首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The effects of the porphyrin precursor -aminolaevulinic acid (ALA) on -aminobutyric acid (GABA) and L-glutamate transmitter systems was investigated in rat brain. It was found that ALA inhibited GABA and glutamate uptake and stimulated basal efflux of the amino acids in purified nerve endings. These effects were evident only at relatively high concentrations of ALA (at least 100 M). Such concentrations probably do not occur in the nervous systems of patients suffering from acute porphyria. In addition, it was found that ALA inhibited the stimulated release of GABA from nerve endings probably by acting as an agonist at GABA autoreceptors. This effect was found at very low concentrations of ALA (1 M). It is therefore likely that the neuropsychiatric manifestations of the acute porphyric attack are attributable, to some extent, to reduced GABA release at central synapses.  相似文献   

2.
H. Veen 《Planta》1972,103(1):35-44
Summary Transportand metabolism of -naphthaleneacetic acid -naphthaleneacetic acid, and -decalylacetic acid, all labelled with 14C in the carboxyl, group, were studied. Only -naphthaleneacetic acid is transported in a polar way. Most of the radioactivity in the tissue is in a low molecular form, either free or as immobilization products. The immobilization of -naphthaleneacetic acid is similar to that of -naphthaleneacetic acid. Immobilization of -decalylacetic acid is typically different. Bioassays showed -naphthaleneacetic acid as the sole biologically active component. It is concluded that stereo requirements necessary for biological activity are also required for polar auxin transport. It is further concluded that the observed specificity of the transport system is not related to the formation of immobilization products.  相似文献   

3.
A study was performed on the effect of various concentrations of IAA, 2,3,6-triiodobenzoic acid, and maleic hydrazide, supplied to Richter’s nutrient solution, on growth of pea plants in water cultures. After a 18-day cultivation growth was evaluated and in the plants gathered the content of total N, P, K, and Ca was estimated. Growth of experimental plants (as evaluated from fresh and dry weight) was affected by all three regulators in dependence on the concentration used. It was stimulated by lower concentrations and inhibited by higher, the production of both fresh and dry weight of the root system being stimulated by all IAA concentrations used. The ratio of root dry weight to that of the entire plant was markedly increased after application of IAA and 2,3,5-triiodobenzoic acid, whereas when applying maleic hydrazide it was only slightly increased in comparison with control. Stimulation or inhibition of growth induced by IAA treatment was accompanied by an accordingly increased or decreased accumulation of N, P, K, and Ca. Thus their utilization did not change in comparison with control. On the other hand, both inhibitory and stimulatory effects of 2,3,5-triiodobenzoic acid and maleic hydrazide on growth were associated with a relatively lower accumulation of the elements in question, resulting in an increased utilization. The distribution index of N, P, K, and Ca decreased with increasing concentrations of IAA, 2,3,5-triiodobenzoic acid and maleic hydrazide. Only the highest 2,3,5-triiodobenzoic acid and maleic hydrazide concentrations used brought about a more marked increase in the distribution index of potassium, simultaneously with a marked decrease in the distribution index of calcium.  相似文献   

4.
High intakes of linoleic acid (LA,18:2n-6) have raised concern due to possible increase in arachidonic acid (ARA, 20:4n-6) synthesis, and inhibition of alpha linolenic acid (ALA, 18:3n-3) desaturation to eicosapentaenoic (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3). In healthy men, 10.5% energy compared to 3.8% energy LA with 1% energy ALA increased plasma phospholipid LA and 20:2n-6, the elongation product of LA, and decreased EPA, with no change in ARA. However, LA was inversely related to ARA at both 10.5% energy and 3.8% energy LA, (r=?0.761, r=?0.817, p<0.001, respectively). A two-fold variability in ARA among individuals was not explained by the dietary LA, ARA, ALA, or fish intake. Our results confirm LA requirements for ARA synthesis is low, <3.8% energy, and they suggest current LA intakes saturate Δ-6 desaturation and adversely affect n-3 fatty acid metabolism. Factors other than n-6 fatty acid intake are important modifiers of plasma ARA.  相似文献   

