首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Amides and acidic amino acids represent the major long distance transport forms of organic nitrogen. Six amino acid permeases (AAPs) from Arabidopsis mediating transport of a wide spectrum of amino acids were isolated. AAPs are distantly related to plasma membrane amino acid transport systems N and A and to vesicular transporters such as VGAT from mammals. A detailed comparison of the properties by electrophysiology after heterologous expression in Xenopus oocytes shows that, although capable of recognizing and transporting a wide spectrum of amino acids, individual AAPs differ with respect to specificity. Apparent substrate affinities are influenced by structure and net charge and vary by three orders of magnitude. AAPs mediate cotransport of neutral amino acids with one proton. Uncharged forms of acidic and basic amino acids are cotransported with one proton. Since all AAPs are differentially expressed, different tissues may be supplied with a different spectrum of amino acids. AAP3 and AAP5 are the only transporters mediating efficient transport of the basic amino acids. In vivo competition shows that the capability to transport basic amino acids in planta might be overruled by excess amides and acidic amino acids in the apoplasm. With the exception of AAP6, AAPs do not recognize aspartate; only AAP6 has an affinity for aspartate in the physiologically relevant range. This property is due to an overall higher affinity of AAP6 for neutral and acidic amino acids. Thus AAP6 may serve a different role either in cooperating with the lower affinity systems to acquire amino acids in the low concentration range, as a system responsible for aspartate transport or as an uptake system from the xylem. In agreement, a yeast mutant deficient in acidic amino acid uptake at low aspartate concentrations was complemented only by AAP6. Taken together, the AAPs transport neutral, acidic and cationic amino acids, including the major transport forms, i.e. glutamine, asparagine and glutamate. Increasing proton concentrations strongly activate transport of amino acids. Thus the actual apoplasmic concentration of amino acids and the pH will determine what is transported in vivo, i.e. major amino acids such as glutamine, asparagine, and glutamate will be mobilized preferentially.  相似文献   

2.
E. Johannes  H. Felle 《Planta》1985,166(2):244-251
The transport of several amino acids with different side-chain characteristics has been investigated in the aquatic liverwort Riccia fluitans. i) The saturation of system I (neutral amino acids) by addition of excess -aminoisobutyric acid to the external medium completely eliminated the electrical effects which are usually set off by neutral amino acids. Under these conditions arginine and lysine significantly depolarized the plasmalemma. ii) L- and D-lysine/arginine were discriminated against in favour of the L-isomers. iii) Increasing the external proton concentration in the interval pH 9 to 4.5 stimulated plasmalemma depolarization, electrical net current, and uptake of [14C]-basic amino acids. iv) Uptake of [14C]-glutamic acid took place only at acidic pHs. v) [14C]-histidine uptake had an optimum between pH 6 and 5.5. vi) Overlapping of the transport of basic, neutral, and acidic amino acids was common. It is suggested that besides system I, a second system (II), specific for basic amino acids, exists in the plasmalemma of Riccia fluitans. It is concluded that the amino-acid molecule with an uncharged side chain is the substrate for system I, which also binds and transports the neutral species of acidic amino acids, whereas system II is specific for amino acids with a positively charged side chain. The possibility of system II being a proton cotransport is discussed.Abbreviation AiB -aminoisobutyric acid  相似文献   

