulation of the main mevalonic acid pathway enzymes was investigated in the yeast Saccharomyces cerevisiae. It was found that a 6-fold increase in FPPS activity compared with that of the wild-type strain FL100 did not cause significant changes in HMG-CoA reductase activity, while the amounts of synthesized dolichols and ergosterol increased by 80 and 32%, respectively. The disruption of the SQS gene in the strain grown in the presence of ergosterol repressed the activities of both FPP synthase and HMG-CoA reductase to a comparable degree, whereas in the same strain starved for ergosterol the activity of FPPS was 10-fold higher and HMG-CoA reductase activity was practically unchanged. We show that FPPS is the enzyme that regulates the flow rate of synthesized mevalonic acid pathway products independent of HMG-CoA reductase and SQS.  相似文献   

7.
We investigated the influence of docosahexaenoic acid ethyl ester (DHA-EE) on 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase activity in the brains of adult and aged mice. Male mice (Crlj:CD-1) were fed diets containing 3% lard plus 2% linoleic acid ethyl ester (LA-EE), or 2% DHA-EE, for 3 months. The brain HMG-CoA reductase activity of 8-month-old (adult) mice was not significantly influenced by dietary intake of DHA-EE. However, in 18-month-old (aged) mice, its activity was enhanced with dietary intake of DHA-EE. Brain HMG-CoA reductase activity and brain cholesterol content significantly increased with age. Hepatic HMG-CoA reductase activity and the cholesterol content of both adult and aged mice were reduced in DHA-EE diet groups, compared with LA-EE diet groups. The DHA percentages of brain and liver microsomal fractions increased with the intake of DHA-EE in adult and aged mice. These results suggest that DHA may enhance brain HMG-CoA reductase activity in aged mice.  相似文献   

8.
We have investigated the enzymatic reduction and accumulation of vitamin C in HaCaT epithelial cells. The subcellular localization and the activities of ascorbyl free radical reductase and dehydroascorbate reductase showed that mitochondrial, microsomal and plasma membranes fractions express high levels of ascorbyl free radical reductase activity, whereas dehydroascorbate reductase activity was found at low levels only in the post microsomal supernatant. We have also investigated cell proliferation and vitamin C accumulation induced by ascorbic acid 2-phosphate. This derivative caused no inhibition of cell growth, was uptaken from the extracellular medium and accumulated as ascorbic acid in mM concentrations. These results show that HaCaT cells possess very efficient systems to maintain high levels of both intracellular and extracellular ascorbic acid. The regeneration and uptake of ascorbic acid from extracellular medium contributes to the intracellular antioxidant capacity, as evaluated by 2',7'-dihydrodichlorofluorescein staining. Consequently, cells became more resistant to free radical generation and cell death induced by UV-B irradiation.  相似文献   

9.
Hamster adrenal homogenates were fractionated by differential centrifugation to obtain crude mitochondrial and microsomal pellets. The mitochondria were further purified on a linear sucrose density gradient. The crude mitochondrial fraction was separated into three bands on the gradient. One of the bands (band 3, D2020 = 1.165) contained all the measurable cytochrome C oxidase activity. Band 3 also contained the highest specific activity of HMG-CoA reductase corresponding to a 1.9 fold enrichment compared to the crude mitochondrial pellet. The evidence presented supports the possibility that a part of the HMG-CoA reductase activity in hamster adrenals is associated with mitochondria.  相似文献   

10.
Assay conditions are worked out for determination of activity of beta-hydroxy-beta-methylglutaryl-CoA reductase (HMG-CoA reductase) in 140.000 g supernatant fraction of the rat liver. Some kinetic properties of the enzyme are studied: the activity dependency on the incubation time, protein concentration, pH, glutathione, dithiothreitol and HMG-CoA contents in the incubation medium. The effect of Triton WR 1339 on the activity of HMG-CoA reductase in the liver 140.000 g supernatant and microsomal fractions is comparatively studied. Diurnal activity variations of soluble and microsomal enzymes are also investigated. It is suggested that the rat liver HMG-CoA reductase in the 140.000 g supernatant fraction is not identical to the enzyme located in the microsomal fraction.  相似文献   