5.
We demonstrate that 0.78?mm glyceric acid activated the proliferation of human dermal fibroblasts by about 45%, whereas 34?mm α-glucosylglyceric acid (GGA) increased collagen synthesis by the fibroblasts by 1.4-fold compared to that in the absence of GGA. The two substances also exerted protective effects on both DNA scission by the hydroxyl radical and protein aggregation by heat in vitro.  相似文献   

6.
We report the application of multiple time regression analysis with the in situ brain perfusion technique to measure the rates of passage between blood and brain for [14C]l-proline, [14C]l-alanine, and [14C] α-aminoisobutyric acid (AIB) and their rapidly reversible volumes following perfusion of these amino acids from 10 to 60 seconds. We also report on their mechanism of transport. Proline diffused through the blood-brain barrier with a transfer coefficient (Kin) of 0.55 ± 0.15 × 10−4 ml/s/g and had no reversible compartment. AIB had a low Kin of 0.68±0.14×10−4 ml/s/g and a significant reversible volume of 4.34±0.51×10−3 ml/g in parietal cortex.l-alanine had the highest transfer coefficient, 3.11±0.26 × 10−4 ml/s/g, and a reversible volume of 10.03±0.93×10−3 ml/g in the same cerebral region. Postwash procedures which remove any radiotracer in the vasculature and capillary depletion were performed for alanine and AIB, as they had significant reversible compartments, to test the possibility of rapid efflux from the endothelial cells. Results obtained from wash and capillary depletion procedures suggest that a rapid efflux could occur from endothelial cells after entry of alanine and AIB. Mechanisms of transport forl-alanine and AIB were investigated using amino acids (5 mM) as substrates and inhibitors of different amino acid transport systems. AIB transport was reduced by plasma andl-leucine and unchanged by sodium-free buffer, confirming its passage by the L1 system.l-alanine uptake was sodium-independent and not reduced by plasma.l-serine,l-cysteine,l-leucine andl-phenylalanine produced similar inhibition (66%) whilel-alanine produced a lower inhibition (41%).l-arginine increased alanine uptake in cortex and thalamus. Addingl-serine tol-phenylalanine reduced the uptake only in cortex and hippocampus. These data suggest thatl-alanine is transported by another L transport system different from the L1 system at the luminal membrane.  相似文献   

7.
Poly(-glutamic acid) (PGA) production in Bacillus subtilis IFO3335 was studied. When l-glutamic acid, citric acid, and ammonium sulfate were used as carbon and nitrogen sources, a large amount of PGA without a by-product such as a polysaccharide was produced. The time courses of cell growth, PGA, glutamic acid, and citric acid concentrations during cultivation were investigated. It was found that glutamic acid added to the medium was apparently not assimilated. It can be presumed that the glutamic acid unit in PGA is mainly produced from citric acid and ammonium sulfate. The PGA productivity was investigated at various concentrations of ammonium sulfate in the media, which caused the depression of cell growth, high productivity of PGA, and the production of PGA with a high relative molecular mass. The yield of PGA determined by gel permeation chromatography (GPC) reached approximately 20 g/l. This yield was the highest value for PGA production by B. subtilis IFO3335, suggesting that B. subtilis IFO3335 was a bacterium that could produce PGA effectively. Time courses relative to the molecular mass of PGA at various concentrations of ammonium sulfate were investigated. It was suggested that B. subtilis IFO3335 excreted a PGA degradation enzyme with the progress of cultivation and that PGA was degraded by this enzyme. Correspondence to: M. Kunioka  相似文献   

