首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The asparagine-linked sugar chains of the plasma membrane glycoproteins of rat erythrocytes were released as oligosaccharides by hydrazinolysis and labeled by NaB3H4 reduction. The radioactive oligosaccharides were separated into a neutral and at least four acidic fractions by paper electrophoresis. The neutral oligosaccharide fraction was separated into at least 11 peaks upon Bio-Gel P-4 column chromatography. Structural studies of them by sequential exoglycosidase digestion in combination with methylation analysis revealed that they were a mixture of three high mannose-type oligosaccharides and at least 11 complex type oligosaccharides with Manα1 → 6(Manα1 → 3)Manβ1 → 4GlcNAcβ1 → 4(±Fucα1 → 6)GlcNAc as their cores and Galβ1 → 4GlcNAc, Galβ1 → 3Galβ1 → 4GlcNAc, and various lengths of Galβ1 → 4GlcNAc repeating chains in their outer chain moieties. Most of the complex-type Oligosaccharides were biantennary, and the tri- and tetraantennary Oligosaccharides contain only the Galβ1 → 3Galβ1 → 4GlcNAc group in their outer chain moieties.  相似文献   

2.
The sugar chains of microsomal and lysosomal β-glucuronidases of rat liver were studied by endo-β-N-acetylglucosaminidase H digestion and by hydrazinolysis. Only a part of the oligosaccharides released from microsomal β-glucuronidase was an acidic component. The acidic component was not hydrolyzed by sialidase and by calf intestinal and Escherichia coli alkaline phosphatases, but was converted to a neutral component by phosphatase digestion after mild acid treatment indicating the presence of a phosphodiester group. The neutral oligosaccharide portion of microsomal enzyme was a mixture of five high mannose-type sugar chains: (Manα1 → 2)0~4 [Manα1 → 6(Manα1 → 3)Manα1 → 6(Manα1 → 3)Manβ1 → 4GlcNAcβ1 → 4GlcNAc]. In contrast, lysosomal enzyme contains only Manα1 → 6 (Manα1 → 3) Manα1 → 6(Manα1 → 3) Manβ1 → 4GlcNAcβ1 → 4GlcNAc. The result indicates that removal of α1 → 2-linked mannosyl residues from (Manα1 → 2)4[Manα1 → 6(Manα1 → 3)Manα1 → 6(Manα1 → 3)Manβ1 → 4GlcNAcβ1 → 4GlcNAc → Asn] starts already in the endoplasmic reticulum of rat liver.  相似文献   

3.
Among the four acidic oligosaccharide fractions obtained by paper electrophoresis of the hydrazinolysate of the plasma membrane glycoproteins of rat erythrocytes, one was further separated into two by prolonged paper electrophoresis using 120-cm paper. Three fractions were mixtures of monosialyl oligosaccharides and two of disialyl oligosaccharides. After desialylation, their neutral portions were fractionated by Bio-Gel P-4 column chromatography and by affinity chromatography using a Con A-Sepharose column. Structural studies of the neutral oligosaccharides, thus obtained, indicated that at least 26 different complex-type oligosaccharides are present as a neutral portion of the acid oligosaccharides. Structurally they can be classified into bi-, tri-, and tetraantennary oligosaccharides with Manα1 → 6(Manα1 → 3)Manβ1 → 4GlcNAcβ1 → 4(±Fucα1 → 6)GlcNAcOT as their common cores. Galβ1 → 3Galβ1 → 4GlcNAc, Siaα2 → 3Galβ1 → 4GlcNAc, Siaα2 → 6Galβ1 → 4GlcNAc, and a series of Siaα2 → (Galβ1 → 4GlcNAcβ1 → 3)n · Galβ1 → 4GlcNAc were found as their outer chains. Their structures together with the structures of neutral oligosaccharides reported in the preceding paper indicated that the outer chain moieties of the asparagine-linked sugar chains of rat erythrocyte membrane glycoproteins are formed not by random concerted action of glycosyl transferases in Golgi membrane but by the mechanism in which the formation of one outer chain will regulate the elongation of others.  相似文献   

