首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The Escherichia coli ruvA and ruvB genes constitute an SOS-regulated operon. The products of these genes form a protein complex that promotes branch migration of the Holliday junction, an intermediate of homologous recombination. RuvA protein binds specifically to the Holliday junction and recruits RuvB protein to the junction. RuvB is an ATP-driven motor protein involved in branch migration. We previously cloned the ruvB gene of the thermophilic bacterium Thermus thermophilus HB8 (Tth) and found that, in contrast to the operon structure in most mesothermic bacteria, the ruvA gene is absent from the vicinity of ruvB. In this work, we cloned the ruvA gene from T. thermophilus HB8 and analyzed its nucleotide sequence. Tth RuvA is a protein of 20,414 Da consisting of 191 amino acid residues, and is 37% identical in amino acid sequence to E. coli RuvA. Tth ruvA complemented the DNA repair defect of E. coli deltaruvA mutants. The purified Tth RuvA protein stimulated Tth RuvB activities, such as hydrolysis of ATP and promotion of branch migration of the Holliday junction, in a manner similar to the RuvA-RuvB interactions observed in E. coli. In addition, Tth RuvA stimulated the E. coli RuvB activities in vitro, which was well consistent with the results of in vivo hetero-complementation experiments.  相似文献   

2.
The RuvABC proteins of Escherichia coli process recombination intermediates during genetic recombination and DNA repair. RuvA and RuvB promote branch migration of Holliday junctions, a process that extends heteroduplex DNA. Together with RuvC, they form a RuvABC complex capable of Holliday junction resolution. Branch migration by RuvAB is mediated by RuvB, a hexameric ring protein that acts as an ATP-driven molecular pump. To gain insight into the mechanism of branch migration, random mutations were introduced into the ruvB gene by PCR and a collection of mutant alleles were obtained. Mutation of leucine 268 to serine resulted in a severe UV-sensitive phenotype, characteristic of a ruv defect. Here, we report a biochemical analysis of the mutant protein RuvBL268S. Unexpectedly, the purified protein is fully active in vitro with regard to its ATPase, DNA binding and DNA unwinding activities. It also promotes efficient branch migration in combination with RuvA, and forms functional RuvABC-Holliday junction resolvase complexes. These results indicate that RuvB may perform some additional, and as yet undefined, function that is necessary for cell survival after UV-irradiation.  相似文献   

3.
The Escherichia coli RuvB protein is a motor protein that forms a complex with RuvA and promotes branch migration of Holliday junctions during homologous recombination. This study describes the characteristics of two RuvB mutants, I148T and I150T, that do not promote branch migration in the presence of RuvA. These RuvB mutants hydrolyzed ATP and bound duplex DNA with the same efficiency as wild-type RuvB, but the mutants did not form a complex with RuvA and were defective in loading onto junction DNA in a RuvA-assisted manner. A recent crystallographic study revealed that Ile(148) and Ile(150) are in a unique beta-hairpin that protrudes from the AAA(+) ATPase domain of RuvB. We propose that this beta-hairpin interacts with hydrophobic residues in the mobile third domain of RuvA and that this interaction is vital for the RuvA-assisted loading of RuvB onto Holliday junction DNA.  相似文献   

4.
The ruvB genes of the highly divergent thermophilic eubacteria Thermus thermophilus and Thermotoga maritima were cloned, sequenced, and expressed in Escherichia coli. Both thermostable RuvB proteins were purified to homogeneity. Like E. coli RuvB protein, both purified thermostable RuvB proteins showed strong double-stranded DNA-dependent ATPase activity at their temperature optima (> or = 70 degrees C). In the absence of ATP, T. thermophilus RuvB protein bound to linear double-stranded DNA with a preference for the ends. Addition of ATP or gamma-S-ATP destabilized the T. thermophilus RuvB-DNA complexes. Both thermostable RuvB proteins displayed helicase activity on supercoiled DNA. Expression of thermostable T. thermophilus RuvB protein in the E. coli ruvB recG mutant strain N3395 partially complemented the UV-sensitive phenotype, suggesting that T. thermophilus RuvB protein has a function similar to that of E. coli RuvB in vivo.  相似文献   

