首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
To predict the susceptibility of the probable 2009 influenza A (H1N1-2009) mutant strains to oseltamivir, MD/LIE approach was applied to oseltamivir complexed with the most frequent drug-resistant strains of neuraminidase subtypes N1 and N2: two mutations on the framework residues (N294S and H274Y) and the two others on the direct-binding residues (E119V and R292K) of oseltamivir. Relative to those of the wild type (WT), loss of drug–target interaction energies, especially in terms of electrostatic contributions and hydrogen bonds were dominantly established in the E119V and R292K mutated systems. The inhibitory potencies of oseltamivir towards the WT and mutants were predicted according to the ordering of binding-free energies: WT (−12.3 kcal mol−1) > N294S (−10.4 kcal mol−1) > H274Y (−9.8 kcal mol−1) > E119 V (−9.3 kcal mol−1) > R292K (−7.7 kcal mol−1), suggesting that the H1N1-2009 influenza with R292K substitution, perhaps, conferred a high level of oseltamivir resistance, while the other mutants revealed moderate resistance levels. This result calls for an urgent need to develop new potent anti-influenza agents against the next pandemic of potentially higher oseltamivir-resistant H1N1-2009 influenza.  相似文献   

2.
To reveal the source of oseltamivir-resistance in influenza (A/H5N1) mutants, the drug-target interactions at each functional group were investigated using MD/LIE simulations. Oseltamivir in the H274Y mutation primarily loses the electrostatic and the vdW interaction energies at the –NH3+ and –OCHEt2 moieties corresponding to the weakened hydrogen-bonds and changed distances to N1 residues. Differentially, the N294S mutation showed small changes of binding energies and intermolecular interactions. Interestingly, the presence of different conformations of E276 positioned between the –OCHEt2 group and the mutated residue is likely to play an important role in oseltamivir-resistant identification. In the H274Y mutant, it moves towards the –OCHEt2 group leading to a reduction in hydrophobicity and pocket size, whilst in the N294S mutant it acts as the hydrogen network center bridging with R224 and the mutated residue S294. The molecular details have answered a question of how the H274Y and N294S mutations confer the high- and medium-level of oseltamivir-resistance to H5N1.  相似文献   

3.
Influenza viruses resistant to antiviral drugs emerge frequently. Not surprisingly, the widespread treatment in many countries of patients infected with 2009 pandemic influenza A (H1N1) viruses with the neuraminidase (NA) inhibitors oseltamivir and zanamivir has led to the emergence of pandemic strains resistant to these drugs. Sporadic cases of pandemic influenza have been associated with mutant viruses possessing a histidine-to-tyrosine substitution at position 274 (H274Y) in the NA, a mutation known to be responsible for oseltamivir resistance. Here, we characterized in vitro and in vivo properties of two pairs of oseltaimivir-sensitive and -resistant (possessing the NA H274Y substitution) 2009 H1N1 pandemic viruses isolated in different parts of the world. An in vitro NA inhibition assay confirmed that the NA H274Y substitution confers oseltamivir resistance to 2009 H1N1 pandemic viruses. In mouse lungs, we found no significant difference in replication between oseltamivir-sensitive and -resistant viruses. In the lungs of mice treated with oseltamivir or even zanamivir, 2009 H1N1 pandemic viruses with the NA H274Y substitution replicated efficiently. Pathological analysis revealed that the pathogenicities of the oseltamivir-resistant viruses were comparable to those of their oseltamivir-sensitive counterparts in ferrets. Further, the oseltamivir-resistant viruses transmitted between ferrets as efficiently as their oseltamivir-sensitive counterparts. Collectively, these data indicate that oseltamivir-resistant 2009 H1N1 pandemic viruses with the NA H274Y substitution were comparable to their oseltamivir-sensitive counterparts in their pathogenicity and transmissibility in animal models. Our findings highlight the possibility that NA H274Y-possessing oseltamivir-resistant 2009 H1N1 pandemic viruses could supersede oseltamivir-sensitive viruses, as occurred with seasonal H1N1 viruses.  相似文献   