4.
By hydrazinolysis, oligosaccharides were released from fucose-labeled glycopeptides obtained from normal and polyoma-transformed baby hamster kidney cells, and their structures were comparatively analyzed. The oligosaccharides have the following structures, with different number of sialyl-galactosyl-N-acetylglucosaminyl outer chains: (±Siaα→Galβ→GlcNAcβ→)n(Manα→)2Manβ→GlcNAcβ→(Fucα→)GlcNAc, (in normal cells, n=2, 3 and 4, while in polyoma-transformed cells, n=2,3,4,5 and 6). Transformed cells are relatively rich in oligosaccharides with highly branched outer chains, as compared to normal cells.  相似文献   

5.
Bovine prothrombin contains three asparagine-linked sugar chains in 1 molecule. The sugar chains were quantitatively released from the polypeptide backbone by hydrazinolysis. All of the oligosaccharides thus obtained contain N-acetylneuraminic acid. Sialidase treatment of these acidic oligosaccharides released three isomeric oligosaccharides, N-1, N-2 and N-3. N-3 was a typical complex type asparagine-linked sugar chain widely found in other glycoprotein, while N-1 and N-2 were unique, because they contain Gal beta 1 leads to 3GlcNAc grouping in the outer chain moiety. By comparing the data of methylation analysis of the acidic oligosaccharides before and after sialidase treatment, the structures of the sugar chains of bovine prothrombin were confirmed as a mixture of NeuAc alpha 2 leads to 6Gal beta 1 leads to 4GlcNAc beta 1 leads to 2Man alpha 1 leads to 6(NeuAc alpha 2 leads to 6Gal beta 1 leads to 4GlcNAc beta 1 leads to 2Man alpha 1 leads to 3)Man beta 1 leads to 4GlcNAc beta 1 leads to 4GlcNAc leads to Asn, NeuAc alpha 2 leads to 6Gal beta 1 leads to 4GlcNAc beta 1 leads to 2Man alpha 1 leads to 6[NeuAc alpha 2 leads to 3Gal beta 1 leads to 3(NeuAc alpha 2 leads to 6)GlcNAc beta 1 leads to 2Man alpha 1 leads to 3]Man beta 1 leads to 4GlcNAc beta 1 leads to 4GlcNAc leads to Asn, NeuAc alpha 2 leads to 3Gal beta 1 leads to 3(NeuAc alpha 2 leads to 6)GlcNAc beta 1 leads to 2Man alpha 1 leads to 6[NeuAc alpha 2 leads to 3Gal beta 1 leads to 3(NeuAc alpha 2 leads to 6)GlcNAc beta 1 leads to 2Man alpha 1 leads to 3]Man beta 1 leads to 4GlcNAc beta 1 leads to 4GlcNAc leads to Asn and their partially desialized forms.  相似文献   

6.
Human chorionic gonadotropin (hCG) purified from placenta, like urinary hCG, is shown to have the sialylated forms of three neutral oligosaccharides: Galβ1→4GlcNAcβ1→2Manα1→6(Galβ1→4GlcNAcβ1→2Manα1→3)Manβ1→4GlcNAcβ1→4(Fucα1→6)GlcNAc (N-1), Galβ1→4GlcNAcβ1→2Manα1→6(Galβ1→4GlcNAcβ1→2Manα1→3)Manβ1→4GlcNAcβ1→4GlcNAc (N-2) and Manα1→6(Galβ1→4GlcNAcβ1→2Manα1→3)Manβ1→4GlcNAcβ1→4GlcNAc (N-3). Gel permeation chromatographic analysis of oligosaccharides released from α- and β-subunits of placental hCG has revealed that the α-subunit has one each of sialylated N-2 and N-3, while the β-subunit has one each of sialylated N-1 and N-2.  相似文献   

