首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Mono- and divalent cations were found to increase the transfer of excitation energy within Photosystem I from the light-harvesting chlorophyll a molecules to P700. The P700-chlorophyll a protein of Shiozawa et al. (J. A. Shiozawa, R. S. Alberte, and J. P. Thornber, 1974, Arch. Biochem. Biophys.165, 388–397) was used for these studies. Cations stimulated the quantum yields for electron transport when the light-harvesting chlorophyll a molecules were irradiated. They also decreased chlorophyll a fluorescence. Half-maximal effects were observed at 0.5–0.6 mm for divalent cations and at 5–6 mm for monovalent cations. Triton X-100, 0.02%, also increased energy transfer. The increases in energy transfer are due to an intramolecular conformational change in the protein. A structural change is involved, since there is a correlation between the cation-induced changes in energy transfer and increases in 90 ° light scattering. However, there was no change in the molecular weight upon the addition of MgCl2. The molecular weight, as determined by gel filtration, was 105,000 in the presence of 0.05% Triton X-100. On the other hand, circular dichroism measurements showed an increase in the α-helical content from 51 to 63% when 5 mm MgCl2 was added. Changes in the absorption spectra were also observed. We believe that the cation regulation of Photosystem I activity provides a fine-tuning mechanism for the regulation of energy transfer.  相似文献   

2.
Photosystem II particles were prepared from spinach chloroplasts with Triton X-100, and treated with 1.0 M NaCl to remove polypeptides of 24 kDa and 18 kDa and to reduce the photosynthetic oxygen-evolution activity by about half. Oxygen-evolution activity was restored almost to the original level with 10 mM Ca2+, in a similar manner to the rebinding of 24-kDa polypeptide. Other cations such as magnesium, sodium and manganese ions could not restore any oxygen-evolution activity. These observations, together with a kinetic analysis, suggest that Ca2+ can be substituted for the 24-kDa polypeptide in photosynthetic oxygen evolution in Photosystem II particles.  相似文献   

3.
Treatment of Photosystem II particles from spinach chloroplasts with Triton X-100 with 2.6 M urea in the presence of 200 mM NaCl removed 3 polypeptides of 33 kDa, 24 kDa and 18 kDa, but left Mn bound to the particles. The (urea + NaCl)-treated particles could evolve oxygen in 200 mM, but not in 10 mM NaCl. Mn was gradually released with concomitant loss of oxygen-evolution activity in 10 mM NaCl but not in 200 mM Cl?. The NaCl-treated particles, which contained Mn and the 33-kDa polypeptide but not the 24-kDa and 18-kDa polypeptides, did not lose Mn or oxygen-evolution activity in 10 mM NaCl. These observations suggest that the 33-kDa polypeptide maintains the binding of Mn to the oxygen-evolution system and can be functionally replaced by 200 mM Cl?.  相似文献   

4.
N. Murata  M. Miyao  T. Omata  H. Matsunami  T. Kuwabara 《BBA》1984,765(3):363-369
The stoichiometry of the proteins of the photosynthetic oxygen evolution system and of the electron transport components in Photosystem II particles prepared with Triton X-100 from spinach chloroplasts were determined. Per about 220 chlorophyll molecules, there were one reaction center II, one molecule each of the 33, 24 and 18 kDa proteins, four Mn atoms, two cytochromes b-559 (one high-potential, the other low-potential), and 3.5 plastoquinone-9 molecules, but practically no cytochrome b-563, cytochrome f, phylloquinone, α-tocopherol or α-tocopherylquinone.  相似文献   

5.
Yasusi Yamamoto  Bacon Ke 《BBA》1980,592(2):285-295
In Photosystem-II reaction-center particles (TSF-IIa) fractionated from spinach chloroplasts by Triton X-100 treatment, divalent cations appear to regulate electron-transport reactions. Oxidation of cytochrome b-559 after illumination of the particles was accelerated by the presence of Mg2+, whereas photoreduction of 2,6-dichlorophenolindophenol (DCIP) by diphenyl carbazide was inhibited, both at a half-effective concentration of Mg2+ of approx. 0.1 mM.The site of regulation was shown to be on the oxidizing side of Photosystem II, near P-680, based on the effects of actinic-light intensity and nature of the electron donors on DCIP photoreduction. Mg2+ was effective in quenching chlorophyll fluorescence in TSF-IIa particles, but the quenching was sensitive to the presence of 3(3,4-dichloropheny)-1,1-dimethylurea. In the reactioncenter (core) complex of Photosystem II, where the light-harvesting chlorophyll-protein complex is absent, there seems to be no regulation by Mg2+ on excitation-energy distribution.  相似文献   

