首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
When α-ketoglutarate is the substrate, malate is a considerably more effective inhibitor of glutamate dehydrogenase than glutamate, oxalacetate, aspartate, or glutarate. Malate is a considerably poorer inhibitor when glutamate is the substrate. Malate is competitive with α-ketoglutarate, uncompetitive with TPNH, and noncompetitive with glutamate. The above, plus the fact that malate is a considerably more potent inhibitor when TPNH rather than TPN is the coenzyme, indicates that malate is predominantly bound to the α-ketoglutarate site of the enzyme-TPNH complex and has a considerably lower affinity for the enzyme-TPN complex. Ligands which decrease binding of TPNH to the enzyme such as ADP and leucine markedly decrease inhibition by malate. Conversely, GTP, which increases binding of TPNH to the enzyme also enhances inhibition by malate. Malate also decreases interaction between mitochondrial aspartate aminotransferase and glutamate dehydrogenase. This effect of malate on enzyme-enzyme interaction is enhanced by DPNH and GTP which also increase inhibition of glutamate dehydrogenase by malate and is decreased by TPN, ADP, ATP, α-ketoglutarate, and leucine which decrease inhibition of glutamate dehydrogenase by malate. These results indicate that malate could decrease α-ketoglutarate utilization by inhibiting glutamate dehydrogenase and retarding transfer of α-ketoglutarate from the aminotransferase to glutamate dehydrogenase. These effects of malate would be most pronounced when the mitochondrial level of α-ketoglutarate is low and the level of malate and reduced pyridine nucleotide is high.  相似文献   

2.
Quinolinate inhibits several aminotransferases (ornithine, alanine, and aspartate). However, it is considerably more potent as an inhibitor of liver and heart cytoplasmic aspartate aminotransferase. It is a much less potent inhibitor of mitochondrial aspartate aminotransferases. Quinolinate is bound to the active site of cytoplasmic aspartate aminotransferase. It has a much greater affinity for the pyridoximine-P than the pyridoxal-P form of the enzyme. According to kinetic results, the inhibition or dissociation constant of quinolinate is 0.2 and 20 mm, respectively, for the pyridoxamine-P and the pyridoxal-P forms of the enzyme. Since quinolinate is mainly bound to the pyridoxamine-P form: (a) it is a potent competitive inhibitor of α-ketoglutarate but has little effect when α-ketoglutarate is saturating even if the level of aspartate is low; (b) it decreases the effect of α-ketoglutarate on the absorption spectrum of the pyridoxamine-P form; and (c) it enhances the effect of glutamate on the absorption spectrum of the pyridoxal-P form. Quinolinate is also apparently bound to the apoenzyme since it inhibits reconstitution by either pyridoxamine-P or pyridoxal-P. Since quinolinate is a competitive inhibitor of α-ketoglutarate, it is possible that part of the inhibitory effect of quinolinate on hepatic gluconeogenesis could result from quinolinate inhibiting the conversion of aspartate to oxalacetate by the cytoplasmic aspartate aminotransferase. Quinolinate has no effect on either rat or bovine liver glutamate dehydrogenase or on kidney glutamate dehydrogenase.  相似文献   

3.
4.
The effect of aging and CDP-choline treatment (20 mg kg−1 body weight i.p. for 28 days) on the maximal rates (Vmax) of representative mitochondrial enzyme activities related to Krebs’ cycle (citrate synthase, α-ketoglutarate dehydrogenase, malate dehydrogenase), glutamate and related amino acid metabolism (glutamate dehydrogenase, glutamate–oxaloacetate- and glutamate–pyruvate transaminases) were evaluated in non-synaptic and intra-synaptic “light” and “heavy” mitochondria from frontal cerebral cortex of male Wistar rats aged 4, 12, 18 and 24 months.  相似文献   