4.
Influenza A (H5N1) virus is one of the world's greatest pandemic threats. Neuraminidase (NA) inhibitors, oseltamivir and zanamivir, prevent the spread of influenza, but drug‐resistant viruses have reduced their effectiveness. Resistance depends on the binding properties of NA‐drug complexes. Key residue mutations within the active site of NA glycoproteins diminish binding, thereby resulting in drug resistance. We performed molecular simulations and calculations to characterize the mechanisms of H5N1 influenza virus resistance to oseltamivir and predict potential drug‐resistant mutations. We examined two resistant NA mutations, H274Y and N294S, and one non‐drug‐resistant mutation, E119G. Six‐nanosecond unrestrained molecular dynamic simulations with explicit solvent were performed using NA‐oseltamivir complexes containing either NA wild‐type H5N1 virus or a variant. MM_PBSA techniques were then used to rank the binding free energies of these complexes. Detailed analyses indicated that conformational change of E276 in the Pocket 1 region of NA is a key source of drug resistance in the H274Y mutant but not in the N294S mutant.  相似文献   

5.
The outbreak of avian influenza virus H5N1 has raised a global concern because of its high virulence and mutation rate. Although two classes of antiviral drugs, M2 ion channel protein inhibitors and neuraminidase inhibitors, are expected to be important in controlling the early stages of a potential pandemic. Different strains of influenza viruses have differing degrees of resistance against the antivirals. In order to analyze the detailed information on the viral resistance, molecular dynamics simulations were carried out for the neuraminidase (NA) complex with oseltamivir. The carboxylate of Glu276 of H252Y NA faces toward the O-ethyl-propyl group of oesltamivir, Glu276 of wild-type NA adopts a conformation pointing away from the oesltamivir. τ2 and τ3 torsional angles fluctuation of the oesltamivir are relatively high for the H252Y mutant NA complex. In addition, there are fewer hydrogen bonds between the oesltamivir and H252Y mutation NA. The results show that H252Y mutation NA has high resistance against the drug.  相似文献   

6.
Like the histidine-to-tyrosine substitution at position 274 in neuraminidase (NA H274Y), an asparagine-to-serine mutation at position 294 in this protein (NA N294S) confers oseltamivir resistance to highly pathogenic H5N1 influenza A viruses. However, unlike viruses with the NA H274Y mutation, the properties of viruses possessing NA N294S are not well understood. Here, we assessed the effect of the NA N294S substitution on the replication and pathogenicity of human H5N1 viruses and on the efficacy of the NA inhibitors oseltamivir and zanamivir in mouse and ferret models. Although NA N294S-possessing H5N1 viruses were attenuated in mice and ferrets compared to their oseltamivir-sensitive counterparts, one of the infected ferrets died from systemic infection, demonstrating the potential lethality in ferrets of oseltamivir-resistant H5N1 viruses with the NA N294S substitution. The efficacy of oseltamivir, but not that of zanamivir, against an NA N294S-possessing virus was substantially impaired both in ferrets and in vitro. These results demonstrate the considerable pathogenicity of NA N294S substitution-possessing H5N1 viruses and underscore the importance of monitoring the emergence of the NA N294S mutation in circulating H5N1 viruses.  相似文献   

7.
Oseltamivir-resistant H1N1 influenza viruses emerged in 2007 to 2008 and have subsequently circulated widely. However, prior to 2007 to 2008, viruses possessing the neuraminidase (NA) H274Y mutation, which confers oseltamivir resistance, generally had low growth capability. NA mutations that compensate for the deleterious effect of the NA H274Y mutation have since been identified. Given the importance of the functional balance between hemagglutinin (HA) and NA, we focused on amino acid changes in HA. Reverse genetic analysis showed that a mutation at residue 82, 141, or 189 of the HA protein promotes virus replication in the presence of the NA H274Y mutation. Our findings thus identify HA mutations that contributed to the replacement of the oseltamivir-sensitive viruses of 2007 to 2008.  相似文献   