7.
Cathepsin D from porcine spleen contained mannose (3.3%), glucosamine (1.4%), and mannose 6-phosphate (0.08%). Essentially all of the oligosaccharides of cathepsin D could be released by endo-β-N-acetylglucosaminidase H, pointing to oligomajmoside types of structures. Three neutral oligosaccharide fractions, containing 5, 6, and 7 mannose residues, respectively, were isolated by gel permeation chromatography on Bio-Gel P-2. Studies using exoglycosidase digestions and 500-MHz 1H NMR spectroscopy revealed that their structures are [Manα1 → 2]0 or 1Manα1 → 6[Manα1 → 3]Manα1 → 6[(Manα1 → 2)0 or 1Manα1 → 3]Manβ1 → 4GlcNAcβ1 → 4 GlcNAc. These structures are identical to what have recently been proposed by Takahashi et al. for the major oligosaccharide units of cathepsin D from the same source (T. Takahashi P.G. Schimidt, and J. Tang (1983)J. Biol. Chem.258, 2819–2930), except for the occurrence of two isomeric oligosaccharides containing six mannoses. Only a part (3.4%) of the oligosaccharides were acidic, containing phosphates in monoester linkage. The phosphorylated oligosaccharides also consisted of oligomannoside-type chains which were analogous to, but more heterogeneous in size than the neutral oligosaccharides. Cathepsin D was bound to a mannose- and N-acetylglucosamine-specific lectin (mannan-binding protein) isolated from rabbit liver with the Ki value of 5.4 × 10?6m.  相似文献   

8.
The asparagine-linked sugar chains of human chorionic gonadotropin were released from the polypeptide moiety by hydrazinolysis followed by N-acetylation and NaB3H4 reduction. More than 90% of the released radioactive oligosaccharides contained N-acetylneuraminic acid residues. After removal of N-acetylneuraminic acid residues by sialidase treatment, two neutral oligosaccharide fractions were obtained by paper chromatography. Sequential exoglycosidase digestion revealed that one of them was a mixture of two neutral oligosaccharides. The complete structures of the three oligosaccharides were elucidated by methylation analysis. It was confirmed that all the N-acetylneuraminic acid residues of the asparagine-linked sugar chains of human chorionic gonadotropin occur as NeuAc alpha 2 leads to 3Gal groupings by comparing the methylation analysis data for the acidic oligosaccharide mixture before and after sialidase treatment. Based on these results, the structures of the asparagine-linked sugar chains of human chorionic gonadotropin were confirmed to be +/- NeuAc alpha 2 leads to 3Gal beta 1 leads to 4GlcNAc beta 1 leads to 2Man alpha 1 leads to 6(NeuAc alpha 2 leads to 3Gal beta 1 leads to 4GlcNAc beta 1 leads to 2Man alpha 1 leads to 3)Man beta 1 leads to 4GlcNAc beta 1 leads to 4(+/- Fuc alpha 1 leads to 6)GlcNAc and Man alpha 1 leads to 6(NeuAc alpha 2 leads to 3 Gal beta 1 leads to 4 GlcNAc beta 1 leads to Man alpha 1 leads to 3)Man beta 1 leads to 4 GlcNAc beta 1 leads to 4GlcNAc.  相似文献   

9.
The sugar specificity of Escherichia coli 346 and of the type-1 fimbriae isolated from this organism has been studied by quantitative inhibition of the agglutination of mannan-containing yeast cells. The best inhibitors of the agglutination by the bacteria were the oligosaccharides Manα1→6[Manα1→3]Manα1→6[Manα1→2Manα1→3]ManαOMe, Manα1→6[Manα1→3]Manα1→6[Manα1→3]ManαOMe and Manα1→3Manβ1→4GlcNAc, and the aromatic glycoside p-nitrophenyl α-d-mannoside, all of which were 20–30 times more inhibitory than methyl α-d-mannoside. The disaccharides Manα1→3Man, Manα1→2Man and Manα1→6Man, the tetrasaccharide Manα1→2Manα1→3Manβ1→4GlcNAc and the pentasaccharide Manα1→2Manα1→2Manα1→3Manβ1→4GlcNAc, were all poor inhibitors. A very good correlation was found between the relative inhibitory activity of the different sugars tested with intact bacteria and with the isolated fimbriae. Our findings show that the combining site of the E. coli lectin is an extended one, corresponding to the size of a trisaccharide, that it contains a hydrophobic region, and that it is in the form of a pocket on the surface of the lectin. The combining site fits best the structures found in short oli gomannosidic chains present in N-glycosidically linked glycoproteins.  相似文献   