5.
The effect of aging and CDP-choline treatment (20 mg kg−1 body weight i.p. for 28 days) on the maximal rates (Vmax) of representative mitochondrial enzyme activities related to Krebs’ cycle (citrate synthase, α-ketoglutarate dehydrogenase, malate dehydrogenase), glutamate and related amino acid metabolism (glutamate dehydrogenase, glutamate–oxaloacetate- and glutamate–pyruvate transaminases) were evaluated in non-synaptic and intra-synaptic “light” and “heavy” mitochondria from frontal cerebral cortex of male Wistar rats aged 4, 12, 18 and 24 months.During aging, enzyme activities vary in a complex way respect to the type of mitochondria, i.e. non-synaptic and intra-synaptic. This micro-heterogeneity is an important factor, because energy-related mitochondrial enzyme catalytic properties cause metabolic modifications of physiopathological significance in cerebral tissue in vivo, also discriminating pre- and post-synaptic sites of action for drugs and affecting tissue responsiveness to noxious stimuli.Results show that CDP-choline in vivo treatment enhances cerebral energy metabolism selectively at 18 months, specifically modifying enzyme catalytic activities in non-synaptic and intra-synaptic “light” mitochondrial sub-populations. This confirms that the observed changes in enzyme catalytic activities during aging reflect the bioenergetic state at each single age and the corresponding energy requirements, further proving that in vivo drug treatment is able to interfere with the neuronal energy metabolism.  相似文献   

6.
Nuclear glutamate dehydrogenase (EC 1.4.1.3) activity has been demonstrated in Chinese hamster ovary cells. Some characteristics of this enzyme have been examined and compared with those of the mitochondrial glutamate dehydrogenase from the same source. Differences were detected in the extent of the activation by inorganic phosphate, in the pH versus activity curves, in the affinity of the two enzymes for the cofactor NAD+ and in the electrophosretic mobility. A different rate of decay of the two enzymes has been observed in cells grown in the presence of chloramphenicol. Immunological studies show that, as in ox liver, the nuclear enzyme has specific antigenic determinants besides those in common with mitochondrial glutamate dehydrogenase. Finally, experiments of thermal inactivation indicate a higher stability of the mitochondrial enzyme.  相似文献   

7.
The α-ketoglutarate dehydrogenase complex in extracts of bovine kidney and liver mitochondria is inactivated rapidly at 25 °C. This inactivation is not accompanied by loss of activity of the three component enzymes of the complex. This inactivation can be prevented by extensive washing of the mitochondria with dilute phosphate buffer prior to rupturing the mitochondria by freezing and thawing. Evidence is presented that the washings contain a protease which cleaves a peptide bond or bonds in the dihydrolipoyl transsuccinylase component of the α-ketoglutarate dehydrogenase complex, and this limited proteolysis results in dissociation of α-ketoglutarate dehydrogenase and dihydrolipoyl dehydrogenase from the transsuccinylase.The protease appears to be specific for the transsuccinylase component of the mammalian α-ketoglutarate dehydrogenase complex. It does not affect the activity of the mammalian pyruvate dehydrogenase complex or the Escherichia coli α-ketoglutarate dehydrogenase complex. The protease has been purified about 100-fold from extracts of unwashed mitochondria from bovine kidney. It requires a thiol for activity and it is not affected by treatment with diisopropyl phosphorofluoridate or phenylmethyl sulfonylfluoride.A component has been detected in highly purified preparations of the bovine kidney α-ketoglutarate dehydrogenase complex by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, which is present in trace amounts, if at all, in purified preparations of the bovine heart α-ketoglutarate dehydrogenase complex. This component is tightly bound to the transsuccinylase.  相似文献   

8.
The substitution of the catalytic zinc ion of glycerol dehydrogenase (GDH) from Klebsiella pneumonia sp. by divalent metal ions, Mn2+ and Mg2+, enabled improvements of activity, substrate promiscuity and stability. The activity of Mn-GDH and Mg-GDH improved several folds in comparison to the native GDH. The activity of substituted GDH towards non-natural substrates, 4-chloroacetoacetate, 3-chloroacetylpyridine, p-chloroacetophenone, and acetophenone was 30 folds higher than native GDH. Manganese substitution increased the half-life of GDH by 6 folds at 60 and 70°C. The two-fraction first order inactivation models fitted the nonlinear thermal inactivation curves well. Combined with the kinetic and thermodynamic analysis, further mechanistic insights to the metal ion roles in thermostability enhancements were studied. The thermodynamic parameters of inactivation, enthalpy, entropy and the Gibbs free energy indicated that Mn-GDH was stabilized entropically and elucidated the mechanisms of enzyme inactivation.  相似文献   