8.
Summary Poly-L-glutamic acid and poly-D,L-glutamic acid, as models of proteins, were irradiated with60Co--radiation in air and under vacuo to examine whether or not the changes caused by the exposure to ionizing radiation depend on the conformations of polypeptides.It was found that theG- values (yield of main-chain scissions per 100 eV of energy absorbed) of both polypeptides are approximately equal for the irradiation in air, while under vacuo theG- value of poly-D,L-glutamic acid is larger than that of poly-L-glutamic acid. This observation for irradiation under vacuo was ascribed to the stabilizing effect of intramolecular hydrogen bond bridges in poly-L-glutamic acid. It was also found that the-helical structure of poly-L-glutamic acid is destroyed by the exposure to ionizing radiation.  相似文献   

9.
In the present investigation, 48 new tertiary amine derivatives of cinnamic acid, phenylpropionic acid, sorbic acid and hexanoic acid (4d6g, 10d12g, 16d18g and 22d24g) were designed, synthesized and evaluated for the effect on AChE and BChE in vitro. The results revealed that the alteration of aminoalkyl types and substituted positions markedly influences the effects in inhibiting AChE. Almost of all cinnamic acid derivatives had the most potent inhibitory activity than that of other acid derivatives with the same aminoalkyl side chain. Unsaturated bond and benzene ring in cinnamic acid scaffold seems important for the inhibitory activity against AChE. Among them, compound 6g revealed the most potent AChE inhibitory activity (IC50 value: 3.64?µmol/L) and highest selectivity over BChE (ratio: 28.6). Enzyme kinetic study showed that it present a mixed-type inhibition against AChE. The molecular docking study suggested that it can bind with the catalytic site and peripheral site of AChE.  相似文献   

10.
ABSTRACT

Antibacterial activities against Staphylococcus aureus and Bacillus subtilis were found in an ethanol fraction of tempe, an Indonesian fermented soybean produced using Rhizopus oligosporus. The ethanol fraction contained free fatty acids, monoglycerides, and fatty acid ethyl esters. Among these substances, linoleic acid and α-linolenic acid exhibited antibacterial activities against S. aureus and B. subtilis, whereas 1-monolinolenin and 2-monolinolenin exhibited antibacterial activity against B. subtilis. The other free fatty acids, 1-monoolein, monolinoleins, ethyl linoleate, and ethyl linolenate did not exhibit bactericidal activities. These results revealed that R. oligosporus produced the long-chain polyunsaturated fatty acids and monolinolenins as antibacterial substances against the Gram-positive bacteria during the fungal growth and fermentation of heat-processed soybean.  相似文献   

11.
12.
Low blood folate and raised homocysteine concentrations are associated with poor cognitive function. Folic acid supplementation improves cognitive function. Folic acid enhances the plasma concentrations of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). EPA, DHA, and arachidonic acid (AA) are of benefit in dementia and Alzheimer's disease by up-regulating gene expression concerned with neurogenesis, neurotransmission and connectivity, improving endothelial nitric oxide (eNO) generation, enhancing brain acetylcholine levels, and suppressing the production of pro-inflammatory cytokines. EPA, DHA, and AA also form precursors to anti-inflammatory compounds such as lipoxins, resolvins, and neuroprotectin D1 (NPD1) that protect neurons from the cytotoxic action of various noxious stimuli. Furthermore, various neurotrophins and statins enhance the formation of NPD1 and thus, protect neurons from oxidative stress and prevent neuronal apoptosis Folic acid improves eNO generation, enhances plasma levels of EPA/DHA and thus, could augment the formation of NPD1. These results suggest that a combination of EPA, DHA, AA and folic acid could be of significant benefit in dementia, depression, and Alzheimer's disease and improve cognitive function.  相似文献   

13.
The production of an antifungal spirostanol saponin designated SC-1 has been detected in cell suspension cultures of the Mexican species Solanum chrysotrichum. Batch cultures of a cell suspension obtained from hypocotyl derived calluses of this species were grown for 25 days in shake flasks containing Murashige & Skoog (MS) medium. Throughout the growth cycle, fresh and dry weight, SC-1 yield, and uptake of sucrose, glucose and fructose were determined. The effects of inoculum size and sucrose concentration on the biomass accumulation and synthesis of the active metabolite, were studied. The maximum SC-1 production, above 14 mg.g−1 (which was fifty times that of field grown plants), was reached after 20 days using a 2% inoculum and complete MS medium supplemented with 2 mgl−1 2,4-D, 2 mg l−1kinetin, and sucrose between 30 and 45 gl−1. . This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