11.
The intracellular localization of the post-translationally inserted integral membrane protein, NADH-cytochrome b5 reductase, was investigated, using a quantitative radioimmunoblotting method to determine its concentration in rat liver subcellular fractions. Subcellular fractions enriched in rough or smooth microsomes, Golgi, lysosomes, plasma membrane and mitochondrial inner or outer membranes were characterized by marker enzyme analysis and electron microscopy. Reductase levels were determined both with the NADH-cytochrome c reductase activity assay, and by radioimmunoblotting, and the results of the two methods were compared. When measured as antigen, the reductase was relatively less concentrated in microsomal subfractions, and more concentrated in fractions containing outer mitochondrial membranes, lysosomes and plasma membrane than when measured as enzyme activity. Rough and smooth microsomes had 4-5-fold lower concentrations, on a phospholipid basis than did mitochondrial outer membranes. Fractions containing Golgi, lysosomes and plasma membrane had approximately 14-, approximately 16, and approximately 9-fold lower concentrations of antigen than did mitochondrial outer membranes, respectively, and much of the antigen in these fractions could be accounted for by cross-contamination. No enzyme activity or antigen was detected in mitochondrial inner membranes. Our results indicate that the enzyme activity data do not precisely reflect the true enzyme localization, and show an extremely uneven distribution of reductase among different cellular membranes.  相似文献   

12.
The importance of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoA reductase) in the regulation of sesquiterpenoid phytoalexin accumulation in potato (Solanum tuberosum L. cv Kennebec) was examined. Wounding of potato tubers produced a large temporary increase in HMG-CoA reductase activity of the microsomal and organelle fractions. Treatment of wounded tuber tissue with the sesquiterpenoid phytoalexin elicitor arachidonic acid further increased and prolonged the HMG-CoA reductase activity in the microsomal but not the organelle fraction. Incubation of elicitor-treated tuber tissue in white light reduced organelle and microsomal HMG-CoA reductase activity to 50% and 10%, respectively, of the activity of tissues held in darkness. Constant light also reduced overall phytoalexin accumulation 58% by greatly reducing levels of lubimin. Rishitin accumulation was not significantly altered by light. Application of nanomolar amounts of mevinolin, a highly specific inhibitor of HMG-CoA reductase, to elicitor-treated tuber tissue produced a large decline in lubimin accumulation and did not markedly alter rishitin accumulation. These results indicate that HMG-CoA reductase has a role in the complex regulation of sesquiterpenoid phytoalexin accumulation in potato.  相似文献   

13.
The activity of acyl-CoA: cholesterol acyltransferase in the liver-microsomal fraction was considerably reduced in chicks fed on diet containing unsaturated fat, whereas the activity of HMG-CoA reductase and NADPH cytochrome c reductase was not affected. The fatty acid composition of the microsomes was modified appreciably by this dietary condition and there was no change in the phospholipid or cholesterol levels. The addition of cholesterol to the fat supplemented diet resulted in a considerable increase in the microsomal cholesterol content. A decrease in HMG-CoA reductase and an increase ACAT activity was observed compared with the corresponding values from both the groups fed on a standard diet and a fat supplemented diet with no cholesterol. These results suggest that acyl-CoA: cholesterol acyltransferase is modulated by alteration in the fatty acid composition of the microsomal membrane, while the cholesterol content of the microsomes shows a close relationship with the HMG-CoA reductase activity.  相似文献   

14.
The aromatase system associated with the mitochondrial fraction of human term placenta, present at 35–50% the specific activity of the microsomal enzyme, is substantially the same as the microsomal enzyme as determined by the following: 1) The rate of aromatization of androstenedione, 19-nortestosterone, and 16α-hydroxytestosterone in mitochondria was a nearly constant proportion of the microsomal rate; 2) Sensitivity to carbon monoxide was the same; 3) The magnitude of cytochrome P-450 Type I spectral interactions with androgen substrates was a constant proportion in mitochondria and microsomes; 4) Sensitivity to an antibody raised against hepatic microsomal NADPH-cytochrome c reductase was the same. When inner and outer mitochondrial membrane subfractions were prepared, the predominant aromatase activity was associated with the outer membrane preparation. This aromatase activity could not be accounted for by microsomal contamination as determined by inosine diphosphatase activity, a microsomal marker. After correction, the rate of aromatization in the outer membrane preparation was almost six times that in the inner membranes and three times that of the whole mitochondrial fraction  相似文献   

