首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aims: The aim of this study is to assess the antibacterial activity of sodium citrate against Streptococcus pneumoniae and several oral bacteria. Methods and Results: The antibacterial activity was determined by broth microdilution method. The results showed that although Enterocuccus faecium OB7084 and Klebsiella pneumoniae OB7088 had high tolerance to sodium citrate, several oral bacteria including Fusobacterium nucleatum JCM8532T, Streptococcus mutans JCM5705T and Strep. pneumoniae NBRC102642T were susceptible. Furthermore, the bactericidal activity of sodium citrate against Strep. pneumoniae NBRC102642T was not influenced by pH in the range of 5·0–8·0, whereas that of sodium lactate was weakened at neutral or weak alkaline pH. When Strep. pneumoniae NBRC102642T was treated with sodium citrate for 2 h, many burst cells were observed. However, addition of MgCl2 or CaCl2 to an assay medium weakened the antimicrobial activity although ZnCl2 or MnCl2 did not influence. Conclusions: Independent of pH, sodium citrate inhibited the growth of oral bacteria, which suggests that the mechanism is different from that of sodium lactate. Significance and Impact of the Study: The results presented in this study would be available for understanding the antimicrobial property of sodium citrate.  相似文献   

2.
As has been previously shown, Saccharomyces cerevisiae grown in 2% or 0.025% glucose uses this carbohydrate by the fermentative or oxidative pathways, respectively. Depending on the glucose concentration in the medium, the effect of the addition of H2O2 on the level of ATP and on glyceraldehyde-3-phosphate dehydrogenase (GAPDH) activity differed. In the presence of 2% glucose, ATP and GAPDH decreased sharply during the first few minutes of treatment, whereas in the presence of 0.025% glucose, GAPDH activity decreased similarly, but the ATP level remained practically unchanged. The addition of 3 mM glutathione to the culture media prevented the depletion of ATP levels and GAPDH activity in the presence of H2O2. Catalase and superoxide dismutase activities did not vary significantly when yeast cells were grown either in 2% or in 0.025% glucose.  相似文献   

3.
A rapid and localized programmed cell death – the hypersensitive response (HR) – is a widely utilized plant resistance mechanism against pathogens. Studies have implicated H2O2 generation as a key elicitory mechanism in the HR. The causal relationship between the kinetics of the in planta oxidative burst, the HR and certain defence gene expression was examined. H2O2 generation following challenge with avirulent strains of Pseudomonas syringae pv. (P. s. pv.) syringae occurred in two phases. The effects of ROS generation were investigated using the H2O2-responsive transgene AoPR10-GUS, the dually responsive (H2O2 and salicylic acid) PR1a-GUS as well as measures of cell death. Co-application of catalase with P. s. pv. syringae into tobacco leaf panels suppressed AoPR10- and PR1a-GUS expression and cell death. Conversely, varying H2O2 generation with glucose: glucose oxidase influenced both defence gene expression and cell death. AoPR10-GUS proved to be primarily responsive to apoplastic not intracellular oxidative stress, suggesting that the apoplasm was a distinctive source of oxidative signals. A biphasic oxidative burst was also observed with virulent P. s. pv. tabaci, which, although delayed compared to that observed during HR, persisted at equivalent levels for a longer period. Taking all these data together we suggest that either (1) additional factors to the apoplastic oxidative burst are required to explain the rapid kinetics of defence signalling and cell death associated with the HR or (2) P. s. pv. tabaci successfully suppresses the effects of H2O2 generation by an unknown mechanism.  相似文献   

4.
Soybean (Glycine max L. Merr.) Cell-suspension cultures inoculated with avirulent Pseudomonas syringae pv. glycinea bacteria generated a sustained oxidative burst 3–6 h after the infection. The H2O2 production was not dependent on protein biosynthesis but, surprisingly, cycloheximide itself was a very strong inducer of the oxidative burst and of the alkalinization measured in the cell culture medium. Both responses were activated in a very similar manner by inhibitors of protein phosphatases, implicating a phosphorylation change evoked by cycloheximide as a trigger for the elicitation. The activation of the oxidative burst was totally blocked by the kinase inhibitor K252a. The alkalinization response preceded the oxidative burst. The generation of H2O2 depleted the medium of H+ but the expected alkalinization of about one pH-unit did not occur. The H2O2 production by the plasma membrane oxidase must therefore be charge-compensated, likely via H+-channel activity. Received: 4 October 1997 / Accepted: 12 May 1998  相似文献   