5.
K Hiom  S C West 《Nucleic acids research》1995,23(18):3621-3626
The Escherichia coli RuvA and RuvB proteins interact specifically with Holliday junctions to promote ATP-dependent branch migration during genetic recombination and DNA repair. In the work described here, glycerol gradient centrifugation was used to investigate the requirements for the formation of pre-branch migration complexes. Since gradient centrifugation provides a simple and gentle method to analyse relatively unstable protein-DNA complexes, we were able to detect RuvA- and RuvAB-Holliday junction complexes without the need for chemical fixation. Using 35S-labelled RuvA protein and 3H-labelled Holliday junctions, we show that RuvA acts as a helicase accessory factor that loads the RuvB helicase onto the Holliday junction by structure-specific interactions. The resulting complex contained both RuvA and RuvB, as detected by Western blotting using serum raised against RuvA and RuvB. The stoichiometry of binding was estimated to be approximately four RuvA tetramers per junction. Formation of the RuvAB-Holliday junction complex required the presence of divalent metal ions and occurred without the need for ATP. However, the stability of the complex was enhanced by the presence of ATP gamma S, a non-hydrolysable ATP analogue. The data support a model for branch migration in which structure-specific binding of Holliday junctions by RuvA targets the assembly of hexameric RuvB rings on DNA. Specific loading of the RuvB ring helicase by RuvA is likely to be the initial step towards ATP-dependent branch migration.  相似文献   

6.
I R Tsaneva  B Müller  S C West 《Cell》1992,69(7):1171-1180
The RuvA and RuvB proteins of E. coli, which are induced as part of the cellular response to DNA damage, act together to promote the branch migration of Holliday junctions. Addition of purified RuvA and RuvB to a RecA-mediated recombination reaction stimulates the rate of strand exchange and the formation of hetero-duplex DNA. Stimulation does not occur via interaction with RecA; instead, RuvA and RuvB act directly upon recombination intermediates (Holliday junctions) made by RecA. We show that RuvAB-mediated branch migration requires ATP and can bypass UV-induced DNA lesions. At high RuvB concentrations, the requirement for RuvA is overcome, indicating that the RuvB ATPase provides the motor force for branch migration. RuvA protein provides specificity by binding to the Holliday junction, thereby reducing the requirement for RuvB by 50-fold. The newly discovered biochemical properties of RuvA, RuvB, and RuvC are incorporated into a model for the postreplicational repair of DNA following UV irradiation.  相似文献   

7.
The RuvAB complex promotes migration of Holliday junction at the late stage of homologous recombination. The RuvA tetramer specifically recognizes Holliday junction to form two types of complexes. A single tetramer is bound to the open configuration of the junction DNA in complex I, while the octameric RuvA core structure sandwiches the same junction in complex II. The hexameric RuvB rings, symmetrically bound to both sides of RuvA on Holliday junction, pump out DNA duplexes, depending upon ATP hydrolysis. We investigated functional differences between the wild-type RuvA from Thermus thermophilus and mutants impaired the ability of complex II formation. These mutant RuvA, exclusively forming complex I, reduced activities of branch migration and ATP hydrolysis, suggesting that the octameric RuvA is essential for efficient branch migration. Together with our recent electron microscopic analysis, this finding provides important insights into functional roles of complex II in the coordinated branch migration mechanism.  相似文献   

8.
Branch migration of Holliday junctions, which are central DNA intermediates in homologous recombination, is promoted by the RuvA-RuvB protein complex, and the junctions are resolved by the action of the RuvC protein in Escherichia coli. We report here the cloning of the ruvB gene from a thermophilic eubacterium, Thermus thermophilus HB8 (Tth), and the biochemical characterization of the gene product expressed in E. coli. The Tth ruvB gene could not complement the UV sensitivity of an E. coli ruvB deletion mutant and made the wild-type strain more sensitive to UV. In contrast to E. coli RuvB, whose ATPase activity is strongly enhanced by supercoiled DNA but only weakly enhanced by linear duplex DNA, the ATPase activity of Tth RuvB was efficiently and equally enhanced by supercoiled and linear duplex DNA. Tth RuvB hydrolyzed a broader range of nucleoside triphosphates than E. coli RuvB. In addition, Tth RuvB, in the absence of RuvA protein, promoted branch migration of a synthetic Holliday junction at 60°?C in an ATP-dependent manner. The protein, as judged by its ATPase activity, required ATP for thermostability. Since a RuvA protein has not yet been identified in T. thermophilus, we used E. coli RuvA to examine the effects of RuvA on the activities of Tth RuvB. E. coli RuvA greatly enhanced the ability of Tth RuvB to hydrolyze ATP in the presence of DNA and to promote branch migration of a synthetic Holliday junction at 37°?C. These results indicate the conservation of the RuvA-RuvB interaction in different bacterial species, and suggest the existence of a ruvA homolog in T. thermophilus. Although GTP and dGTP were efficiently hydrolyzed by Tth RuvB, these nucleoside triphosphates could not be utilized for branch migration in vitro, implying that the conformational change in RuvB brought about by ATP hydrolysis, which is necessary for driving the Holliday junction branch migration, cannot be accomplished by the hydrolysis of these nucleoside triphosphates.  相似文献   