15.
Methods were developed for determination of human mononuclear leukocyte HMG-CoA reductase protein concentration by a noncompetitive, solid phase, bridged biotin-avidin enzyme immunoassay procedure. Leukocyte microsomal HMG-CoA reductase, first immobilized onto a nitrocellulose filter, is sequentially reacted with 1) monospecific, polyclonal rabbit anti-rat liver HMG-CoA reductase antiserum, which crossreacts with the human liver and leukocyte enzymes; 2) biotinylated donkey anti-rabbit immunoglobulin; 3) a streptavidin-horseradish peroxidase conjugate; and 4) 4-chloro-1-naphthol and H2O2 to visualize the quantity of horseradish peroxidase bound to the immunocomplex. Color development was proportional to the quantity of either purified liver or leukocyte microsomal HMG-CoA reductase applied to the nitrocellulose. Color development was not observed, however, when HMG-CoA reductase was omitted from the nitrocellulose, when one of the reactant species was omitted from the incubation reactions, or when anti-rat liver HMG-CoA reductase antiserum was pre-absorbed with either rat liver or human leukocyte HMG-CoA reductase. Immunoreactivity of microsomal HMG-CoA reductase was independent of the phosphorylation state of the enzyme, but was inversely related to the concentration of thiol-reducing agents present in the microsomal preparation up to 4 mM. Further increases in thiol-reductant failed to produce changes in immunoreactivity. Freshly isolated mononuclear leukocyte microsomal HMG-CoA reductase protein concentration in leukocytes from 31 healthy, normocholesterolemic subjects was a linear function of HMG-CoA reductase activity (R = 0.65; P less than 0.001). The catalytic efficiency of the freshly isolated mononuclear leukocyte enzyme was 313 +/- 34 pmol of mevalonate formed per min of incubation at 37 degrees C per mg immunoreactive protein. This methodology, in conjunction with that recently developed to measure human leukocyte HMG-CoA reductase activity (1984. J. Lipid Res. 25: 967-978), should prove useful in discriminating between HMG-CoA reductase regulatory mechanisms involving changes in enzyme protein concentration and those resulting from changes in enzyme catalytic efficiency.  相似文献   

16.
The subcellular localization of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase in rat intestine was reinvestigated. Highly enriched fractions of endoplasmic reticulum and mitochondria were prepared from mucosal cells. The highest specific activity of HMG-CoA reductase was located in the endoplasmic reticulum fraction with recovery of 25% of the total activity. The mitochondria had low specific activity and low recovery of reductase activity relative to whole homogenate (2-5%). Despite attempts to maximize cell lysis, much of the activity (about 60%) was recovered in a low speed pellet which consisted of whole cells, nuclei, and cell debris as determined by light microscopy. Taken together, the evidence strongly suggests that much of the cellular HMG-CoA reductase activity is present in the endoplasmic reticulum fraction and that mitochondria have little or no intrinsic HMG-CoA reductase. The in vitro regulation of intestinal microsomal HMG-CoA reductase was studied. The intestine possesses a cytosolic HMG-CoA reductase kinase-phosphatase system which appears to be closely related to that present in the liver. Intestinal reductase activity in microsomes prepared from whole mucosal scrapings was inhibited 40-50% by the presence of 50 mM NaF in the homogenizing buffer. It was less susceptible to the action of the kinase than liver reductase. The effects of NaF were reversed by incubation with partially purified intestinal or liver phosphatases. These results suggest that the kinase-phosphatase system could play a role in the regulation of intestinal sterol and isoprene synthesis in vivo.  相似文献   