5.
The role of phosphoinositide 3‐kinase (PI3K) in oxidative glutamate toxicity is not clear. Here, we investigate its role in HT22 mouse hippocampal cells and primary cortical neuronal cultures, showing that inhibitors of PI3K, LY294002, and wortmannin suppress extracellular hydrogen peroxide (H2O2) generation and increase cell survival during glutamate toxicity in HT22 cells. The mitogen‐activated protein kinase kinase (MEK) inhibitor U0126 also reduced glutamate‐induced H2O2 generation and inhibited phosphorylation of extracellular signal‐regulated kinase (ERK) 1/2. LY294002 was seen to abolish phosphorylation of both ERK1/2 and Akt. A small interfering RNA (siRNA) study showed that PI3Kβ and PI3Kγ, rather than PI3Kα and PI3Kδ, contribute to glutamate‐induced H2O2 generation and cell death. PI3Kγ knockdown also inhibited glutamate‐induced ERK1/2 phosphorylation, whereas transfection with the constitutively active form of human PI3Kγ (PI3Kγ‐CAAX) triggered MEK1/2 and ERK1/2 phosphorylation and H2O2 generation without glutamate exposure. This H2O2 generation was reduced by inhibition of MEK. Transfection with kinase‐dead 3‐phosphoinositide‐dependent protein kinase 1 (PDK1‐KD) reduced glutamate‐induced ERK1/2 phosphorylation and H2O2 generation. Accordingly, cotransfection of cells with PDK1‐KD and PI3Kγ‐CAAX suppressed PI3Kγ‐CAAX‐triggered ERK1/2 phosphorylation and H2O2 generation. These results suggest that activation of PI3Kγ induces ERK1/2 phosphorylation, leading to extracellular H2O2 generation via PDK1 in oxidative glutamate toxicity.

  相似文献   


6.
The aim of this study was to determine the prevalence of the bla SHV gene in Klebsiella pneumoniae isolates from hospital and community infections and from the normal microbiota of healthy individuals in Recife, PE, Brazil. Fifty-two K. pneumoniae isolates were analyzed regarding the presence of the bla SHV gene, using PCR, and eight isolates were analyzed by DNA sequencing. This gene was detected in 16 isolates from hospital infections, four from community infections, and nine from the normal microbiota. This was the first study to find the bla SHV gene in K. pneumoniae isolates from the normal microbiota. Through DNA sequencing of eight K. pneumoniae isolates from hospital and community infections, with a resistance phenotype indicative of extended-spectrum β-lactamase production, a new SHV variant named SHV-122 was found. We also detected the presence of bla SHV-1, bla SHV-11, bla SHV-28, and bla SHV-108. The results show that in Recife, Brazil, K. pneumoniae isolates that presented resistance to oxyimino-β-lactams had high prevalence and diversity of the bla SHV gene. We also conclude that there was a high presence of the bla SHV gene among isolates from the normal microbiota of healthy individuals.  相似文献   

7.
The effect of oxidants (hydrogen peroxide and juglone) on the growth, respiration, and naphthoquinone synthesis in the fungus Fusarium decemcellulare was studied. The addition of the oxidants to the exponential-phase fungus inhibited cell respiration (either partially or completely, depending on the oxidant concentration), culture growth, and naphthoquinone synthesis. The treatment of fungal cells with nonlethal concentrations of H2O2 (below 0.25 mM) and juglone (below 0.1 mM) induced the resistance of cell respiration to cyanide. The residual respiration in the presence of cyanide could be inhibited by benzohydroxamic acid, indicating the occurrence of alternative oxidase. Increased concentrations of oxidants (0.25 mM juglone and 0.5 mM H2O2) rapidly and irreversibly inhibited cell respiration. These observations suggest that the mitochondrial respiratory chain of fungal cells exposed to oxidative stress is subject to the action of active oxygen species. The treatment of fungal cells with nonlethal concentrations of H2O2 and juglone activated cellular glutathione reductase and glucose-6-phosphate dehydrogenase, which are protective enzymes against oxidative stress.  相似文献   