10.
Partial invitro sialylation of biantennary and triantennary glycopeptides of α1-acid glycoprotein using colostrum β-galactosideα(2→6) sialyltransferase followed by high resolution 1H-NMR spectroscopic analysis of the isolated products enabled the assignment of the Galβ(1→4)GlcNAcβ(1→2)Manα(1→3)Man branch as the most preferred substrate site for sialic acid attachment. The Galβ(1→4)GlcNAcβ(1→2)Manα(1→6)Man branch appeared to be much less preferred and the Galβ(1→4)GlcNAcβ(1→4)Manα(1→3)Man sequence of triantennary structures was of intermediate preference for the sialyltransferase. The specificity of the β-galactoside α(2→6) sialyltransferase is thus shown to extend to structural features beyond the terminal N-acetyllactosamine units on the oligosaccharide chains of serum glycoproteins.  相似文献   

11.
Cold-insoluble globulin isolated from bovine plasma contains six asparagine-linked sugar chains in 1 molecule (a dimeric form). These sugar chains were released from the polypeptide backbone by hydrazinolysis and labeled by reduction with NaB[3H]4. Most of these sugar chains contain N-acetylneuraminic acid and can be separated by paper electrophoresis. By combination of sequential exoglycosidase digestion and methylation study, their structures were elucidated as Gal beta 1 leads to 4GlcNAc beta 1 leads to 2Man alpha 1 leads to 6(NeuAc alpha 2 leads to 6Gal beta 1 leads to 4GlcNAc beta 1 leads to 2Man alpha 1 leads to 3)Man beta 1 leads to 4GlcNAc beta 1 leads to 4GlcNAc, NeuAc alpha 2 leads to 6 or 4Gal beta 1 leads to 4GlcNAc beta 1 leads to 2Man alpha 1 leads to 6(NeuAc alpha 2 leads to 4 or 6Gal beta 1 leads to 4GlcNAc beta 1 leads to 2Man alpha 1 leads to 3)Man beta 1 leads to 4GlcNAc beta 1 leads to 4GlcNAc, NeuAc alpha 2 leads to 6Gal beta 1 leads to 4GlcNAc beta 1 leads to 2Man alpha 1 leads to 6[NeuAc alpha 2 4Gal beta 1 leads to 3(NeuAc alpha 2 leads to 6)GlcNAc beta 1 leads to 2Man alpha 1 leads to 3]-Man beta 1 leads to 4GlcNAc beta 1 leads to 4GlcNAc and NeuAc alpha 2 leads to 4Gal beta 1 leads to 3(NeuAc alpha 2 leads to 6)GlcNAc beta 1 leads to 2Man alpha 1 leads to 6[NeuAc alpha 2 leads to 4Gal beta 1 leads to 3(NeuAc alpha 2 leads to 6)GlcNAc beta 1 leads to 2Man alpha 1 leads to 3]man beta 1 leads to 4GlcNAc beta 1 leads to 4GlcNAc.  相似文献   

12.
The substrate specificity of mammalian endo-β-N-acetylglucosaminidase was studied in detail by using rat liver enzyme. The enzyme hydrolytically cleaves the N,N′-diacetylchitobiose moiety of Manα1 → 6 (Manα1 → 3)Manβ1 → 4GlcNacβ1 → 4R in which R represents either GlcNac → Asn or N-acetylglucosamine. The enzyme can hardly act on the sugar chains with Fucα1 → 3 or 6GlcNac → Asn or N-acetylglucosaminitol as their R residues. The sugar chains substituted at C-3 and C-6 positions of the Manα1 → 6 residue and at C-2 position of the Manα1 → 3 residue by other sugars are also cleaved by the enzyme. The sugar chains substituted at C-4 position of the β-mannosyl residue and at C-2 position of the Manα1 → 6 residue by other sugars are hydrolyzed at one place lower rate. The specificity of the mammalian endo-β-N-acetylglucosaminidase indicates that the enzyme is responsible for the formation of most of the oligosaccharides excreted in the urine of patients with congenital exoglycosidase deficiencies and also explains why large amount of glycopeptides are excreted in the urine of fucosidosis patients.  相似文献   