17.
The present study demonstrates unequivocally the existence of short-chain trans-2-enoyl coenzyme A (CoA) hydratase and beta-ketoacyl CoA reductase activities in the endoplasmic reticulum of rat liver. Subcellular fractionation indicated that all four fractions, namely, mitochondrial, peroxisomal, microsomal, and cytosolic contained significant hydratase activity when crotonyl CoA was employed as the substrate. In the untreated rat, based on marker enzymes and heat treatment, the hydratase activity, expressed as mumol/min/g liver, wet weight, in each fraction was: mitochondria, 684; peroxisomes, 108; microsomes, 36; and cytosol, 60. Following di-(2-ethylhexyl)phthalate (DEHP) treatment (2% (v/w) for 8 days), there was only a 20% increase in mitochondrial activity; in contrast, peroxisomal hydratase activity was stimulated 33-fold, while microsomal and cytosolic activities were enhanced 58- and 14-fold respectively. A portion of the cytosolic hydratase activity can be attributed to the component of the fatty acid synthase complex. Although more than 70% of the total hydratase activity was associated with the mitochondrial fraction in the untreated rat, DEHP treatment markedly altered this pattern; only 11% of the total hydratase activity was present in the mitochondrial fraction, while 49 and 29% resided in the peroxisomal and microsomal fractions, respectively. In addition, all four subcellular fractions contained the short-chain NADH-specific beta-ketoacyl CoA (acetoacetyl CoA) reductase activity. Again, in the untreated animal, reductase activity was predominant in the mitochondrial fraction; following DEHP treatment, there was marked stimulation in the peroxisomal, microsomal, and cytosolic fractions, while the activity in the mitochondrial fraction increased by only 39%. Hence, it can be concluded that both reductase and hydratase activities exist in the endoplasmic reticulum in addition to mitochondria, peroxisomes, and soluble cytoplasm.  相似文献   

18.
19.
We have used isopycnic density gradient centrifugation to study the distribution of several rat liver microsomal enzymes of cholesterol synthesis and metabolism. All of the enzymes assayed in the pathway from lanosterol to cholesterol (lanosterol 14-demethylase, steroid 14-reductase, steroid 8-isomerase, cytochrome P-450, and cytochrome b5) are distributed in both smooth (SER) and rough endoplasmic reticulum (RER). The major regulatory enzyme in the pathway, hydroxymethylglutaryl-CoA reductase, also was found in both smooth and rough fractions, but we did not observe any associated with either plasma membrane or golgi. Since cholesterol can only be synthesized in the presence of these requisite enzymes, we conclude that the intracellular site of cholesterol biosynthesis is the endoplasmic reticulum. This is consistent with the long-held hypothesis. When the overall pathway was assayed by the conversion of mevalonic acid to non-saponifiable lipids (including cholesterol), the pattern of distribution obtained in density gradients verified its general endoplasmic reticulum localization. The enzyme acyl-CoA-cholesterol acyltransferase which removes free cholesterol from the membrane by esterification, was found only in the rough fraction of endoplasmic reticulum. In addition, when the RER was degranulated by the addition of EDTA, the activity of acyl-CoA-cholesterol acyltransferase not only shifted to the density of SER but was stimulated approximately 3-fold. The localization of these enzymes coupled with the stimulatory effect of degranulation on acyl-CoA-cholesterol acyltransferase activity has led us to speculate that the accumulation of free cholesterol in the RER membrane might be a driving factor in the conversion of RER to SER.  相似文献   

20.
The relationship of microsomal cholesterol and phospholipid fatty acid composition to the activities of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase and acyl-CoA: cholesterol acyltransferase was investigated in male, female virgin and pregnant rats when hepatic cholesterogenesis was stimulated by cholestyramine. Cholestyramine increased HMG-CoA reductase activity in both sexes but had no effect on microsomal free cholesterol level or acyl-CoA: cholesterol acyltransferase activity. The data suggest that during cholestyramine treatment high rates of bile acid synthesis are supported by preferential channelling of cholesterol into this pathway, whilst the substrate pool and activity of acyl-CoA:cholesterol acyltransferase are maintained unaltered. The lack of a consistent relationship among enzyme activities and microsomal lipid composition infers that HMG-CoA reductase and acyl-CoA:cholesterol acyltransferase are regulated in vivo by independent mechanisms which are unlikely to involve modulation by the physical properties of the microsomal lipid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号