6.
Protein has been selectively extracted from isolated chicken erythrocyte nuclear envelope by (1) dilute MgCl2/Triton X-100 followed by (2) concentrated MgCl2/Triton X-100 solutions. Certain proteins appear to be selectively dissolved in the first solvent and may occur in the nuclear envelope primarily as lipoproteins. Among the proteins insoluble in the low MgCl2/Triton X-100 wash, as well as in 500 mM MgCl2 without Triton previously used in the preparation of the envelope fraction, the quantitatively major polypeptides dissolve in a combination of high MgCl2 and Triton X-100. Further, much of this dissolved protein precipitates when the MgCl2 concentration is lowered by dialysis. The insolubility of these proteins appears to result from a combination of ionic and hydrophobic interactions and may explain the resistance of nuclei to various manipulative procedures including nonionic detergent washes. The procedures described provide a route for gently and selectively dissolving representative proteins from the nuclear envelope lipoprotein matrix and from the envelope “residual” protein.  相似文献   

7.
Lam E  Malkin R 《Plant physiology》1985,79(4):1118-1124
The accessibility of various Photosystem II (PSII)-associated polypeptides to the protease pronase and the chemical modifier trinitrobenzene-sulfonic acid (TNBS) has been investigated. Three polypeptides with apparent molecular weight of 32, 21, and 16 kilodaltons, known to be associated with O2 evolution, are all resistant to pronase digestion and TNBS labeling in intact thylakoids. All the polypeptides in the isolated PSII preparation were labeled with TNBS while a different pattern of labeling was observed when the PSII complex was isolated from TNBS-modified thylakoids. Attempts to prepare PSII particles from pronase-treated thylakoids using the Triton X-100 solubilization method were unsuccessful. Pronase-treated thylakoids were probed with antisera against the chlorophyll proteins of PSII using immunoblotting techniques. This allowed for a positive identification of proteolytic fragments from the respective proteins. The results are discussed in relation to the transmembrane organization of PSII in spinach thylakoids.  相似文献   

8.
Bensen RJ  Warner HR 《Plant physiology》1987,84(4):1102-1106
A uracil-DNA glycosylase activity has been purified about 750-fold from the chloroplasts of light-grown Zea mays seedlings. This report represents the first direct demonstration of a DNA-glycosylase repair activity in chloroplasts. The activity, in part, was associated with a chloroplast Triton X-100 sensitive membrane. Its apparent Km was 1.0 micromolar for a poly(dA-dT/U) substrate, and its molecular weight, as determined by gel filtration, was 18,000. The enzyme exhibited optimal activity at pH 7.0 with an atypically narrow pH tolerance. Activity was inhibited greater than 60% by 10 millimolar NaCl, 5 millimolar MgCl2, or 5 millimolar EDTA. Enzyme activity was inhibited 80% by 10 millimolar N-ethylmaleimide, a sulfhydryl group-blocking agent. The activity removed uracil more rapidly from single-stranded DNA than from double-stranded DNA. With this report, uracil-DNA glycosylase activity has now been attributed to all three DNA-containing organelles of eucaryotic cells.  相似文献   