13.
In this study on milk saccharides of the raccoon (Procyonidae: Carnivora), free lactose was found to be a minor constituent among a variety of neutral and acidic oligosaccharides, which predominated over lactose. The milk oligosaccharides were isolated from the carbohydrate fractions of each of four samples of raccoon milk and their chemical structures determined by 1H-NMR and MALDI-TOF mass spectroscopies. The structures of the four neutral milk oligosaccharides were Fuc(α1–2)Gal(β1–4)Glc (2′-fucosyllactose), Fuc(α1–2)Gal(β1–4)GlcNAc(β1–3)Gal(β1–4)Glc (lacto-N-fucopentaose IV), Fuc(α1–2)Gal(β1–4)GlcNAc(β1–3)Gal(β1–4)GlcNAc(β1–3)Gal(β1–4)Glc (fucosyl para lacto-N-neohexaose) and Fuc(α1–2)Gal(β1–4)GlcNAc(β1–3)[Fuc(α1–2)Gal(β1–4)GlcNAc(β1–6)]Gal(β1–4)Glc (difucosyl lacto-N-neohexaose). No type I oligosaccharides, which contain Gal(β1–3)GlcNAc units, were detected, but type 2 saccharides, which contain Gal(β1–4)GlcNAc units were present. The monosaccharide compositions of two of the acidic oligosaccharides were [Neu5Ac]1[Hex]6[HexNAc]4[deoxy Hex]2, while those of another two were [Neu5Ac]1[Hex]8[HexNAc]6[deoxy Hex]3. These acidic oligosaccharides contained α(2–3) or α(2–6) linked Neu5Ac, non reducing α(1–2) linked Fuc, poly N-acetyllactosamine (Gal(β1–4)GlcNAc) and reducing lactose.  相似文献   

14.
Jack bean α-mannosidase (JBM) is a well-studied plant vacuolar α-mannosidase, and is widely used as a tool for the enzymatic analysis of sugar chains of glycoproteins. In this study, the JBM digestion profile of hybrid-type N-glycans was examined using pyridylamino (PA-) sugar chains. The digestion efficiencies of the PA-labeled hybrid-type N-glycans Manα1,6(Manα1,3)Manα1,6(GlcNAcβ1,2Manα1,3)Manβ1,4GlcNAcβ1,4GlcNAc-PA (GNM5-PA) and Manα1,6(Manα1,3)Manα1,6(Galβ1,4GlcNAcβ1,2Manα1,3)Manβ1,4GlcNAcβ1,4GlcNAc-PA (GalGNM5-PA) were significantly lower than that of the oligomannose-type N-glycan Manα1,6(Manα1,3)Manα1,6Manβ1,4GlcNAcβ1,4GlcNAc-PA (M4-PA), and the trimming pathways of GNM5-PA and GalGNM5-PA were different from that of M4-PA, suggesting a steric hindrance to the JBM activity caused by GlcNAcβ1-2Man(α) residues of the hybrid-type N-glycans. We also found that the substrate preference of JBM for the terminal Manα1-6Man(α) and Manα1-3Man(α) linkages in the hybrid-type N-glycans was altered by the change in reaction pH, suggesting a pH-dependent change in the enzyme-substrate interaction.  相似文献   