9.
Activity of isocitrate dehydrogenase, α-ketoglutarate dehydrogenase, malate dehydrogenase, and the NAD+/NADН ratio were studied in the liver mitochondrial fraction of rats with toxic hepatitis induced by acetaminophen under conditions of alimentary protein deficiency. Acetaminophen-induced hepatitis was characterized by a decrease of isocitrate dehydrogenase, α-ketoglutarate dehydrogenase and malate dehydrogenase activities, while the mitochondrial NAD+/NADН ratio remained at the control level. Modeling of acetaminophen-induced hepatitis in rats with alimentary protein deficiency caused a more pronounced decrease in the activity of studied Krebs cycle NAD+-dependent dehydrogenases and a 2.2-fold increase of the mitochondrial NAD+/NADН ratio.  相似文献   

10.
The NADP+ specific glutamate dehydrogenase from wild-type Neurospora crassa forms a stable binary complex with NADPH. This can combine with L-glutamate, α-ketoglutarate or the substrate analogue D-glutamate to form ternary complexes which can be distinguished by their different fluorescence properties. The affinity of the enzyme for NADPH diminishes with increases in pH or ionic strength of the solution. Experimental data obtained using modified glutamate dehydrogenases from mutant strains of N. crassa suggest that the reduced-coenzyme binding sites observed fluorimetrically are the same as those observed by enzyme kinetics.  相似文献   

11.
An antiserum against glutamate dehydrogenase from ox liver nuclei precipitates both the nuclear and the mitochondrial enzymes, with different equivalence zones. The antibodies of this serum have been fractionated by means of an immunoadsorbent to which mitochondrial glutamate dehydrogenase is covalently linked. After the affinity chromatography, the unretained antibodies had virtually lost the ability to precipitate the mitochondrial enzyme, whereas the retained portion, after elution, precipitated both glutamate dehydrogenases. These findings suggest that nuclear glutamate dehydrogenase contains specific antigenic determinants as well as determinants common to the mitochondrial enzyme, and that only the antibodies against the latter determinants have been selectively removed by the affinity chromatography.  相似文献   

12.
Cysteine sulfinate transaminase (E.C. 2.6.1,l-cysteine sulfinate:2 oxoglutarate aminotransferase) catalyzes the conversion of cysteine sulfinate and α-ketoglutarate to 3-sulfonyl pyruvate and glutamate. A simple two-step assay has been developed to measure the enzyme activity in the high speed supernatant of whole brain homogenate. In the first step, the supernatant is incubated in the presence of exogenous substrate, then glutamate dehydrogenase is added to catalyze the conversion of glutamate to α-ketoglutarate, and the concomitant production of NADH is fluorimetrically monitored. The apparent Km values of cysteine sulfinate transaminase for cysteine sulfinate and α-ketoglutarate are 1.24 and 0.22 mm, respectively. This assay is extremely rapid and has a high sensitivity, samples containing as low as 30 ng of protein may be accurately assayed.  相似文献   

13.
Ornithine-δ-transaminase (OTA) (EC 2.6.1.13) was isolated from Schistosoma mansoni and purified more than 16-fold. Treatment of the worm homogenate with 0.4% deoxycholate (DOC) in the presence of 0.8 M KC1 and 0.15 M NaCl at pH 8.3 resulted in solubilization of 85% of the enzyme. Sonication and high-speed centrifugation were unnecessary. The solubilization procedure and the subsequent purification steps required the presence of the coenzyme pyridoxal phosphate. The optimal pH for OTA was 8.5 and the optimal incubation temperature was 55 C. Michaelis-Menten constants (Km) for ornithine and α-ketoglutarate were 1.53 mM and 2.07 mM, respectively, in enzyme preparations with a specific activity of 22–29 μmoles/hr/mg protein. The enzyme showed a high affinity for α-ketoglutarate but considerably less affinity for oxaloacetate and pyruvate. High concentrations of α-ketoglutarate and ornithine inhibited the OTA activity. Similarly inhibitory were the structurally related amino acids isoleucine and serine and also oxaloacetate. The Km for α-ketoglutarate in the presence of oxaloacetate was 1.3 mM and the Vmax was 8.38 μmoles/hr/mg protein.  相似文献   