14.
15.
16.
A degradation pathway for dl--phenylhydracrylic, phenylacetic, 3- and 4-hydroxyphenylacetic acid by a Flavobacterium is presented. Experiments with washed cells and enzyme studies revealed that dl--phenylhydracrylic acid in an initial reaction was oxidatively decarboxylated to phenylacetaldehyde. Whole cells oxidized both stereoisomers of phenylhydracrylic acid at different rates. The product phenylacetaldehyde in turn was oxidized to phenylacetic acid. No hydroxylation of phenylacetic acid was detected in cell extracts, but on the basis of experiments with washed cells it is assumed that phenylacetic acid is mainly metabolized via 3-hydroxyphenylacetic acid. This latter product was subsequently hydroxylated yielding the ring-cleavage substrate homogentisate. 4-Hydroxyphenylacetic acid was also degraded via homogentisate. Ringcleavage of homogentisate gave maleylacetoacetate which was further degraded through a glutathione-dependent pathway. Homoprotocatechuate was not an intermediate in the metabolism of dl-phenylhydracrylic acid, phenylacetic, 3- and 4-hydroxyphenylacetic acid metabolism, but it could be hydroxylated aspecifically to 2,4,5-trihydroxyphenylacetic acid by the action of the 3-hydroxyphenylacetic acid-6-hydroxylase.Abbreviations HPLC high-performance liquid chromatography - PHA phenylhydracrylic acid - PA phenylacetic acid - HPA hyxdroxyphenylacetic acid - PMS phenazine methosulphate - PMA phenylmalonic acid - GSH glutathione  相似文献   

17.
The rat retina and the different brain regions contain membranes sites that bindl-lysine in the nanomolar range. These binding sites undergo changes in different experimental conditions, thus: I) intraocular injection of kainic acid induces a reduction of the density ofl-lysine binding sites, II)d,l--aminoadipic acid injected into the eye enhances both kinetic parameters (B max andK d) ofl-[3H]lysine binding sites, III) the intraperitoneal injection of iodoacetic acid decreases the sensitivity for its ligand binding sites, and IV) the exposure to darkness of the rats reducesl-[3H]lysine binding in the retina, thalamus, hypothalamus and superior colliculus, but not in the occipital cortex; such a decrease appears to be characterized, at least in the retina, by a lower sensitivity of the binding sites forl-lysine after the exposure to darkness. The results show thatl-lysine binding sites are located on kainic acid-sensitive cells and can be involved in the physiological mechanism of vision.  相似文献   

18.
Capric acid (C10:0), a medium chain fatty acid, was evaluated for its anti-methanogenic activity and its potential to modify the rumen biohydrogenation of linoleic (C18:2n-6) and α-linolenic acids (C18:3n-3). A standard dairy concentrate (0.5 g), supplemented with sunflower oil (10 mg) and linseed oil (10 mg) and increasing doses of capric acid (0, 10, 20 and 30 mg), was incubated with mixed rumen contents and buffer (1 : 4 v/v) for 24 h. The methane inhibitory effect of capric acid was more pronounced at the highest (30 mg) dose compared to the medium (20 mg) (-85% v. -34%), whereas the lower dose (10 mg) did not reduce rumen methanogenesis. A 23% decrease in total short-chain fatty acid (SCFA) production was observed, accompanied by shifts towards increased butyrate at 20 mg and increased propionate at 30 mg of capric acid (P < 0.001). Capric acid linearly decreased the extent of biohydrogenation of C18:2n-6 and C18:3n-3, by up to 60% and 86%, respectively. This reduction was partially due to a lower extent of lipolysis when capric acid was supplemented. Capric acid at 20 and 30 mg completely inhibited the production of C18:0 (P < 0.001), resulting in an accumulation of biohydrogenation intermediates, mainly C18:1t10 + t11 and C18:2t11c15. In contrast to effects on rumen fermentation (methane production and proportions of SCFA), 30 mg of capric acid did not induce major changes in rumen biohydrogenation as compared to the medium (20 mg) dose. This study revealed the dual action of capric acid, being inhibitory to both methane production and biohydrogenation of C18:2n-6 and C18:3n-3.  相似文献   

