首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new non-functional modified form of milk xanthine oxidase is described. This contains molybdenum in a quinquivalent state, which is resistant to both oxidation and reduction. The new species is derived from the native enzyme in a two-step process. The first step is the conversion into the desulpho form, via loss of the 'persulphide' sulphur, and the second involves reaction with ethylene glycol or other reagents. The species gives a characteristic Mo(V) electron-paramagnetic-resonance signal, without proton splittings, designated Resting II. This is virtually identical with signals reported previously from resting turkey liver xanthine dehydrogenase and rabbit liver aldehyde oxidase. The possibility is discussed that species Resting II, prepared with ethylene glycol, contains a -COCH2OH residue bound to a nitrogen ligand of molybdenum.  相似文献   

2.
3.
4.
5.
Improved xanthine oxidase purification   总被引:4,自引:0,他引:4  
  相似文献   

6.
Xanthine oxidase may be isolated from various mammalian tissues as one of two interconvertible forms, viz., a dehydrogenase (NAD+ dependent, form D) or an oxidase (O2 utilizing, form O). A crude preparation of rat liver xanthine dehydrogenase (form D) was treated with an immobilized preparation of crude bovine sulfhydryl oxidase. Comparison of the rates of conversion of xanthine dehydrogenase to the O form in the presence and absence of the immobilized enzyme indicated that sulfhydryl oxidase catalyzes such conversion. These results were substantiated in a more definitive study in which purified bovine milk xanthine oxidase, which had been converted to the D form by treatment with dithiothreitol, was incubated with purified bovine milk sulfhydryl oxidase. Comparison of measured rates of conversion (in the presence and absence of active sulfhydryl oxidase and in the presence of thermally denatured sulfhydryl oxidase) revealed that sulfhydryl oxidase enzymatically catalyzes the conversion of type D activity to type O activity in xanthine oxidase with the concomitant disappearance of its sulfhydryl groups. It is possible that the presence or absence of sulfhydryl oxidase in a given tissue may be an important factor in determining the form of xanthine-oxidizing activity found in that tissue.  相似文献   

7.
8.
9.
10.
11.
Reactive oxygen species are generated by various biological systems, including NADPH oxidases, xanthine oxidoreductase, and mitochondrial respiratory enzymes, and contribute to many physiological and pathological phenomena. Mammalian xanthine dehydrogenase (XDH) can be converted to xanthine oxidase (XO), which produces both superoxide anion and hydrogen peroxide. Recent X-ray crystallographic and site-directed mutagenesis studies have revealed a highly sophisticated mechanism of conversion from XDH to XO, suggesting that the conversion is not a simple artefact, but rather has a function in mammalian organisms. Furthermore, this transition seems to involve a thermodynamic equilibrium between XDH and XO; disulfide bond formation or proteolysis can then lock the enzyme in the XO form. In this review, we focus on recent advances in our understanding of the mechanism of conversion from XDH to XO.  相似文献   

12.
Fluorometric assay for xanthine oxidase   总被引:3,自引:0,他引:3  
  相似文献   

13.
14.
Myocardial xanthine oxidase/dehydrogenase   总被引:3,自引:0,他引:3  
High-energy phosphates in heart muscle deprived of oxygen are rapidly broken down to purine nucleosides and oxypurines. We studied the role of xanthine oxidase/dehydrogenase (EC 1.2.3.2/EC 1.2.1.37) in this process with novel high-pressure liquid chromatographic techniques. Under various conditions, including ischemia and anoxia, the isolated perfused rat heart released adenosine, inosine and hypoxanthine, and also substantial amounts of xanthine and urate. Allopurinol, an inhibitor of xanthine oxidase, greatly enhanced the release of hypoxanthine. From the purine release we calculated that the rat heart contained about 18 mU xanthine oxidase per g wet weight. Subsequently, we measured a xanthine oxidase activity of 9 mU/g wet wt. in rat-heart homogenate. When endogenous low molecular weight inhibitors were removed by gel-filtration, the activity increased to 31 mU/g wet wt. Rat myocardial xanthine oxidase seems to be present mainly in the dehydrogenase form, which upon storage at -20 degrees C is converted to the oxidase form.  相似文献   