8.
H2 production from glucose by Ruminococcus albus was almost completely inhibited by 10–5 M molybdate only when sulfide was present in the growth medium. Inhibition was accompanied by a significant increase in the production of formate. Extracts of molybdate-sulfide-grown cells did not contain hydrogenase activity. Active enzyme in extracts of uninhibited cells was not inhibited by the molybdate-sulfide-containing growth medium. The results indicate that a complex formed from molybdate and sulfide prevents the formation of active hydrogenase and electrons otherwise used to form H2 are used to reduce CO2 to formate. Growth was significantly inhibited when molybdate was increased to 10–4 M. Reversal of growth inhibition but not inhibition of H2 production occurred between 10–4 and 10–3 M molybdate. H2 production by R. bromei but not by R. flavefaciens, Butyrivibrio fibrisolvens, Veillonella alcalescens, Klebsiella pneumoniae and Escherichia coli was inhibited by molybdate and sulfide.  相似文献   

9.
No holoenzyme pyrroloquinoline quinone (PQQ)-dependent glucose dehydrogenase and only very low apoenzyme levels could be detected in cells of Klebsiella pneumoniae, growing anaerobically, or carrying out a fumarate or nitrate respiration. Low glucose dehydrogenase activity in some aerobic glucose-excess cultures of K. pneumoniae (ammonia or sulphate limitation) was increased significantly by addition of PQQ, whereas in cells already possessing a high glucose dehydrogenase activity (phosphate or potassium limitation) extra PQQ had almost no effect. These observations indicate that the glucose dehydrogenase activity in K. pneumoniae is modulated by both PQQ synthesis and synthesis of the glucose dehydrogenase apo-enzyme.Abbreviations PQQ 2, 7, 9-tricarboxy-1H-pyrrolo-(2,3-f)quinoline-4,5-dione - WB Wurster's Blue (1,4-bis-(dimethylamino)-benzene perchlorate)  相似文献   

10.
任凯  郭强  徐欣 《微生物学报》2021,61(8):2264-2277
链球菌是人类口腔中最为常见的细菌类群之一,在口腔微生态平衡的维持与致病中发挥了重要作用。口腔链球菌中的大多数可以进入感受态,在此生理状态下,细菌可摄取环境中的DNA并整合进入自身基因组从而获得新的遗传表型或特性。大量研究表明,口腔链球菌的感受态调控通路不是孤立的,与生物膜形成、细菌素产生、耐酸、氧应激、细胞自溶和耐药性等多个表型的调控存在紧密关系,研究这些不同表型间的相互影响对理解口腔菌群稳态及防治疾病有重要意义。本文以变异链球菌、格氏链球菌、血链球菌和肺炎链球菌4种典型的口腔链球菌为代表,对感受态与口腔链球菌多种表型间关系的研究进展做一综述。  相似文献   

11.
Data on CTX-M type extended-spectrum β-lactamase (ESBL) produced by Gram-negative bacteria by molecular methods are limited from India. This study was conducted to investigate the prevalence of CTX-M type ESBL producing Escherichia coli and Klebsiella pneumoniae from nosocomial isolates in a tertiary care hospital in southern India. A total of 179 clinical isolates of K. pneumoniae (n = 72) and E. coli (n = 107) were obtained in a period of 3 months and assessed for ESBL production phenotypically. Associated resistance to a panel of antibiotics and Minimum Inhibitory Concentration for 3rd generation cephalosporins was determined. Phenotypically ESBL positive isolates were subjected to PCR for bla CTX-M gene using two sets of primers for the simultaneous detection of all the five major groups of CTX-M types. All the positive isolates were then subjected to a group specific PCR to detect the prevalent group. Out of 179 isolates, 156 (87.1%) were positive for ESBL phenotypically, which includes 39.2% of K. pneumoniae and 60.8% of E. coli. All of them were examined by PCR using two primers for the presence of bla CTX-M genes. Among the 156 phenotypic positive isolates, 124 (79.4%) were positive for bla CTX-M genes, of which 45 (36.2%) were K. pneumoniae, 79 (63.7%) were E. coli. When the 124 positive clinical isolates were further tested with CTX-M group-specific primers, all were positive for the CTX-M-1 group. Our findings document evidence of the high prevalence of multidrug resistant CTX-M group 1 type ESBL among nosocomial isolates in this region. High co-resistance to other non-β-lactam antibiotics is a major challenge for management of ESBL infections. This is alarming and calls for the judicious use of carbapenems, especially in developing countries. This has significant implications for patient management, and indicates the need for increased surveillance and for further molecular characterization of these isolates.  相似文献   