3.
Li ZC  Bush DR 《Plant physiology》1990,94(1):268-277
Amino acid transport into plasma membrane vesicles isolated from mature sugar beet (Beta vulgaris L. cv Great Western) leaves was investigated. The transport of alanine, leucine, glutamine, glutamate, isoleucine, and arginine was driven by a trans-membrane proton concentration difference. ΔpH-Dependent alanine, leucine, glutamine, and glutamate transport exhibited simple Michaelis-Menten kinetics, and double-reciprocal plots of the data were linear with apparent Km values of 272, 346, 258, and 1981 micromolar, respectively. These results are consistent with carrier mediated transport. ΔpH-Dependent isoleucine and arginine transport exhibited biphasic kinetics, suggesting these amino acids may be transported by at least two transport systems. Symport mediated alanine transport was electrogenic as demonstrated by the effect of membrane potential (ΔΨ) on ΔpH-dependent flux. In the absence of significant charge compensation, a low rate of alanine transport was observed. When ΔΨ was held at 0 millivolt with symmetric potassium concentrations and valinomycin, the rate of flux was stimulated fourfold. In the presence of a negative ΔΨ, alanine transport increased sixfold. These results are consistent with an electrogenic transport process which results in a net flux of positive charge into the vesicles. The effect of changing ΔΨ on the kinetics of alanine transport altered Vmax with no apparent change in Km. Amino acid transport was inhibited by the protein modifier diethyl pyrocarbonate, but was insensitive to N-ethylmaleimide, 4,4′-diisothiocyano-2,2′-stilbene disulfonic acid, p-chloromercuribenzenesulfonic acid, phenylglyoxal, and N,N′-dicyclohexylcarbodiimide. Four amino acid symport systems, two neutral, one acidic, and one basic, were resolved based on inter-amino acid competition experiments. One neutral system appears to be active for all neutral amino acids while the second exhibited a low affinity for isoleucine, threonine, valine, and proline. Although each symport was relatively specific for a given group of amino acids, each system exhibited some crossover specificity for amino acids in other groups.  相似文献   

4.
Amino acid transport was studied in membrane vesicles of the thermophilic anaerobic bacterium Clostridium fervidus. Neutral, acidic, and basic as well as aromatic amino acids were transported at 40 degrees C upon the imposition of an artificial membrane potential (delta psi) and a chemical gradient of sodium ions (delta microNa+). The presence of sodium ions was essential for the uptake of amino acids, and imposition of a chemical gradient of sodium ions alone was sufficient to drive amino acid uptake, indicating that amino acids are symported with sodium ions instead of with protons. Lithium ions, but no other cations tested, could replace sodium ions in serine transport. The transient character of artificial membrane potentials, especially at higher temperatures, severely limits their applicability for more detailed studies of a specific transport system. To obtain a constant proton motive force, the thermostable and thermoactive primary proton pump cytochrome c oxidase from Bacillus stearothermophilus was incorporated into membrane vesicles of C. fervidus. Serine transport could be driven by a membrane potential generated by the proton pump. Interconversion of the pH gradient into a sodium gradient by the ionophore monensin stimulated serine uptake. The serine carrier had a high affinity for serine (Kt = 10 microM) and a low affinity for sodium ions (apparent Kt = 2.5 mM). The mechanistic Na+-serine stoichiometry was determined to be 1:1 from the steady-state levels of the proton motive force, sodium gradient, and serine uptake. A 1:1 stoichiometry was also found for Na+-glutamate transport, and uptake of glutamate appeared to be an electroneutral process.  相似文献   

5.
The green alga Stichococcus bacillaris Naeg. is able to take up at least eleven amino acids. All of these except glutamic and aspartic acids are transported by carrier systems that obey saturation kinetics. The acidic amino acids enter the cell by passive diffusion. Michaelis-Menten parameters (Ks and Vmax) were calculated for several amino acids. All obey simple Michaelis-Menten behavior except for 2-methylalanine and leucine which may have double carrier systems of different affinities. Interactions between pairs of amino acids suggest that there is at least one carrier system specific for basic amino acids and probably several systems specific for neutral amino acids. Further analysis of neutral amino acid interactions reveal that the uptake of several amino acids is incompletely inhibited by competitor uptake at infinite concentration. The simplest interpretation of the data is the operation of three carrier systems for neutral amino acids, one of which has higher affinity and broader specificity than the other two. The amino acid carrier systems appear to operate by an active mechanism. The metabolic poison DCCD inhibits uptake up to 99%. The capacities of the neutral amino acid carrier systems are increased when cells are grown in medium containing suboptimal concentrations of nitrogen.  相似文献   