15.
16.
The effect of a panel of pterins on xanthine oxidase was investigated by measuring formation of urate from xanthine as well as formazan production from nitroblue tetrazolium. The pterin derivatives, depending on their chemical structure, decreased urate as well as formazan generation: 200 μM neopterin and biopterin suppressed urate formation (90% from baseline) and formazan production (80% from baseline) as well. Their reduced forms, 7,8-dihydroneopterin and 5,6,7,8-tetrahydrobiopterin, showed a lesser but still strongly diminishing influence (40% from baseline). Another oxidized pterin namely leukopterin showed only a weak inhibitory effect. Xanthopterin, a known substrate of xanthine oxidase, had a strong effect on urate formation (80% inhibition), but a lesser effect on formazan production (30% reduction). When iron-(III)-EDTA complex was added to the reaction mixture all the effects were more pronounced. Superoxide dismutase, which removes superoxide anion by dismutation intooxygen, decreased formazan production in addition to pterin derivatives and had a small but enhancing effect on urate formation. Also the reductant N-acetylcysteine had an additive effect to pterins to diminish formazan production in a dose-dependent way. The results of our study suggest that depending on their chemical structure pterins reduce superoxide anion generation by xanthine oxidase.  相似文献   

17.
The composition of milk xanthine oxidase   总被引:23,自引:20,他引:3       下载免费PDF全文
The composition of milk xanthine oxidase has been reinvestigated. When the enzyme is prepared by methods that include a selective denaturation step in the presence of sodium salicylate the product is obtained very conveniently and in high yield, and is homogeneous in the ultracentrifuge and in recycling gel filtration. It has specific activity higher than previously reported preparations of the enzyme and its composition approximates closely to 2mol of FAD, 2g-atoms of Mo and 8g-atoms of Fe/mol of protein (molecular weight about 275000). In contrast, when purely conventional preparative methods are used the product is also homogeneous by the above criteria but has a lower specific activity and is generally comparable to the crystallized enzyme described previously. Such samples also contain 2mol of FAD/mol of protein but they have lower contents of Mo (e.g. 1.2g-atom/mol). Amino acid compositions for the two types of preparation are indistinguishable. These results confirm the previous conclusion that conventional methods give mixtures of xanthine oxidase with an inactive modification of the enzyme now termed ;de-molybdo-xanthine oxidase', and show that salicylate can selectively denature the latter. The origin of de-molybdo-xanthine oxidase was investigated. FAD/Mo ratios show that it is present not only in enzyme purified by conventional methods but also in ;milk microsomes' (Bailie & Morton, 1958) and in enzyme samples prepared without proteolytic digestion. We conclude that it is secreted by cows together with the active enzyme and we discuss its occurrence in the preparations of other workers. Studies on the milks of individual cows show that nutritional rather than genetic factors determine the relative amounts of xanthine oxidase and de-molybdo-xanthine oxidase. A second inactive modification of the enzyme, now termed ;inactivated xanthine oxidase', causes variability in activity relative to E(450) or to Mo content and formation of it decreases these ratios during storage of enzyme samples including samples free from demolybdo-xanthine oxidase. We conclude that even the best purified xanthine oxidase samples described here and by other workers are contaminated by significant amounts of the inactivated form. This may complicate the interpretation of changes in the enzyme taking place during the slow phase of reduction by substrates. Attempts to remove iron from the enzyme by published methods were not successful.  相似文献   

18.
Preparation of iron-free active xanthine oxidase   总被引:1,自引:0,他引:1  
  相似文献   

19.
The species distribution of xanthine oxidase   总被引:18,自引:0,他引:18       下载免费PDF全文
1. The distribution of xanthine oxidase in blood and tissues of various animals was studied by means of a radioactive assay capable of detecting 10(-7) unit of enzyme. The method was shown to be applicable to tissues with a high uricase content. 2. Of 16 mammalian species examined, six had low concentrations of xanthine oxidase in the serum. In six non-mammalian species, no activity was detected in the serum. 3. The enzyme was not found in the blood cells of any mammals, but was present in the nucleated red blood corpuscles of chicken, turtle and tortoise. 4. Studies of the tissue distribution in four species demonstrated high activities in the liver and intestinal mucosa and consistently low activities in skeletal muscle, heart and brain. 5. There is a rough correlation between the activity of enzyme in serum and its activity in lung tissue in 12 mammalian species. In the dog, left-atrial blood had higher concentrations of xanthine oxidase than right-atrial blood.  相似文献   

20.
研究pH、温度、金属离子和一些添加剂对黄嘌呤氧化酶稳定性的影响。结果表明:黄嘌呤氧化酶在pH4.5~7.5的范围内较稳定;反应最适温度为37℃。在常温25~35℃该酶比较稳定,经45℃处理2h.可保持50%左右,不同种类、不同浓度的金属离子对黄嘌呤氧化酶活性表现出程度不同的激活或抑制作用;添加谷氨酸和天门冬氨酸,能有效提高黄嘌呤氧化酶的存放稳定性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号