8.
Oseltamivir (Tamiflu) is the most accepted antiviral drug that targets the neuraminidase (NA) protein to inhibit the viral release from the host cell. Few H1N1 influenza strains with the H274Y mutation creates drug resistance to oseltamivir. In this study, we report that flavonoid cyanidin-3-sambubiocide (C3S) compound acts as a potential inhibitor against H274Y mutation. The drug resistance mechanism and inhibitory activity of C3S and oseltamivir against wild-type (WT) and H274Y mutant-type (MT) have been studied and compared based on the results of molecular docking, molecular dynamics, and quantum chemical methods. Oseltamivir has been found less binding affinity with MT. C3S has more binding affinity with WT and MT proteins. From the dynamical study, the 150th loop of the MT protein has found more deformation than WT. A single H274Y mutation induces the conformational changes in the 150th loop which leads to produce more resistance to oseltamivir. The 150th cavity is more attractive target for C3S to stop the conformational changes in the MT, than 430th cavity of NA protein. The C3S is stabilized with MT by more number of hydrogen bonds than oseltamivir. The electrostatic interaction energy shows a stronger C3S binding with MT and this compound may be more effective against oseltamivir-resistant virus strains.  相似文献   

9.

Background

Resistance of pandemic A(H1N1)2009 (H1N1pdm09) virus to neuraminidase inhibitors (NAIs) has remained limited. A new mutation I223R in the neuraminidase (NA) of H1N1pdm09 virus has been reported along with H275Y in immunocompromised patients. The aim of this study was to determine the impact of I223R on oseltamivir and zanamivir susceptibility.

Methods

The NA enzymatic characteristics and susceptibility to NAIs of viruses harbouring the mutations I223R and H275Y alone or in combination were analyzed on viruses produced by reverse genetics and on clinical isolates collected from an immunocompromised patient with sustained influenza H1N1pdm09 virus shedding and treated by oseltamivir (days 0–15) and zanamivir (days 15–25 and 70–80).

Results

Compared with the wild type, the NA of recombinant viruses and clinical isolates with H275Y or I223R mutations had about two-fold reduced affinity for the substrate. The H275Y and I223R isolates showed decreased susceptibility to oseltamivir (246-fold) and oseltamivir and zanamivir (8.9- and 4.9-fold), respectively. Reverse genetics assays confirmed these results and further showed that the double mutation H275Y and I223R conferred enhanced levels of resistance to oseltamivir and zanamivir (6195- and 15.2-fold). In the patient, six days after initiation of oseltamivir therapy, the mutation H275Y conferring oseltamivir resistance and the I223R mutation were detected in the NA. Mutations were detected concomitantly from day 6–69 but molecular cloning did not show any variant harbouring both mutations. Despite cessation of NAI treatment, the mutation I223R persisted along with additional mutations in the NA and the hemagglutinin.

Conclusions

Reduced susceptibility to both oseltamivir and zanamivir was conferred by the I223R mutation which potentiated resistance to both NAIs when associated with the H275Y mutation in the NA. Concomitant emergence of the I223R and H275Y mutations under oseltamivir treatment underlines the importance of close monitoring of treated patients especially those immunocompromised.  相似文献   