9.
G. Kulandaivelu  H. Senger 《BBA》1976,430(1):94-104
The kinetics (region of seconds) of the light-induced 520 nm absorbance change and its dark reversal have been studied in detail in the wild type and in some pigment and photosynthetic mutants of Scenedesmus obliquus. The following 5 lines of evidence led us to conclude that the signal is entirely due to the photosystem I reaction modified by electron flow from Photosystem II.Gradual blocking of the electron transport with 3(3,4-dichlorophenyl)-1,1-dimethylurea resulted in diminution and ultimate elimination of the biphasic nature of the signal without reducing the extent of the absorbance change or of the dark kinetics. On the contrary, blocking electron flow at the oxidizing side of plastoquinone with 2, 5-dibromo-3-methyl-6-isoprophyl-p-benzoquinone or inactivating the plastocyanin with KCN, prolonged the dark reversal of the absorbance change apart from abolishing the biphasic nature of the signal.Action spectra clearly indicate that the main signal (I) is due to electron flow in Photosystem I and that its modification (Signal II) is due to the action of Photosystem II.Signal I is pH independent, whereas Signal II demonstrates a strong pH dependence, parallel to the O2-evolving capacity of the cells.Chloroplast particles isolated from the wild type Scenedesmus cells demonstrated in the absence of any added artificial electron donor or acceptor and also under non-phosphorylation conditions the 520 nm absorbance change with approximately the same magnitude as whole cells. The dark kinetics of the particles were comparatively slower. Removal of plastocyanin and other electron carriers by washing with Triton X-100 slowed down the kinetics of the dark reversal reaction to a greater extent. A similar positive absorbance change at 520 nm and slow dark reversal was also observed in the Photosystem I particles prepared by the Triton method.Mutant C-6E, which contains neither carotenoids nor chlorophyll b and lacks Photosystem II activity, demonstrates a normal signal I of the 520 nm absorbance change. This latter result contradicts the postulate that carotenoids are the possible cause of the 520 nm absorbance change.  相似文献   

10.
1. In the presence of Triton X-100, chloroplast membranes of the green alga Acetabularia mediterranea were disrupted into two subchloroplast fragments which differed in buoyant density. Each of these fractions had distinct and unique complements of polypeptides, indicating an almost complete separation of the two fragments.

2. One of the two subchloroplast fractions was enriched in chlorophyll b. It exhibited Photosystem II activity, was highly fluorescent and was composed of particles of approx. 50 Å diameter.

3. The light-harvesting chlorophyll-protein complex of the Photosystem II-active fraction had a molecular weight of 67 000 and contained two different subunits of 23 000 and 21 500. The molecular ratio of these two subunits was 2:1.  相似文献   


11.
1. In the presence of Triton X-100, chloroplast membranes of the green alga Acetabularia mediterranea were disrupted into two subchloroplast fragments which differed in buoyant density. Each of these fractions had distinct and unique complements of polypeptides, indicating an almost complete separation of the two fragments. 2. One of the two subchloroplast fractions was enriched in chlorophyll b. It exhibited Photosystem II activity, was highly fluorescent and was composed of particles of approx. 50 A diameter. 3. The light-harvesting chlorophyll-protein complex of the Photosystem II-active fraction had a molecular weight of 67 000 and contained two different subunits of 23 000 and 21 500. The molecular ratio of these two subunits was 2:1.  相似文献   

12.
Proteins of chloroplast subfragments enriched in Photosystem I and Photosystem II electron flow activity have been analyzed by two-dimensional polyacrylamide gel electrophoresis. In the first dimension, polyacrylamide gel isoelectric focusing (pH 5–7) was used in the presence of Triton X-100, followed at right angle by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulphate. Characteristic fingerprints were obtained for the Photosystem I and II fractions and a correlation between the major proteins separated by isoelectric focusing and the major polypeptides separated by undimensional SDS electrophoresis was established. Two dominant spots of 68 000 and 60 000 daltons appeared in the two-dimensional patterns of Photosystem I fractions pI values about 5.6; two spots with molecular weights of 33 000 and 23 000 were characteristics for Photosystem II fractions pI values about 5.3 and 6.3). Photosystem I fractions were furthermore characteristics by a series of spots in the 44 000–33 000 range pI values from about 5.9 to 6.8). The two-dimensional system revealed that (a) several SDS-polypeptides have multiple forms differing in charge only, (b) some proteins separated by isoelectric focusing are resolved in the second dimensional into polypeptides of different size. The two-dimensional method combining Triton X-100 isoelectric focusing' and SDS electrophoresis provides a higher degree of resolution than either of the unidimensional methods thus allowing a detailed analysis of chloroplast membrane proteins.  相似文献   