6.
Abstract. An analysis of nutrient uptake by batch cultures of sugar-cane cells was performed to gain information about the ionic balance during uptake of charged metabolites. Whereas younger cultures (up to 1 week old) have to compensate excess cation influx with proton efflux, older cultures show balanced cation–anion uptake.
Younger cells produce a small amount of carboxylic acids to furnish protons for charge compensation at the cytoplasmic membrane. Older cells synthesize organic acids more abundantly to generate protons necessary for the proton demand of nitrate and sulphate assimilation. Despite these assimilation reactions only a small percentage of carbon, which is taken up mainly as hexose, needs to be oxidized to carboxylic acids for that purpose. In contrast, younger cultures preferentially use the amino acids of the medium instead of assimilating nitrate. The use of amino acids as a nitrogen source does not require a significant part of metabolism for biochemical pH-stability, whereas an efficient proton circulation on the cytoplasmic membrane seems to be of major importance.
A balance study of the main metabolized elements, carbon, nitrogen and sulphur was performed to get a quantitative impression of the fate of these nutrients during growth of cell cultures.  相似文献   

7.
Transport systems for amino acids in the wild-type strain ofSchizosaccharomyces pombe are not constitutive. During growth on different media no transport of acidic, neutral and basic amino acids is detectable. To acquire the ability to transport amino acids, cells must be preincubated with a metabolic source of energy, such as glucose. The appearance of transport activity is associated with protein synthesis (suppression by cycloheximide) at all phases of culture growth. After such preincubation the initial rate of amino acid uptake depends on the phase of growth of the culture and on the amount of glucose in the growth medium but not on the nitrogen source used.l-Proline and 2-aminoisobutyric acid are practically not transported under any of the conditions tested.  相似文献   

8.
Uptake of 16 amino acids by the filamentous, heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120 was characterized with regard to kinetic parameters of transport, intracellular accumulation of the transported amino acids, and sensitivity of the transport process to energy metabolism inhibitors. Mutants resistant to certain toxic analogs of some amino acids were isolated that were impaired in amino acid transport. Results obtained in this study, together with those reported previously (A. Herrero and E. Flores, J. Biol. Chem. 265:3931-3935, 1990), suggest that there are at least five amino acid transport systems in strain PCC 7120: one high-affinity, active system for basic amino acids; one low-affinity, passive system for basic amino acids; two high-affinity, active systems with overlapping, but not identical, specificities for neutral amino acids; and one putative system for acidic amino acids. Some of the amino acid transport mutants were impaired in diazotrophic growth. These mutants were unable to develop a normal percentage of heterocysts and normal nitrogenase activity in response to nitrogen stepdown. Putative roles for the amino acid transport systems in uptake of extracellular amino acids, recapture of amino acids that have leaked from the cells, and intercellular transfer of amino acids in the filaments of Anabaena sp. strain PCC 7120 are discussed.  相似文献   

9.
During germination and early growth of the castor-bean (Ricinus communis L.), protein in the endosperm is hydrolyzed and the amino acids are transferred into the cotyledons and then via the translocation stream to the axis of the growing seedling. The cotyledons retain the ability to absorb amino acids after removal of the endosperm and hypocotyl, exhibiting rates of transport up to 70 mol g-1 h-1. The transport of L-glutamine was not altered by KCl or NaCl in low concentrations (0–20 mM). High concentrations of KCl (100 mM) inhibited transport, presumably by decreasing the membrane potential. An increase in the pH of the medium bathing the cotyledons was observed for 10 min following addition of L-glutamine but not with D-glutamine, which is not transported. The rate of proton uptake was dependent on the concentration of L-glutamine in the external solution. Inhibitors and uncouplers of respiration (azide, 2, 4-dinitrophenol, carbonyl cyanide phenylhydrazone and N-ethylmaleimide) inhibited both L-glutamine uptake and L-glutamine-induced proton uptake. Amino acids other than L-glutamine also caused a transient pH rise and the rate of proton uptake was proportional to the rate of amino-acid uptake. The stoichiometry was 0.3 protons per amino acid transported. Addition of sucrose also caused proton uptake but the alkalisation by sucrose and by amino acids were not additive. Nevertheless, when sucrose was added 60 min after providing L-glutamine at levels saturating its uptake system, a rise in pH was again observed. The results were consistent with amino-acid transport and sucrose transport in castor-bean cotyledons both occurring by a proton cotransport in the same membrane system but involving separate carriers.  相似文献   