10.
The fitness of oseltamivir-resistant highly pathogenic H5N1 influenza viruses has important clinical implications. We generated recombinant human A/Vietnam/1203/04 (VN; clade 1) and A/Turkey/15/06 (TK; clade 2.2) influenza viruses containing the H274Y neuraminidase (NA) mutation, which confers resistance to NA inhibitors, and compared the fitness levels of the wild-type (WT) and resistant virus pairs in ferrets. The VN-H274Y and VN-WT viruses replicated to similar titers in the upper respiratory tract (URT) and caused comparable disease signs, and none of the animals survived. On days 1 to 3 postinoculation, disease signs caused by oseltamivir-resistant TK-H274Y virus were milder than those caused by TK-WT virus, and all animals survived. We then studied fitness by using a novel approach. We coinoculated ferrets with different ratios of oseltamivir-resistant and -sensitive H5N1 viruses and measured the proportion of clones in day-6 nasal washes that contained the H274Y NA mutation. Although the proportion of VN-H274Y clones increased consistently, that of TK-H274Y virus decreased. Mutations within NA catalytic (R292K) and framework (E119A/K, I222L, H274L, and N294S) sites or near the NA enzyme active site (V116I, I117T/V, Q136H, K150N, and A250T) emerged spontaneously (without drug pressure) in both pairs of viruses. The NA substitutions I254V and E276A could exert a compensatory effect on the fitness of VN-H274Y and TK-H274Y viruses. NA enzymatic function was reduced in both drug-resistant H5N1 viruses. These results show that the H274Y NA mutation affects the fitness of two H5N1 influenza viruses differently. Our novel method of assessing viral fitness accounts for both virus-host interactions and virus-virus interactions within the host.The neuraminidase (NA) inhibitors (orally administered oseltamivir and inhaled zanamivir) are currently an important class of antiviral drugs available for the treatment of seasonal and pandemic influenza. Although administration of NA inhibitors may significantly reduce influenza virus transmission, it risks the emergence of drug-resistant variants (16, 32). The impact of drug resistance would depend on the fitness (i.e., infectivity in vitro and virulence and transmissibility in vivo) of the resistant virus. If the resistance mutation only modestly reduces the virus'' biological fitness and does not impair its replication efficiency and transmissibility, the effectiveness of antiviral treatment can be significantly impaired. The unexpected natural emergence and spread of oseltamivir-resistant variants (carrying the H274Y NA amino acid substitution) among seasonal H1N1 influenza viruses of the A/Brisbane/59/07 lineage demonstrated that drug-resistant viruses can be highly fit and transmissible in humans (11, 22, 29), although the fitness of these variants is not completely understood. They are hypothesized to have lower NA receptor affinity and more-optimal NA and hemagglutinin (HA) functional balance than do wild-type (WT) viruses (38). Fortunately, oseltamivir-resistant variants have rarely been reported to occur among the novel pandemic H1N1 influenza viruses that emerged in April 2009; therefore, initial data suggest that currently circulating wild-type viruses possibly possess greater fitness than drug-resistant viruses (45), although only retrospective epidemiological data can provide a conclusive answer. The key questions are whether the risk posed by NA inhibitor-resistant viruses can be assessed experimentally and what the most reliable approach may be.All NA inhibitor-resistant influenza viruses characterized to date have contained specific mutations in the NA molecule. Clinically derived drug-resistant viruses have carried mutations that are NA subtype specific and differ in accordance with the NA inhibitor used (12, 35). The most commonly observed mutations are H274Y and N294S in the influenza A N1 NA subtype, E119A/G/D/V and R292K in the N2 NA subtype, and R152K and D198N in influenza B viruses (35, 36). The fitness of NA inhibitor-resistant viruses has been studied in vitro and in vivo. Many groups have assessed their replicative capacity in MDCK cells, but this assay system can yield anomalous results (49), particularly in the case of low-passage clinical isolates. The mismatch between virus specificity and cellular receptors can be overcome by using cell lines engineered to express human-like α-2,6-linked sialyl cell surface receptors (MDCK-SIAT1) (15, 34) or a novel cell culture-based system that morphologically and functionally recapitulates differentiated normal human bronchial epithelial (NHBE) cells (24). Investigations in vivo typically compare replication efficiencies, clinical signs, and transmissibility levels between oseltamivir-resistant viruses and the corresponding wild-type virus. Initial studies found that NA inhibitor-resistant influenza viruses were severely compromised in vitro and in animal models (6, 17, 26) and thus led to the idea that resistant viruses will unlikely have an impact on epidemic and pandemic influenza. However, clinically derived H1N1 virus with the H274Y NA mutation (18) and reverse genetics-derived H3N2 virus with the E119V NA mutation (46) were subsequently found to possess biological fitness and transmissibility similar to those of drug-sensitive virus in direct-contact ferrets. Recent studies in a guinea pig model showed that recombinant human H3N2 influenza viruses carrying either a single E119V NA mutation or the double NA mutation E119V-I222V were transmitted efficiently by direct contact but not by aerosol (5).There is limited information about the fitness of NA inhibitor-resistant H5N1 influenza viruses. Although they are not efficiently transmitted from human to human, their pandemic potential remains a serious public health concern because of their virulence in humans (1, 4, 7). H5N1 viruses isolated from untreated patients are susceptible to the NA inhibitors oseltamivir and zanamivir (21), although oseltamivir-resistant variants with the H274Y NA mutation have been reported to occur in five patients after (9, 30) or before (41) treatment with oseltamivir. The World Health Organization reported the isolation of two oseltamivir-resistant H5N1 viruses from an Egyptian girl and her uncle (44) after oseltamivir treatment. The virus was moderately resistant and possessed an N294S NA mutation. Preliminary evidence suggests that the resistance mutation existed before transmission of the virus from birds to the patients and thus before initiation of treatment (41). We previously showed that wild-type A/Vietnam/1203/04 (H5N1) influenza virus and recombinants carrying either the H274Y or the N294S NA mutation reached comparable titers in MDCK and MDCK-SIAT1 cells and caused comparable mortality rates among BALB/c mice (48). In contrast, clinically derived A/Hanoi/30408/05 (H5N1) influenza virus with the H274Y NA mutation reproduced to lower titers than the oseltamivir-sensitive virus in the lungs of inoculated ferrets (30).In a ferret model, we compared the fitness levels of two pairs of H5N1 viruses in the absence of selective drug pressure. One virus of each pair was the wild type, while the other carried the H274Y NA mutation conferring oseltamivir resistance. The two viruses used, A/Vietnam/1203/04 (HA clade 1) and A/Turkey/15/06 (HA clade 2.2), differ in their pathogenicity to ferrets. Virus fitness was evaluated by two approaches. Using the traditional approach, we compared clinical disease signs, relative inactivity indexes, weight and temperature changes, and virus replication levels in the upper respiratory tract (URT). We then used a novel competitive fitness approach in which we genetically analyzed individual virus clones after coinfection of ferrets with mixtures of oseltamivir-sensitive and -resistant H5N1 viruses; thus, we determined virus-virus interactions within the host. We observed no difference between the resistant and sensitive virus of each pair in clinical signs or virus replication in the URT; however, analysis of virus-virus interactions within the host showed that the H274Y NA mutation affected the fitness of the two viruses differently. The oseltamivir-resistant A/Vietnam/1203/04-like virus outgrew its wild-type counterpart, while the oseltamivir-resistant A/Turkey/15/06-like virus showed less fitness than its wild-type counterpart.  相似文献   