13.
Hormonally sensitive adenylate cyclase has been solubilized from rat liver plasma membranes using Triton X-305 in Tris buffers containing mercaptoethanol and MgCl2. The solubilized enzyme was stimulated 5 fold by NaF, 7 fold by glucagon and 20 fold by epinephrine. Criteria for solubilization included lack of sedimentation at 100,000 × g for one hour, the absence of particulate material in the 100,000 × g supernatant when examined by electron microscopy, and inclusion of hormonally sensitive adenylate cyclase activity in Sephadex G 200 gels. The molecular weight of the solubilized, hormonally sensitive enzyme was approximately 200,000 in the presence of Triton X-305.  相似文献   

14.
Photosystem (PS) II particles prepared from spinach thylakoids with Triton X-100 were treated with 1.5 M NaCl either in the light or dark. Under both conditions, the 24-kDa and 18-kDa proteins were released from the particles, but rebound to them when the NaCl concentration was reduced to 34 mM by dilution. Oxygen evolution measured after the dilution was inactivated following NaCl treatment in the light, but not following treatment in the dark. The inactivation in the light was suppressed when 5 mM CaCl2 was added during or after the NaCl treatment. Based on these observations, a scheme is proposed for the mechanism of light-dependent inactivation of oxygen evolution during NaCl treatment of PS II particles and for the function of the 24-kDa protein in regulating the conformation of a supposed Ca2+-binding intrinsic protein.Abbreviations Chl chlorophyll - EGTA ethyleneglycol-bis-(-aminoethyl ether)-N,N,N,N-tetraacetic acid - Mes 4-morpholineethanesulphonic acid - PS photosystem - SDS sodium dodecylsulphate  相似文献   

15.
After Triton X-100 delipidation and subsequent Triton X-100 removal in a sucrose gradient the membrane protein spikes of Semliki Forest virus remained soluble in aqueous buffers. It was shown they were present as octameric complexes with a molecular weight of 95 · 104 and that they contain less than 4% lipid and detergent by weight. In electron microscopy after negative staining they appeared as “rosette”-shaped particles. Part of the protein could also be found associated in ordered paracrystalline arrays.  相似文献   

16.
Wissing J  Heim S  Wagner KG 《Plant physiology》1989,90(4):1546-1551
Diacylglycerol kinase (ATP:1,2-diacylglycerol 3-phosphotransferase, EC 2.7.1.107) from suspension-cultured Catharanthus roseus cells was extracted from a membrane fraction with 0.6% Triton X-100 and 150 millimolar NaCl and was purified about 900-fold by DEAE-cellulose, blue Sepharose, gel permeation, and phenyl-Sepharose chromatography. The enzyme is obviously membrane bound as activity in the cytosol could not be detected. In the presence of detergents such as Triton X-100 (3-[3-cholamidopropyl]dimethylamino)-1-propanesulfonate (Chaps), or deoxycholate, a molecular weight of about 250,000 was determined by gel filtration. In glycerol density gradients, the enzyme sedimented slightly more slowly than bovine serum albumin, indicating a molecular weight of less than 68,000. On sodium dodecyl sulfate-polyacrylamide gel electrophoresis enzyme activity could be assigned to a protein of 51,000 daltons. As found previously for bacterial and animal diacylglycerol kinases, the purified enzyme was completely devoid of activity without the addition of phospholipids or deoxycholate. Cardiolipin was found to be most effective, whereas higher amounts of detergent were inhibitory. The enzyme needs divalent cations for activity, with Mg2+ ions being the most effective. Apparent Km values for ATP and diacylglycerol were determined as 100 and 250 micromolar, respectively.  相似文献   

17.
T. Wydrzynski  E.L. Gross 《BBA》1975,376(1):151-161
The effects of Na+ and Mg2+ on the “dark” level (O level) and light-induced (P level) fluorescence in sucrose-washed spinach chloroplasts were studied. Low concentrations of NaCl (2–10 mM) cause a significant decrease in both the O and P levels in the chlorophyll fluorescence transient. The effect on the O level may reflect changes in the bulk chlorophyll a. At 77 °K NaCl increases the F735F685 emission peak ratio in dark-adapted and preilluminated chloroplasts, but has no significant effect on this ratio in sucrose-washed Photosystem II particles. This evidence is consistent with a sodium-induced excitation-energy distribution in favor of Photosystem I.In the presence of MgCl2, with or without NaCl, there is a slight decrease in the O and P level fluorescence as compared with the salt-free control, but an increase as compared with the NaCl-treated sample. Magnesium appears to override the sodium-induced changes. At low temperatures in chloroplasts and Photosystem II particles, MgCl2 has different effects on the F735F685 ratio apparently depending on the state of the membrane. Magnesium, however, always induces an increase in the F695F685 ratio. These results suggest that magnesium may influence Photosystem II reaction centers as well as energy distribution between the two photosystems.  相似文献   