14.
Saccharopine dehydrogenase was previously purified 380-fold from human placenta. The enzyme was shown to catalyze the formation of α-aminoadipic-δ-semialdehyde and glutamate from saccharopine, to have a molecular weight of 480,000 on gel filtration, and not to be separable from l-lysine-α-ketoglutarate reductase. Additional properties of the saccharopine dehydrogenase are now described. The pH optimum for the conversion of saccharopine to glutamate and α-aminoadipic-δ-semialdehyde is 8.5 in Tris-HCl buffer and 8.9 in 2-amino-2-methyl-1,3-propanediol buffer. The specificity of the enzyme for Saccharopine and NAD and the inhibition by glutamate and product analogs were tested. It was found the NADP was the only cofactor that could replace NAD in the enzyme reaction and that several NAD analogs were reaction inhibitors. Glutamate was found to be only moderately effective as an inhibitor. Initial velocity studies revealed that the enzyme has an ordered reaction mechanism. The true Km values for saccharopine and NAD are 1.15 mm and 0.0645 mm, respectively.  相似文献   

15.
The ‘high ammonia pathway’ enzyme glutamate dehydrogenase (NADP+) is inactivated in cells of Pseudomonas aeruginosa when the stationary phase of growth in reached. Purified glutamate dehydrogenase (NADP+) appeared to be a protein composed of six identical subunits with a molecular weight of 54 000. With antibodies raised against purified enzyme it was found that glutamate dehydrogenase (NADP+) inactivation is accompanied by a parallel decrease in immunologically reactive material. This suggests that glutamate dehydrogenase (NADP+) inactivation is caused or followed by rapid proteolysis.  相似文献   

16.
Procedures are described for isolating highly purified porcine liver pyruvate and α-ketoglutarate dehydrogenase complexes. Rabbit serum stabilized these enzyme complexes in mitochondrial extracts, apparently by inhibiting lysosomal proteases. The complexes were purified by a three-step procedure involving fractionation with polyethylene glycol, pelleting through 12.5% sucrose, and a second fractionation under altered conditions with polyethylene glycol. Sedimentation equilibrium studies gave a molecular weight of 7.2 × 106 for the liver pyruvate dehydrogenase complex. Kinetic parameters are presented for the reaction catalyzed by the pyruvate dehydrogenase complex and for the regulatory reactions catalyzed by the pyruvate dehydrogenase kinase and pyruvate dehydrogenase phosphatase. For the overall catalytic reaction, the competitive Ki to Km ratio for NADH versus NAD+ and acetyl CoA versus CoA were 4.7 and 5.2, respectively. Near maximal stimulations of pyruvate dehydrogenase kinase by NADH and acetyl CoA were observed at NADH:NAD+ and acetyl CoA:CoA ratios of 0.15 and 0.5, respectively. The much lower ratios required for enhanced inactivation of the complex by pyruvate dehydrogenase kinase than for product inhibition indicate that the level of activity of the regulatory enzyme is not directly determined by the relative affinity of substrates and products of catalytic sites in the pyruvate dehydrogenase complex. In the pyruvate dehydrogenase kinase reaction, K+ and NH+4 decreased the Km for ATP and the competitive inhibition constants for ADP and (β,γ-methylene)adenosine triphosphate. Thiamine pyrophosphate strongly inhibited kinase activity. A high concentration of ADP did not alter the degree of inhibition by thiamine pyrophosphate nor did it increase the concentration of thiamine pyrophosphate required for half-maximal inhibition.  相似文献   

17.
Riboflavin deficiency in rats caused a decrease in the activities of hepatic succinate dehydrogenase (50 %), L-α-glycerophosphate dehydrogenase (50 %) and xanthine oxidase (70 %). It also reduced to 50 % the rate of mitochondrial oxidation of succinate, β-hydroxybutyrate, α-ketoglutarate, glutamate, pyruvate and malate without changing ADP : O ratios, thus showing that riboflavin deficiency interferes with electron transport along the respiratory chain without noticably affecting phosphorylation.  相似文献   