10.
1. The occurrence and characterization of acidic amino acid transport in the plasma membrane of a variety of cells and tissues of a number of organisms is reviewed. 2. Several cell types, especially in brain, possess both high- and low-affinity transport systems for acidic amino acids. 3. High-affinity systems in brain may function to remove neurotransmitter amino acid from the extracellular environment. 4. Many cell systems for acidic amino acid transport are energized by an inwardly directed Na+ gradient. Moreover, certain cell types, such as rat brain neurons, human placental trophoblast and rabbit and rat kidney cortex epithelium, respond to an outwardly directed K+ gradient as an additional source of energization. This simultaneous action may account for the high accumulation ratios seen with acidic amino acids. 5. Rabbit kidney has been found to have a glutamate-H+ co-transport system which is subject to stimulation by protons in the medium. 6. Acidic amino acid transport in rat brain neurons occurs with a stoichiometric coupling of 1 mol of amino acid to 2 mol of Na+. For rabbit intestine, one Na+ is predicted to migrate for each mol of amino acid. 7. Uptake in rat kidney cortex and in high-K+ dog erythrocytes is electrogenic. However, uptake in rabbit and newt kidney and in rat and rabbit intestine is electroneutral. 8. Na+-independent acidic amino acid transport systems have been described in the mouse lymphocyte, the human fibroblast, the mouse Ehrlich cell and in rat hepatoma cells. 9. In a number of cell systems, D-acidic amino acids have substantial affinity for transport; D-glutamate, in a number of systems, however, appears to have little reactivity. 10. Acidic amino acid transport in some cell systems appears to occur via the "classical" routes (Christensen, Adv. Enzymol. Relat. Areas Mol. Biol. 49, 41-101, 1979). For example, uptake in the Ehrlich cell is partitioned between the Na+-dependent A system (which transports a wide spectrum of neutral amino acids), the Na+-dependent ASC system (which transports alanine, serine, threonine, homoserine, etc.), and the Na+-independent L system (which shows reactivity centering around neutral amino acids such as leucine and phenylalanine). Also, a minor component of uptake in mouse lymphocytes occurs by a route resembling the A system. 11. Human fibroblasts possess a Na+-independent adaptive transport system for cystine and glutamate that is enhanced in activity by cystine starvation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
The uptake of L-glutamate into BHK21-C13 cells in culture has been studied. This amino acid appears to be transported via a relatively high affinity, low capacity, Na+-dependent transport system capable of the rapid accumulation of substrate amino acids. Kinetic studies of the inhibition of L-glutamate uptake has provided information as to the substrate and the molecular configuration required for transport via the glutamate transport system. This system exhibited marked substrate specificity and was only capable of transporting L-glutamate and aspartate and certain closely related acidic amino acid analogues.  相似文献   

12.
Achlya, like other tip-growing organisms, generates an endogenous electrical current such that positive charge flows into the hyphal apex and exits from the trunk. The present study is concerned with the mechanism of current generation by hyphae growing in a defined, complete medium. The intensity of the current, measured in the extracellular medium with a vibrating probe, was unaffected by the removal of all the inorganic constituents of the growth medium. However, an increase in the external pH or the deletion of amino acids abolished the current. Removal of methionine alone diminished the current by two thirds. Hyphae also generated a longitudinal pH gradient in the extracellular medium; the region surrounding the tip was more alkaline than the bulk medium, whereas the region around the trunk was relatively acidic. These findings suggest that a flux of protons, dependent upon amino acids in the medium, carries current into the tip and creates the surrounding alkaline zone. The proton current appears to result from the transport of amino acids rather than their metabolism. Conditions that abolished the current also inhibited methionine uptake but had little effect on the respiratory rate. The findings imply a connection between the proton current and chemiosmotic energy transduction. We propose that protons flow into the hyphal tip through amino acid/proton symporters that are preferentially localized there. The proton flux energizes the uptake of amino acids into the growing zone and may also contribute to the polarization of hyphal growth.  相似文献   