18.
The peripheral root cap cells of corn (cv. SX-17A) secrete a fucose-rich, high molecular weight, polysaccharide slime via the dictyosome pathway. To study the synthesis of this polysaccharide, a technique for isolating and assaying GDP-fucose:polysaccharide fucosyl transferase activity was developed. Corn roots were excised from germinated seeds, incubated 12 hours at 10 C in water, and ground in 100 millimolar Tris or Pipes buffer (pH 7.0) with or without 0.5 molar sucrose. The membrane-bound enzyme was solubilized by sonication in the presence of 2 molar urea and 1.5% (v/v) Triton X-100 and assayed by monitoring the incorporation of GDP-[14C]fucose into endogenous acceptors. Optimum enzyme activity is expressed at pH 7.0 and 30 C in the presence of 0.8% (v/v) Triton X-100. The enzyme does not require divalent cations for activation and is inhibited by concentrations of MnCl2 or MgCl2 greater than 1 millimolar. Corn root cap slime will serve as an exogenous acceptor for the enzyme if it is first hydrolyzed in 5 millimolar trifluoroacetic acid for 60 minutes at 18 pounds per square inch, 121 C. This procedure prepares the acceptor by removing terminal fucose residues from the slime molecule. Kinetics of fucose release during hydrolysis of native slime and in vitro synthesized product suggests that the two polymers possess similar linkages to fucose.  相似文献   

19.
Abstract

Accumulation and translocation of sulphate in excised maize roots, submerged in rising saline concentrations, were investigated. It was shown that the accumulation of sulphate is not depressed by concentrations from 1 to 50 mM of NaCl or KCl, it is weakly increased by concentrations of the same salts 100 mM and it is gradually lowered by concentrations from 1 to 100 mM of MgCl2.

On the contrary the translocation is gradually inhibited by rising concentrations of NaCl, KCl and MgCl2. A 100 mM NaCl concentration considerably loweres the translocation in 24 hours, but does not affect accumulation. Accumulation and translocation are strongly depressed by the inhibitors of oxydative phosphorylation (2,4 DNP or CCCP) and by 200 mM NaCl, KCl or MgCl2 concentrations.

It is concluded that accumulation and translocation are active processes as they are reduced by 2,4 DNP or CCCP; that the small increase in accumulation observed by 100 mM NaCl or KCl concentration is due probably to the discharging action of cations exercited on the membranes of root cells and that only the second step of ion translocation, i.e. ion secretion in xylem, is sensible to the presence of high saline concentrations of NaCl or KCl in the outer medium.  相似文献   

20.
Fractions enriched in either Photosystem I or Photosystem II activity have been isolated from the blue-green alga, Synechococcus cedrorum after digitonin treatment. Sedimentation of this homogenate on a 10–30% sucrose gradient yielded three green bands: the upper band was enriched in Photosystem II, the lowest band was enriched in Photosystem I, while the middle band contained both activities. Large quantities of both particles were isolated by zonal centrifugation, and the material was then further purified by chromatography on DEAE-cellulose.The resulting Photosystem II particles carried out light-induced electron transport from semicarbizide to ferricyanide of over 2000 μmol/mg Chlorophyll per h (which was sensitive to 3-(3,4-dichlorophenyl)-1,1-dimethylurea), and was nearly devoid of Photosystem I activity. This particle contains β-carotene, very little phycocyanin, has a chlorophyll absorption maximum at 675 nm, and a liquid N2 fluorescence maximum at 685 nm. The purest Photosystem II particles have a chlorophyll to cytochrome b-559 ratio of 50 : 1. The Photosystem I particle is highly enriched in P-700, with a chlorophyll to P-700 ratio of 40 : 1. The physical structure of the two Photosystem particles has also been studied by gel electrophoresis and electron microscopy. These results indicate that the size and protein composition of the two particles are distinctly different.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号