15.
Erythrina cristagalli agglutinin, a dimeric lectin [J. L. Iglesias, et al. (1982) Eur. J. Biochem.123, 247–252] was shown by equilibrium dialysis to be bivalent for 4-methylumbelliferyl-β-d-galactoside. Upon binding to the lectin, this ligand showed a difference absorption spectrum with two maxima (at 322 and 336 nm) of equal intensity (Δ? = 1.2 × 103m?1 cm?1). A similar spectrum with a comparable value of Δ? was obtained with 4-methylumbelliferyl-N-acetyl-β-d-galactosaminide. Binding of methyl-α-d-galactoside, lactose, and N-acetyllactosamine all produced small but equally intense protein difference spectra with a maximum (Δ? = 2.8 × 102 M?1 cm?1) at 291.6 nm. Upon binding of N-dansyl-d-galactosamine to the lectin, there was a fivefold increase in fluorescence intensity of this ligand. The association constant for N-dansyl-d-galactosamine was caused by a very favorable ΔS° of the dansyl group without affecting the strictly carbohydrate-specific character of binding. N-Dansyl-d-galactosamine was employed as a fluorescent indicator ligand in substitution titrations. This involved the use of simple carbohydrates, N-acetyllactosamine, and oligosaccharides which occur in the carbohydrate units of N-glycoproteins; the latter were Gal(β → 4)GlcNAc(β1 → 2)Man, Gal(β1 → 4)GlcNAc(β1 → 6)Man, and Gal(β1 → 4)GlcNAc(β1 → 6)[Gal(β1 → 4)GlcNAc(β1 → 2)]Man. The titrations were performed at two temperatures to determine the thermodynamic parameters. In the series N-acetyl-d-galactosamine, methyl-α-d-galactoside, and lactose, ?ΔH° increased from 24 to 41 kJ mol?1; it increased further for N-acetyllactosamine and then remained unchanged for the N-acetyllactosamine-containing oligosaccharides (55 ± 1 kJ mol?1). This indicated that the site specifically accommodated the disaccharide structure with an important contribution of the 2-acetamido group in the penultimate sugar. Beyond this, no additional contacts seemed to be formed. This conclusion also followed from considerations of ΔS° values which became more unfavorable in the above series (?23 to ?101 ± 4 J mol?1 K?1); the most negative value of ΔS° was observed with N-acetyllactosamine and the three N-acetyllactosamine-containing oligosaccharides.  相似文献   

16.
S Takasaki  A Kobata 《Biochemistry》1986,25(19):5709-5715
Asparagine-linked sugar chains were quantitatively released from fetuin by hydrazinolysis. Structural analysis of the sugar chains by sequential exoglycosidase digestion in combination with methylation analysis and Smith degradation revealed that most of them have typical biantennary (8%) and triantennary (74%) structures containing different amounts of N-acetylneuraminic acid residues. In addition, an unusual tetrasialyl triantennary sugar chain (17%) containing the Gal beta 1----3GlcNAc sequence in the outer chain moiety was detected, and its structure was elucidated as NeuAc alpha 2----3Gal beta 1----3(NeuAc alpha 2----6)-GlcNAc beta 1----4(NeuAc alpha 2----6Gal beta 1----4GlcNAc beta 1----2)Man alpha 1----3(NeuAc alpha 2----3Gal beta 1----4GlcNAc beta 1----2Man alpha 1----6)Man beta 1----4GlcNAc beta 1----4GlcNAc.  相似文献   