13.
In the presence of electrochemical energy, several branched-chain neutral and acidic amino acids were found to accumulate in membrane vesicles of Bacillus stearothermophilus. The membrane vesicles contained a stereo-specific transport system for the acidic amino acids L-glutamate and L-aspartate, which could not translocate their respective amines, L-glutamine and L-asparagine. The transport system was thermostable (Ti = 70 degrees C) and showed highest activities at elevated temperatures (60 to 65 degrees C). The membrane potential or pH gradient could act as the driving force for L-glutamate uptake, which indicated that the transport process of L-glutamate is electrogenic and that protons are involved in the translocation process. The electrogenic character implies that the anionic L-glutamate is cotransported with at least two monovalent cations. To determine the mechanistic stoichiometry of L-glutamate transport and the nature of the cotranslocated cations, the relationship between the components of the proton motive force and the chemical gradient of L-glutamate was investigated at different external pH values in the absence and presence of ionophores. In the presence of either a membrane potential or a pH gradient, the chemical gradient of L-glutamate was equivalent to that specific gradient at different pH values. These results cannot be explained by cotransport of L-glutamate with two protons, assuming thermodynamic equilibrium between the driving force for uptake and the chemical gradient of the substrate. To determine the character of the cotranslocated cations, L-glutamate uptake was monitored with artificial gradients. It was established that either the membrane potential, pH gradient, or chemical gradient of sodium ions could act as the driving force for L-glutamate uptake, which indicated that L-glutamate most likely is cotranslocated in symport with one proton and on sodium ion.  相似文献   

14.
Uptake of amino acids by cultured neuroblastoma and astrocytoma cells was studied in the presence and absence ofl-histidine. Intracellularly accumulated histidine was assumed to induce accumulation of radioactively labeled amino acids from medium by means of exchange transport. Neuroblastoma cells accumulated more histidine than astrocytoma cells and were more sensitive to the enhancement of the uptake of other large neutral amino acids by histidine. Histidine also increased glutamic acid uptake in astrocytoma cells, but reduced it in neuroblastoma cells. The greatest differences between the cell lines in amino acid uptake without histidine were found with acidic amino acids (astrocytoma cells accumulated them more than neuroblastoma cells) and with taurine (the reverse was found). The uptake and exchange mechanisms for some neutral and acidic amino acids may thus be dissimilar in the plasma membranes of cultured cells of neuronal and glial origin.  相似文献   

15.
The kinetic analysis of l-amino acid uptake by the green alga Chlorella revealed at least seven different uptake systems to be present in cells grown autotrophically with nitrate as nitrogen source. There is a ‘general system’ which transports most neutral and acidic amino acids, a system for short-chain neutral amino acids including proline, a system for basic amino acids including histidine, a special system for acidic amino acids, and specific systems for methionine, glutamine and threonine. The ‘general system’ is possibly the same as that which can be stimulated by incubation of cells in glucose plus ammonium (Sauer, N. (1984) Planta 161, 425–431). The incubation of Chlorella in glucose induces the increased synthesis of six amino acid uptake systems, namely the above-mentioned system for short-chain neutral amino acids, a threonine system, a methionine system, and a glutamine system. These results indicate that the uptake of l-amino acids by the green alga Chlorella is as complex as in other free-living organisms such as bacteria or yeast. The small number of amino acid uptake systems found in cells of higher plants, i.e. two or three, seems therefore to be a consequence of integration of the cells in a tissue supplying a relatively constant environment, and not a consequence of autotrophic growth on mineral carbon and mineral nitrogen.  相似文献   