11.
[Mo(SSCH3)(S2C2(CH3)2)2] x complexes with charges x between −3 and +3 were investigated by density functional theory computations as minimal nitrate reductase active-site models. The strongly reduced species (x = −2, −3) exist preferentially as pentacoordinate sulfo complexes separated from a thiolate anion. The oxidized extremes (x > 0) clearly prefer hexacoordinate complexes with an η2-MeSS ligand. Among the neutral and especially for the singly negatively charged species structures with η2-MeSS and η1-MeSS ligands are energetically close to the sulfo methyl sulfide complex without SS bonding. For x = −1 the three isomers lie in a 1.5 kcal mol−1 energy range. Putative mechanistic pathways for nitrate reduction from the literature were investigated computationally: (1) reduction at a pentacoordinate sulfo complex, (2) reduction at the ligand, and (3) reduction at the molybdenum center with an R–S–S ligand. All three pathways could be traced at least for some overall charges but no definite conclusion can be drawn about the mechanism. Complexes with larger dithiolato ligands were also computed in order to model the tricyclic metallopterin framework more accurately: the first heterocyclus (5,6-dihydro-2H-pyran) stabilizes the nitrate complex and the molybdenum oxo product complex by approximately 10 kcal mol−1 and also reduces the activation barrier (by approximately 5 kcal mol−1). The effect of the second (1,2,3,4-tetrahydropyrazin) and third heterocyclus (2-amino-3H-pyrimidin-4-one) on the relative energies is relatively small. For bigger models derived from an experimental protein structure, nitrate reduction at a persulfo molybdenum(IV) complex fragment (mechanism 3) is clearly favored over the oxidation of a molybdenum-bound sulfur atom (mechanism 2). Mechanism 1 could not be investigated for the big models but seems the least favorable on the basis of the results from smaller models.  相似文献   