9.
In Escherichia coli, the RuvA and RuvB proteins interact at Holliday junctions to promote branch migration leading to the formation of heteroduplex DNA. RuvA provides junction-binding specificity and RuvB drives ATP-dependent branch migration. Since RuvB contains sequence motifs characteristic of a DNA helicase and RuvAB exhibit helicase activity in vitro, we have analysed the role of DNA unwinding in relation to branch migration. A mutant RuvB protein, RuvB(D113E), mutated in helicase motif II (the DExx box), has been purified to homogeneity. The mutant protein forms hexameric rings on DNA similar to those formed by wild-type protein and promotes branch migration in the presence of RuvA. However, RuvB(D113E) exhibits reduced ATPase activity and is severely compromised in its DNA helicase activity. Models for RuvAB-mediated branch migration that invoke only limited DNA unwinding activity are proposed.  相似文献   

10.
The ruvA and ruvB genes constitute an operon, which is regulated by the SOS system and involved in DNA repair, recombination and mutagenesis. RuvA protein binds to both single-stranded and double-stranded DNA. RuvB protein has weak ATPase activity. RuvA bound to DNA greatly enhances ATPase activity of RuvB. UV-irradiation to supercoiled DNA further enhances the stimulatory effect of RuvA on the RuvB ATPase activity. In the presence of ATP the RuvA-RuvB complex has an activity that renatures cruciform structures formed by heating and gradually cooling supercoiled DNA with an inverted repeat. These findings suggest that the RuvA-RuvB complex interacts with an irregular conformation in damaged DNA and induces conformational changes in DNA using energy provided by ATP hydrolysis, so that it facilitates DNA repair, recombination and error prone replication.  相似文献   

11.
Escherichia coli RuvB protein, together with RuvA, promotes branch migration of Holliday junctions during homologous recombination and recombination repair. The RuvB molecular motor is an intrinsic ATP-dependent DNA helicase with a hexameric ring structure and its architecture has been suggested to be related to those of the members of the AAA+ protein class. In this study, we isolated a large number of plasmids carrying ruvB mutant genes and identified amino acid residues important for the RuvB functions by examining the in vivo DNA repair activities of the mutant proteins. Based on these mutational studies and amino acid conservation among various RuvBs, we identified 10 RuvB motifs that agreed well with the features of the AAA+ protein class and that distinguished the primary structure of RuvB from that of typical DNA/RNA helicases with seven conserved helicase motifs.  相似文献   

12.
Branch migration of Holliday junctions, which are central DNA intermediates in homologous recombination, is promoted by the RuvA-RuvB protein complex, and the junctions are resolved by the action of the RuvC protein in Escherichia coli. We report here the cloning of the ruvB gene from a thermophilic eubacterium, Thermus thermophilus HB8 (Tth), and the biochemical characterization of the gene product expressed in E. coli. The Tth ruvB gene could not complement the UV sensitivity of an E. coli ruvB deletion mutant and made the wild-type strain more sensitive to UV. In contrast to E. coli RuvB, whose ATPase activity is strongly enhanced by supercoiled DNA but only weakly enhanced by linear duplex DNA, the ATPase activity of Tth RuvB was efficiently and equally enhanced by supercoiled and linear duplex DNA. Tth RuvB hydrolyzed a broader range of nucleoside triphosphates than E. coli RuvB. In addition, Tth RuvB, in the absence of RuvA protein, promoted branch migration of a synthetic Holliday junction at 60° C in an ATP-dependent manner. The protein, as judged by its ATPase activity, required ATP for thermostability. Since a RuvA protein has not yet been identified in T. thermophilus, we used E. coli RuvA to examine the effects of RuvA on the activities of Tth RuvB. E. coli RuvA greatly enhanced the ability of Tth RuvB to hydrolyze ATP in the presence of DNA and to promote branch migration of a synthetic Holliday junction at 37° C. These results indicate the conservation of the RuvA-RuvB interaction in different bacterial species, and suggest the existence of a ruvA homolog in T. thermophilus. Although GTP and dGTP were efficiently hydrolyzed by Tth RuvB, these nucleoside triphosphates could not be utilized for branch migration in vitro, implying that the conformational change in RuvB brought about by ATP hydrolysis, which is necessary for driving the Holliday junction branch migration, cannot be accomplished by the hydrolysis of these nucleoside triphosphates. Received: 26 November 1998 / Accepted: 19 April 1999  相似文献   