17.
The specificity of the sialidase activity present in rat kidney cortex (12 000 × g pellet) was studied with various tritiated oligosaccharidic substrates: (i) αNeuAc2 → 3βGall → 4Glc-itol[3H], αNeuAc2 → 6βGall → 4Glc-itol[3H] and αNeuAc2 → 8αNeuAc2 → 3βGall → 4Glc-itol[3H] from bovine colostrum; (ii) α-NeuAc2 → 6βGall → 4βGlcNAc-itol[3H], αNeuAc2 → 3βGal1 → 4βGlcNAcl → 2αManl → 3βMan1 → 4GlcNAc-itol[3H]. αNeuAc2 → 6βGall → 4βGlcNAcl → 2αManl α 3(βGall → 4GlcNAcl → 2αManl → 6)βManl → 4GlcNAc-itol [3H]et αNeuAc2 → 6βGall → 4βGlcNAcl → 2αManl-3(αNeuAc2 → 6βGall → 4βGlcNAcl → 2αManl → 6)βManl 4GlNAc-itol[3H] isolated from the urine of a patient with mucolipidosis I. The enzyme cleaves α2 → 3 and α2 → 8 linkages at a greater rate than the α2 → 6 bonds. Its activity decreases with the length of the oligosaccharidic chain. Substitution of a glucose moiety by Nacetylglucosamine results in diminished activity. The specificity of rat kidney sialidase differs from that reported for other mammalian of viral sialidases.  相似文献   

18.
Synthesis and clusterization of Galβ(1→3)[NeuAcα(2→6)]GlcNAcβ(1→2)Man motif of the N-glycan, as the molecular probes for their biological evaluation, are reported. Key step is the quantitative and the completely α-selective sialylation of the C5-azide N-phenyltrifluoroacetimidate with the disaccharide acceptor, Galβ(1→3)GlcNTroc. Clusterization of the 16 molecules of trisaccharide motif was also achieved by the ‘self-activating click reaction’. These probes could efficiently be labeled by biotin and/or other fluorescence- or radioactive reporter groups through either cross metathesis, acylation, Cu(I)-mediated Huisgen [2+3]-cycloaddition, or the azaelectrocyclization to utilize the various biological techniques.  相似文献   

19.
High resolution nuclear magnetic resonance spectra were recorded in a chloroform solution of six Lewis-active or Lewis-like glycosphingolipids in permethylated and permethylated-reduced (LiAlH4) form. The samples were selected to cover the presently known structural variants of α-fucose linked to galactose and N-acetylglucosamine. Fucα1 → 2Gal, Fucα1 → 3GlcNAc, and Fucα1 → 4GlcNAc gave characteristic and well-separated anomeric resonances. Furthermore, upon reduction there was a strong deshielding effect on Fucα1 → 3GlcNAc and Galβ1 → 3GlcNAc (linkage vicinal to reduced amide), which makes it possible to differentiate type 1 (Galβ1 → 3GlcNAc) and type 2 (Galβ1 → 4GlcNAc) saccharide chains. This improved method of nuclear magnetic resonance spectroscopy is discussed in relation to sequence analysis by mass spectrometry, two microscale structural methods using the same type of derivatives and needing no degradations before analysis.  相似文献   

20.
Sulfated N-linked carbohydrate chains in porcine thyroglobulin   总被引:3,自引:0,他引:3  
N-linked carbohydrate chains of porcine thyroglobulin were released by the hydrazinolysis procedure. The resulting mixture of oligosaccharide-alditols was fractionated by high-voltage paper electrophoresis, the acidic fractions were further separated by high-performance liquid chromatography on Lichrosorb-NH2, and analyzed by 500-MHz 1H-NMR spectroscopy and, partially, by permethylation analysis. Of the acidic oligosaccharide-alditols, the following sulfated carbohydrate chains could be identified: NeuAc alpha 2----6Gal beta 1----4GlcNAc beta 1----2Man alpha 1----3[(SO3Na----3)Gal beta 1----4GlcNAc beta1----2-Mana alpha 1----6]Man beta 1----4GlcNAc beta 1----4[Fuc alpha 1----6]GlcNAc-ol and NeuAc alpha 2----6Gal beta 1----4(SO3Na----)0-1 GlcNAc beta 1----2-Man alpha 1----3[NeuAc alpha 2----6Gal beta 1----4(SO3Na----6)1-0GlcNAc beta 1----2Man alpha 1----6]Man beta 1----4GlcNAc beta 1----4[Fuc alpha 1----6]GlcNAc- ol. The sulfated structural elements for porcine thyroglobulin form novel details of N-linked carbohydrate chains. They contribute to the fine structure of these oligosaccharides and are another type of expression of microheterogeneity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号