12.
Hydrofluoroethers are being considered as potential candidates for third generation refrigerants. The present investigation involves the ab initio quantum mechanical study of the decomposition mechanism of CF3OCH2O radical formed from a hydrofluoroether, CF3OCH3 (HFE-143a) in the atmosphere. The geometries of the reactant, products and transition states involved in the decomposition pathways are optimized and characterized at the DFT (B3LYP) level of theory using 6-311G(d,p) basis set. Energy calculations have been performed at the G2(MP2) and G2M(CC,MP2) level of theory. Two prominent decomposition channels, C-O bond scission and reaction with atmospheric O2 have been considered for detailed investigation. Studies performed at the G2(MP2) level reveals that the decomposition channel involving C-O bond scission occurs with a barrier height of 23.8 kcal mol−1 whereas the oxidative pathway occurring with O2 proceeds with an energy barrier of 7.2 kcal mol−1. On the other hand the corresponding values at G2M(CC,MP2) are 24.5 and 5.9 kcal mol−1 respectively. Using canonical transition state theory (CTST) rate constants for the two pathways considered are calculated at 298 K and 1 atm pressure and found to be 5.9 × 10−6 s−1 and 2.3 × 10−5 s−1 respectively. The present study concludes that reaction with O2 is the dominant path for the consumption of CF3OCH2O in the atmosphere. Transition states are searched and characterized on the potential energy surfaces involved in both of the reaction channels. The existence of transition state on the corresponding potential energy surface is ascertained by performing intrinsic reaction coordinate (IRC) calculation.  相似文献   

13.
The 2009 pandemic H1N1 (H1N1pdm09) influenza virus is naturally susceptible to neuraminidase (NA) inhibitors, but mutations in the NA protein can cause oseltamivir resistance. The H275Y and I223V amino acid substitutions in the NA of the H1N1pdm09 influenza strain have been separately observed in patients exhibiting oseltamivir-resistance. Here, we apply mathematical modelling techniques to compare the fitness of the wild-type H1N1pdm09 strain relative to each of these two mutants. We find that both the H275Y and I223V mutations in the H1N1pdm09 background significantly lengthen the duration of the eclipse phase (by 2.5 h and 3.6 h, respectively), consistent with these NA mutations delaying the release of viral progeny from newly infected cells. Cells infected by H1N1pdm09 virus carrying the I223V mutation display a disadvantageous, shorter infectious lifespan (17 h shorter) than those infected with the wild-type or MUT-H275Y strains. In terms of compensating traits, the H275Y mutation in the H1N1pdm09 background results in increased virus infectiousness, as we reported previously, whereas the I223V exhibits none, leaving it overall less fit than both its wild-type counterpart and the MUT-H275Y strain. Using computer simulated competition experiments, we determine that in the presence of oseltamivir at doses even below standard therapy, both the MUT-H275Y and MUT-I223V dominate their wild-type counterpart in all aspects, and the MUT-H275Y outcompetes the MUT-I223V. The H275Y mutation should therefore be more commonly observed than the I223V mutation in circulating H1N1pdm09 strains, assuming both mutations have a similar impact or no significant impact on between-host transmission. We also show that mathematical modelling offers a relatively inexpensive and reliable means to quantify inter-experimental variability and assess the reproducibility of results.  相似文献   

14.
The DFT calculations at the B3LYP level with 6-311G** basis set were carried out in order to reveal whether tautomerization or decarboxylation is responsible for the instability of 2,2-di(pyridin-2-yl)acetic (DPA) and 1,8-diazafluorene-9-carboxylic (DAF) acids. The carboxyl protons in both compounds are involved in the intramolecular hydrogen bonds (the pyridine nitrogen atoms are the hydrogen bond acceptors). Although formation of two intramolecular OH···N hydrogen bonds in the enols of both carboxylic acids enables effective electron delocalization within the quasi rings (···HO − C = C − C = N), only ene-1,1-diol of DAF has somewhat lower energy than DAF itself (ΔE is ca. 7 kcal mol-1). DPA and its enediol have comparable energies. Migration of the methine proton toward the carbonyl oxygen atom (to form enediols) requires overstepping the energy barriers of 55-57 kcal mol-1 for both DPA and DAF. The enaminone tautomers of the acids, formed by migration of this proton toward the pyridine nitrogen atom, are thermodynamically somewhat more stable than the respective enediols. The energy barriers of these processes are equal to ca. 44 and 62 kcal mol-1 for DPA and DAF, respectively. Thus, such tautomerization of the acids is not likely to proceed. On the other hand, the distinct energetic effects (ca. 15 kcal mol-1) favor decarboxylation. This process involves formation of (E)-2-(pyridin-2(1H)-ylidenemethyl)pyridine and its cyclic analogue followed by their tautomerization to (dipyridin-2-yl)methane and 1,8-diazafluorene, respectively. Although the later compound was found to be somewhat thermodynamically more stable, kinetic control of tautomerization of the former is more distinct.  相似文献   