19.
Various strategies have been developed to increase the cellular level of (n-3) polyunsaturated fatty acids in animals and humans. In the present study, we investigated the effect of dietary myristic acid, which represents 9% to 12% of fatty acids in milk fat, on the storage of α-linolenic acid and its conversion to highly unsaturated (n-3) fatty acid derivatives. Five isocaloric diets were designed, containing equal amounts of α-linolenic acid (1.3% of dietary fatty acids, i.e. 0.3% of dietary energy) and linoleic acid (7.0% of fatty acids, i.e. 1.5% of energy). Myristic acid was supplied from traces to high levels (0%, 5%, 10%, 20% and 30% of fatty acids, i.e. 0% to 6.6% of energy). To keep the intake of total fat and other saturated fatty acids constant, substitution was made with decreasing levels of oleic acid (76.1% to 35.5% of fatty acids, i.e. 16.7% to 7.8% of energy) that is considered to be neutral in lipid metabolism. After 8 weeks, results on physiological parameters showed that total cholesterol and low-density lipoprotein-cholesterol did not differ in the diets containing 0%, 5% and 10% myristic acid, but were significantly higher in the diet containing 30% myristic acid. In all the tissues, a significant increasing effect of the substitution of oleic acid for myristic acid was shown on the level of both α-linolenic and linoleic acids. Compared with the rats fed the diet containing no myristic acid, docosahexaenoic acid significantly increased in the brain and red blood cells of the rats fed the diet with 30% myristic acid and in the plasma of the rats fed the diet with 20% myristic acid. Arachidonic acid also increased in the brain of the rats fed the diet with 30% myristic acid. By measuring Δ6-desaturase activity, we found a significant increase in the liver of the rats fed the diet containing 10% of myristic acid but no effect at higher levels of myristic acid. These results suggest that an increase in dietary myristic acid may contribute in increasing significantly the tissue storage of α-linolenic acid and the overall bioavailability of (n-3) polyunsaturated fatty acids in the brain, red blood cells and plasma, and that mechanisms other than the single Δ6-desaturase activity are involved in this effect.  相似文献   

20.
Novel zinc oxide (ZnO) nanosheets and copper oxide (CuxO, CuO, and Cu2O) decorated polypyrrole (PPy) nanofibers (ZnO–CuxO–PPy) have been successfully fabricated for the simultaneous determination of ascorbic acid (AA), dopamine (DA), and uric acid (UA). The morphology and structure of ZnO–CuxO–PPy nanocomposites were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and Raman spectroscopy. Compared with the bare glassy carbon electrode (GCE), PPy/GCE, CuxO–PPy/GCE, and ZnO–PPy/GCE, ZnO–CuxO–PPy/GCE exhibits much higher electrocatalytic activities toward the oxidation of AA, DA, and UA with increasing peak currents and decreasing oxidation overpotentials. Cyclic voltammetry (CV) results show that AA, DA, and UA could be detected selectively and sensitively at ZnO–CuxO–PPy/GCE with peak-to-peak separation of 150 and 154 mV for AA–DA and DA–UA, respectively. The calibration curves for AA, DA, and UA were obtained in the ranges of 0.2 to 1.0 mM, 0.1 to 130.0 μM, and 0.5 to 70.0 μM, respectively. The lowest detection limits (signal/noise = 3) were 25.0, 0.04, and 0.2 μM for AA, DA, and UA, respectively. With good selectivity and sensitivity, the current method was applied to the determination of DA in injectable medicine and UA in urine samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号