13.
The RuvA, RuvB and RuvC proteins of Escherichia coli act together to process Holliday junctions formed during recombination and DNA repair. RuvA has a well-defined DNA binding surface that is sculptured specifically to accommodate a Holliday junction and allow subsequent loading of RuvB and RuvC. A negatively charged pin projecting from the centre limits binding of linear duplex DNA. The amino-acid sequences forming the pin are highly conserved. However, in certain Mycoplasma and Ureaplasma species the structure is extended by four amino acids and two acidic residues forming a crucial charge barrier are missing. We investigated the significance of these differences by analysing RuvA from Mycoplasma pneumoniae. Gel retardation and surface plasmon resonance assays revealed that this protein binds Holliday junctions and other branched DNA structures in a manner similar to E. coli RuvA. Significantly, it binds duplex DNA more readily. However it does not support branch migration mediated by E. coli RuvB and when bound to junction DNA is unable to provide a platform for stable binding of E. coli RuvC. It also fails to restore radiation resistance to an E. coli ruvA mutant. The data presented suggest that the modified pin region retains the ability to promote junction-specific DNA binding, but acts as a physical obstacle to linear duplex DNA rather than as a charge barrier. They also indicate that such an obstacle may interfere with the binding of a resolvase. Mycoplasma species may therefore process Holliday junctions via uncoupled branch migration and resolution reactions.  相似文献   

14.
In Escherichia coli, the ruvA, ruvB and ruvC gene products are required for genetic recombination and the recombinational repair of DNA damage. New studies suggest that these three proteins function late in recombination and process Holliday junctions made by RecA protein-mediated strand exchange. In vitro, RuvA protein binds a Holliday junction with high affinity and, together with RuvB (an ATPase), promotes ATP-dependent branch migration of the junction leading to the formation of heteroduplex DNA. The third protein, RuvC, which acts independently of RuvA and RuvB, resolves recombination intermediates by specific endonucleolytic cleavage of the Holliday junction.  相似文献   

15.
Holliday junctions are four-way branched DNA structures formed during recombination, replication and repair. They are processed in Escherichia coli by the RuvA, RuvB and RuvC proteins. RuvA targets the junction and facilitates loading of RuvB helicase and RuvC endonuclease to form complexes that catalyse junction branch migration (RuvAB) and resolution (RuvABC). We investigated the role of RuvA in these reactions and in particular the part played by the acidic pin located on its DNA-binding surface. By making appropriate substitutions of two key amino acids (Glu55 and Asp56), we altered the charge on the pin and investigated how this affected junction binding and processing. We show that two negative charges on each subunit of the pin are crucial. They facilitate junction targeting by preventing binding to duplex DNA and also constrain branch migration by RuvAB in a manner critical for junction processing. These findings provide the first direct evidence that RuvA has a mechanistic role in branch migration. They also provide insight into the coupling of branch migration and resolution by the RuvABC resolvasome.  相似文献   

16.
RuvA plays an essential role in branch migration of the Holliday junction by RuvAB as part of the RuvABC pathway for processing Holliday junctions in Escherichia coli. Two types of RuvA-Holliday junction complexes have been characterized: 1) complex I containing a single RuvA tetramer and 2) complex II in which the junction is sandwiched between two RuvA tetramers. The functional differences between the two forms are still not clear. To investigate the role of RuvA octamerization, we introduced three amino acid substitutions designed to disrupt the E. coli RuvA tetramer-tetramer interface as identified by structural studies. The mutant RuvA was tetrameric and interacted with both RuvB and junction DNA but, as predicted, formed complex I only at protein concentrations up to 500 nm. We present biochemical and surface plasmon resonance evidence for functional and physical interactions of the mutant RuvA with RuvB and RuvC on synthetic junctions. The mutant RuvA with RuvB showed DNA helicase activity and could support branch migration of synthetic four-way and three-way junctions. However, junction binding and the efficiency of branch migration of four-way junctions were affected. The activity of the RuvA mutant was consistent with a RuvAB complex driven by one RuvB hexamer only and lead us to propose that one RuvA tetramer can only support the activity of one RuvB hexamer. Significantly, the mutant failed to complement the UV sensitivity of E. coli DeltaruvA cells. These results indicate strongly that RuvA octamerization is essential for the full biological activity of RuvABC.  相似文献   