18.
The citric acid cycle (CAC) is a central metabolic pathway that links carbohydrate, lipid, and amino acid metabolism in the mitochondria and, hence, is a crucial target for metabolic regulation. The α-ketoglutarate dehydrogenase complex (KGDC) is the rate-limiting step of the CAC, the three enzymes of the complex catalyzing the transformation of α-ketoglutarate to succinyl-CoA with the release of CO2 and reduction of NAD to NADH. During hibernation, the metabolic rate of small mammals is suppressed, in part due to reduced body temperature but also active controls that suppress aerobic metabolism. The present study examined KGDC regulation during hibernation in skeletal muscle of the Richardson's ground squirrel (Urocitellus richardsonii). The KGDC was partially purified from skeletal muscle of euthermic and hibernating ground squirrels and kinetic properties were evaluated at 5°, 22°, and 37 °C. KGDC from hibernator muscle at all temperatures compared with euthermic controls exhibited a decreased affinity for CoA as well as reduced activation by Ca2+ ions at 5 °C from both euthermic and hibernating conditions. Co-immunoprecipitation was employed to isolate the E1, E2 and E3 enzymes of the complex (OGDH, DLST, DLD) to allow immunoblot analysis of post-translational modifications (PTMs) of each enzyme. The results showed elevated phospho-tyrosine content on all three enzymes during hibernation as well as increased ADP-ribosylation and succinylation of hibernator OGDH. Taken together these results show that the KGDC is regulated by posttranslational modifications and temperature effects to reorganize enzyme activity and mitochondrial function to aid suppression of mitochondrial activity during hibernation.  相似文献   

19.
20.
—Data comparing tricarboxylic acid cycle dynamics in mitochondria from rabbit brain using [2- or 3-14C]pyruvate with and without cosubstrates (malate, α-ketoglutarate, glutamate) are reported. With a physiological concentration of an unlabelled cosubstrate, from 90-99% of the isotope remained in cycle intermediates. However, the liberation of 14CO2 and the presence of 14C in the C-1 position of α-ketoglutarate indicated that multiple turns of the cycle occurred. Entry of pyruvate into the cycle was greater with malate than with either α-ketoglutarate or glutamate as cosubstrate. With malate as cosubstrate for [14C]pyruvate the amount of [14C]citrate which accumulated averaged 30nmol/ml or 23% of the pyruvate utilized while α-ketoglutarate averaged 45 nmol/ml or 35% of the pyruvate utilized. With α-ketoglutarate as cosubstrate for [14C]pyruvate, the average amount of [14C]citrate which accumulated decreased to 8 nmol/ml or 10% of the pyruvate utilized while [14C]α-ketoglutarate increased slightly to 52 nmol/ml or an increase to 62%, largely due to a decrease in pyruvate utilization. The percentage of 14C found in α-ketoglutarate was always greater than that found in malate, irrespective of whether α-ketoglutarate or malate was the cosubstrate for either [2- or 3-14C]pyruvate. The fraction of 14CO2 produced was slightly greater with α-ketoglutarate as cosubstrate than with malate. This observation and the fact that malate had a higher specific activity than did α-ketoglutarate when α-ketoglutarate was the cosubstrate, indicated a preferential utilization of α-ketoglutarate formed within the mitochondria. When l -glutamate was a cosubstrate for [14C]pyruvate the principal radioactive product was glutamate, formed by isotopic exchange of glutamate with [14C] α-ketoglutarate. If malate was also added, [14C]citrate accumulated although pyruvate entry did not increase. Due to retention of isotope in glutamate, little [14C]succinate, malate or aspartate accumulated. When [U-14C]l -glutamate was used in conjunction with unlabelled pyruvate more 14C entered the cycle than when unlabelled glutamate was used with [14C]pyruvate and led to α-ketoglutarate, succinate and aspartate as the major isotopic products. When in addition, unlabelled malate was added, total and isotopic α-ketoglutarate increased while [14C]aspartate decreased. The increase in [14C]succinate when [14C] glutamate was used indicated an increase in the flux through α-ketoglutarate dehydrogenase and was accompanied by a decrease of pyruvate utilization as compared to experiments when either α-ketoglutarate or glutamate were present at low concentration. It is concluded that the tricarboxylic acid cycle in brain mitochondria operates in at least three open segments, (1) pyruvate plus malate (oxaloacetate) to citrate; (2) citrate to α-ketoglutarate and; (3) α-ketoglutarate to malate, and that at any given time, the relative rates of these segments depend upon the substrate composition of the environment of the mitochondria. These data suggest an approach to a steady state consistent with the kinetic properties of the tricarboxylic acid cycle within the mitochondria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号