15.
Compensatory mutations contribute to the appearance of the oseltamivir resistance substitution H274Y in the neuraminidase (NA) gene of H1N1 influenza viruses. Here, we describe a high-throughput screening method utilizing error-prone PCR and next-generation sequencing to comprehensively screen NA genes for H274Y compensatory mutations. We found four mutations that can either fully (R194G, E214D) or partially (L250P, F239Y) compensate for the fitness deficiency of the H274Y mutant. The compensatory effect of E214D is applicable in both seasonal influenza virus strain A/New Caledonia/20/1999 and 2009 pandemic swine influenza virus strain A/California/04/2009. The technique described here has the potential to profile a gene at the single-nucleotide level to comprehend the dynamics of mutation space and fitness and thus offers prediction power for emerging mutant species.  相似文献   

16.
In the context of a recent pandemic threat by the worldwide spread of H5N1 avian influenza, the high resistance of H5N1 virus to the most widely used commercial drug, oseltamivir (Tamiflu), is currently an important research topic. Herein, molecular bases of the mechanism of H5N1 NA resistance to oseltamivir were elucidated using a computational approach in a systematic fashion. Using the crystal structure of the complex of H5N1 NA with OTV (PDB ID: 2hu0) as the starting point, the question, how mutations at His274 by both smaller side chain (Gly, Ser, Asn, Gln) and larger side chain (Phe, Tyr) residues influence the sensitivity of N1 to oseltamivir, was addressed and correlated with the experimental data. The smaller side chain residue mutations of His274 resulted in slightly enhanced or unchanged NA sensitivity to OTV, while His274Phe and His274Tyr reduced the susceptibility of OTV to N1. In contrast to the binding free energies, the net charges of Glu276 and Arg224, making charge-charge interactions with Glu276, were established to be more sensitive to detecting subtle conformational differences induced at the key residue Glu276 by the His274X mutations. This study provides deeper insights into the possibility of developing viable drug-resistant mutants.  相似文献   