17.
RuvB protein forms two hexameric rings that bind to the RuvA tetramer at DNA Holliday junctions. The RuvAB complex utilizes the energy of ATP hydrolysis to promote branch migration of Holliday junctions. The crystal structure of RuvB from Thermus thermophilus (Tth) HB8 showed that each RuvB monomer has three domains (N, M, and C). This study is a structure-function analysis of the three domains of RuvB. The results show that domain N is involved in RuvA-RuvB and RuvB-RuvB subunit interactions, domains N and M are required for ATP hydrolysis and ATP binding-induced hexamer formation, and domain C plays an essential role in DNA binding. The side chain of Arg-318 is essential for DNA binding and may directly interact with DNA. The data also provide evidence that coordinated ATP-dependent interactions between domains N, M, and C play an essential role during formation of the RuvAB Holliday junction ternary complex.  相似文献   

18.
The RuvABC resolvasome of Escherichia coli catalyses the resolution of Holliday junctions that arise during genetic recombination and DNA repair. This process involves two key steps: branch migration, catalysed by the RuvB protein that is targeted to the Holliday junction by the structure specific RuvA protein, and resolution, which is catalysed by the RuvC endonuclease. We have quantified the interaction of the RuvA protein with synthetic Holliday junctions and have shown that the binding of the protein is highly structure-specific, and leads to the formation of a complex containing two tetramers of RuvA per Holliday junction. Our data are consistent with two tetramers of RuvA binding to the DNA recombination intermediate in a co-operative manner. Once formed this complex prevents the binding of RuvC to the Holliday junction. However, the formation of a RuvAC complex can be observed following sequential addition of the RuvC and RuvA proteins. Moreover, by examining the DNA recognition properties of a mutant RuvA protein (E55R, D56K) we show that the charge on the central pin is critical for directing the structure-specific binding by RuvA.  相似文献   

19.
Martinez-Salazar JM  Romero D 《Gene》2000,243(1-2):125-131
The Rhizobium etli ruvA and ruvB genes were cloned through a PCR-based approach, using degenerate primers matching conserved sectors in the amino acid sequences of RuvB from eight bacterial species. Comparative analysis of the predicted polypeptides for RuvA and RuvB of R. etli showed highly conserved blocks with the corresponding homologs in other bacteria; RuvB depicts characteristic motifs for DNA helicases (ATP-binding and DEXH-box motifs). An R. etli ruvB::loxP Sp mutant was constructed by interposon mutagenesis. This mutant was highly sensitive to DNA-damaging agents, such as methyl methanesulfonate and nitrofurantoin, implying a deficiency in DNA repair. Homologous and homeologous conjugational recombination was reduced almost tenfold in the ruvB::loxP Sp mutant; a recombination defect was also observed in assays employing recombination between small plasmids, albeit at a smaller magnitude. Although the ruvA and ruvB genes are contiguous in R. etli, complementation studies suggest that they are expressed independently.  相似文献   

20.
In bacteria, RuvABC is required for the resolution of Holliday junctions (HJ) made during homologous recombination. The RuvAB complex catalyzes HJ branch migration and replication fork reversal (RFR). During RFR, a stalled fork is reversed to form a HJ adjacent to a DNA double strand end, a reaction that requires RuvAB in certain Escherichia coli replication mutants. The exact structure of active RuvAB complexes remains elusive as it is still unknown whether one or two tetramers of RuvA support RuvB during branch migration and during RFR. We designed an E. coli RuvA mutant, RuvA2(KaP), specifically impaired for RuvA tetramer-tetramer interactions. As expected, the mutant protein is impaired for complex II (two tetramers) formation on HJs, although the binding efficiency of complex I (a single tetramer) is as wild type. We show that although RuvA complex II formation is required for efficient HJ branch migration in vitro, RuvA2(KaP) is fully active for homologous recombination in vivo. RuvA2(KaP) is also deficient at forming complex II on synthetic replication forks, and the binding affinity of RuvA2(KaP) for forks is decreased compared with wild type. Accordingly, RuvA2(KaP) is inefficient at processing forks in vitro and in vivo. These data indicate that RuvA2(KaP) is a separation-of-function mutant, capable of homologous recombination but impaired for RFR. RuvA2(KaP) is defective for stimulation of RuvB activity and stability of HJ·RuvA·RuvB tripartite complexes. This work demonstrates that the need for RuvA tetramer-tetramer interactions for full RuvAB activity in vitro causes specifically an RFR defect in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号