16.
The capability for electrogenic inward transport of substrates that carry different net charge is a phenomenon observed in a variety of membrane-solute transporters but is not yet understood. We employed the two-electrode voltage clamp technique combined with intracellular pH recordings and the giant patch technique to assess the selectivity for bidirectional transport and the underlying stoichiometries in proton to substrate flux coupling for electrogenic transfer of selected anionic, cationic, and neutral dipeptides by the intestinal peptide transporter PEPT1. Anionic dipeptides such as Gly-Asp and Asp-Gly are transported in their neutral and negatively charged forms with high and low affinities, respectively. The positive transport current obtained with monoanionic substrates results from the cotransport of two protons. Cationic dipeptides can be transported in neutral and positively charged form, resulting in an excess transport current as compared with neutral substrates. However, binding and transport of cationic dipeptides shows a pronounced selectivity for the position of charged side chains demonstrating that the binding domain of PEPT1 is asymmetric, both in its inward and outward facing conformation. The simultaneous presence of identically charged substrates on both membrane surfaces generates outward and, unexpectedly, enhanced inward transport currents probably by increasing the turnover rate.  相似文献   

17.
The uptake of L-alanine into BHK21-C13 cells in culture has been studied. This amino acid appears to be transported essentially via a relatively low affinity, high capacity, sodium ion dependent transport system. Inhibition studies using other amino acids or their analogues provided information about the specificity of this system. This alanine transport system was shown to exhibit a broad substrate specificity and appeared to be capable of transporting most naturally occurring neutral alpha-amino acids. Kinetic studies of the inhibition of L-alanine uptake also indicated the presence of a second neutral amino acid transport system capable of transporting this amino acid. However, it is unlikely that this second uptake system contributes greatly to L-alanine uptake. Inhibition of the uptake of L-leucine indicated that this transport system has a similar specificity to the "L"-system initially described for Ehrlich ascites carcinoma cells.  相似文献   

18.
K.-D Jung  U. Lüttge 《Planta》1980,150(3):230-235
Earlier work suggested that amino acid uptake by Lemna gibba cells is a H+-cotransport mechanism driven by a proton-electrochemical gradient at the plasmalemma. The present investigations of the transient membrane depolarizations elicited by amino acids and tracer-uptake experiments show that all neutral -L-amino acids, D-alanine and analogues, like -alanine and p-fluorophenylalanine, are transported by the same system. It remains to be seen if there are separate mechanisms for the uptake of acidic and basic amino acids.  相似文献   

19.
The uptake and incorporation of L-proline by yeast cells of the dimorphic zoopathogen Histoplasma capsulatum were studied. The amino acid was assimilated in at least two ways: by an active transport system with a Km of 1.7 X 10(-5) M and by simple diffusion. The active transport system was sterospecific and severely restricted to neutral aliphatic side-chain amino acids. Certain analogues inhibited L-proline uptake and prevented incorporation of the amino acid into cellular constituents. The inhibition of L-proline uptake by L-leucine was competitive. Since L-leucine and L-proline are seemingly transported by a system with similar characteristics, must be concluded, as originally postulated, that the buckled ring of L-proline, in solution, acts as an aliphatic side chain and that this cyclic amino acid is transported by a system more or less specific for amino acids with neutral aliphatic side chains.  相似文献   

20.
The marine diatom Nitzschia ovalis possesses at, least 3 amino acid uptake systems, specific for transport of acidic, polybasic, and, neutral amino acids. Maximum uptake velocity (Vmax) for each, site is inversely related to the nitrogen content of the cell, and to the nitrogen available in the culture medium. Transport, of polybasic amino acids occurs throughout the course of growth in batch, culture, but the Vmax increases dramatically as the culture ages and nitrogen/cell reaches a low value. Ks does not, change significantly. Acidic and neutral amino acids are taken up only by cells harvested from nitrogen-poor culture. It appears that amino acid transport is repressed by high concentrations of nitrogen in the medium. Under natural conditions, where nitrogen concentrations are low, the contribution of amino acid uptake to the nitrogen economy of Nitzschia populations may be significant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号