17.
Antiviral resistance is currently monitored by a labelled enzymatic assay, which can give inconsistent results because of the short half‐life of the labelled product, and variations in assay conditions. In this paper, we describe a competitive surface plasmon resonance (SPR) inhibition assay for measuring the sensitivities of wild‐type neuraminidase (WT NA) and the H274Y (histidine 274 tyrosine) NA mutant to antiviral drugs. The two NA isoforms were expressed in High‐five™ (Trichoplusia ni) insect cells. A spacer molecule (1,6‐hexanediamine (HDA)) was conjugated to the 7‐hydroxyl group of zanamivir, and the construct (HDA‐zanamivir) was immobilized onto a SPR sensor chip to obtain a final immobilization response of 431 response units. The immobilized HDA‐zanamivir comprised a bio‐specific ligand for the WT and mutant proteins. The effects of the natural substrate (sialic acid) and two inhibitors (zanamivir and oseltamivir) on NA binding to the immobilized ligand were studied. The processed SPR data was analysed to determine 50% inhibitory concentrations (IC50‐spr), using a log dose–response curve fit. Although both NA isoforms had almost identical IC50‐spr values for sialic acid (WT = 5.5 nM; H274Y mutant = 3.25 nM) and zanamivir (WT = 2.16 nM; H274Y mutant = 2.42 nM), there were significant differences between the IC50‐spr values obtained for the WT (7.7 nM) and H274Y mutant (256 nM) NA in the presence of oseltamivir, indicating that oseltamivir has a reduced affinity for the H274Y mutant. The SPR inhibition assay strategy presented in this work could be applied for the rapid screening of newly emerging variants of NA for their sensitivity to antiviral drugs. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
The 3D structure of the amidase from Rhodococcus erythropolis (EC 3.5.1.4) built by homology-based modeling is presented. Propionamide and acetamide are docked to the amidase. The reaction models were used to characterize the explicit enzymatic reaction. The calculated free energy barrier at B3LYP/6-31G* level of Model A (Ser194 + propionamide) is 19.72 kcal mol−1 in gas (6.47 kcal mol−1 in solution), and of Model B (Ser194 + Gly193 + propionamide) is 18.71 kcal mol−1 in gas (4.57 kcal mol−1 in solution). The docking results reveal that propionamide binds more strongly than acetamide due to the ethyl moiety of propionamide, which makes the carboxyl oxygen center of the substrate slightly more negative, making formation of the positively charged tetrahedral intermediate slightly easier. The quantum mechanics results demonstrate that Ser194 is essential for the acyl-intermediate, and Gly193 plays a secondary role in stabilizing acyl-intermediate formation as the NH groups of Ser194 and Gly193 form hydrogen bonds with the carbonyl oxygen of propionamide. The new structural and mechanistic insights gained from this computational study should be useful in elucidating the detailed structures and mechanisms of amidase and other homologous members of the amidase signature family.  相似文献   

19.
The present study deals with the decomposition of CF3OCF2O radical formed from a hydrofluoroether, CF3OCHF2 (HFE-125), in the atmosphere. The study is performed using ab initio quantum mechanical methods. Two plausible pathways of decomposition of the titled species have been considered, one involving C-O bond scission and the other occurring via F atom elimination. The geometries of the reactant, products and transition states involved in the decomposition pathways are optimized and characterized at DFT (B3LYP) level of theory using 6-311G(d,p) basis set. Single point energy calculations have been performed at G2M(CC,MP2) level of theory. Out of the two prominent decomposition channels considered, the C-O bond scission is found to be dominant involving a barrier height of 15.3 kcal mol−1 whereas the F-elimination path proceeds with a barrier of 26.1 kcal mol−1. The thermal rate constants for the above two decomposition pathways are evaluated using canonical transition state theory (CTST) and these are found to be 1.78 × 106 s−1 and 2.83 × 10−7 s−1 for C-O bond scission and F-elimination respectively at 298 K and 1 atm pressure. Transition states are searched on the potential energy surfaces involved during the decomposition channels and each of the transition states is characterized. The existence of transition states on the corresponding potential energy surface is ascertained by performing intrinsic reaction coordinate (IRC) calculation.  相似文献   

20.
A homology model of Saccharomyces cerevisiae phosphoenolpyruvate (PEP) carboxykinase (ATP + oxaloacetate ⇄ ADP + PEP + CO2) in complex with its substrates shows that the isobutyl group of Leu460 is in close proximity to the adenine ring of the nucleotide, while the carboxyl group of Glu299 is within hydrogen-bonding distance of the ribose 2′OH. The Leu460Ala mutation caused three-fold and seven-fold increases in the K m for ADPMn and ATPMn2−, respectively, while the Glu299Ala mutation had no effect. Binding studies showed losses of approximately 2 kcal mol−1 in the nucleotide binding affinity due to the Leu460Ala mutation and no effect for the Glu299Ala mutation. PEP carboxykinase utilized 2′deoxyADP and 2′deoxyATP as substrates with kinetic and equilibrium dissociation constants very similar to those of ADP and ATP, respectively. These results show that the hydrophobic interaction between Leu460 and the adenine ring of the nucleotide significantly contributed to the nucleotide affinity of the enzyme. The 2′deoxy nucleotide studies and the lack of an effect of the Glu299Ala mutation in nucleotide binding suggest that the possible hydrogen bond contributed by Glu299 and the ribose 2′OH group may not be relevant for nucleotide binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号