12.
Diabetes is a high risk factor to dementia. To investigate the molecular mechanism of diabetic dementia, we induced type 2 diabetes in rats and examined potential changes in their cognitive functions and the neural morphology of the brains. We found that the diabetic rats with an impairment of spatial learning and memory showed the occurrence of RTN3-immunoreactive dystrophic neurites in the cortex. Biochemical examinations revealed the increase of a high molecular weight form of RTN3 (HW-RTN3) in diabetic brains. The corresponding decrease of monomeric RTN3 was correlated with the reduction of its inhibitory effects on the activity of β-secretase (BACE1), a key enzyme for generation of β-amyloid peptides. The results from immunoprecipitation combined with protein carbonyl detection showed that carbonylated RTN3 was significantly higher in cortical tissues of diabetic rats compared with control rats, indicating that diabetes-induced oxidative stress led to RTN3 oxidative damage. In neuroblastoma SH-SY5Y cells, high glucose and/or H2O2 treatment significantly increased the amounts of carbonylated proteins and HW-RTN3, whereas monomeric RTN3 was reduced. Hence, we conclude that diabetes-induced cognitive deficits and central neuritic dystrophy are correlated with the formation of aggregated RTN3 via oxidative stress. We provided the first evidence that oxidative damage caused the formation of toxic RTN3 aggregates, which participated in the pathogenesis of central neuritic dystrophy in diabetic brain. Present findings may offer a new therapeutic strategy to prevent or reduce diabetic dementia.  相似文献   

13.
硫化氢(H_2S)是继一氧化氮(NO)和一氧化碳(CO)后发现的第3种气态信号分子,但其细菌生理学研究才刚刚起步。本文根据作者对奥内达希瓦氏菌的研究,结合新近文献,就细菌的H_2S产生机理及其生理功能作了较为全面的阐述。细菌的H_2S产生途径主要有2条,一是通过降解半胱氨酸产生,二是通过厌氧呼吸产生。产生的H_2S除可为互生性微生物提供能源、供氢体和无机矿质营养外,还具有抑制竞争性微生物的生长,有效占领生态位的作用。H_2S在氧化应答中也起着重要的作用,一方面可抑制过氧化氢酶活性,增加过氧化氢对细菌的杀灭效果;另一方面可作为信号分子激活细菌的氧化应答,诱导拮抗系统的表达,保护细胞免受氧化损伤。这两种看似"矛盾"的作用与H_2S的处理时间有关:短时间处理以抑制为主,而延长处理时间则以保护为主。细菌H_2S产生机理及生理功能的阐明可为硫元素生物地球化学循环规律的揭示和感染性病原细菌的控制提供有益的参考。  相似文献   

14.
We demonstrated that when M. pneumoniae was grown on an abiotic surface of either glass or polystyrene with a serum-containing medium, the bacteria adhered to the surface and formed highly differentiated volcano-like biofilm structures. As adherence to the surface and/or biofilm formation was totally inhibited by anti-P1 polyclonal monospecific antibodies, we suggest that the adherence of M. pneumoniae to the abiotic surface and/or biofilm formation is associated with P1, the major tip organelle protein of this organism. Furthermore, adherence and/or biofilm formation was markedly inhibited by treating the serum component of the growth medium with neuraminidase or by growing the bacteria in the presence of sialyllactose, suggesting that the initial step in the adherence to and/or biofilm formation by M. pneumoniae on an abiotic surface is the interaction of the bacterium through its tip organelle with sialic acid residues of serum glycoproteins.  相似文献   

15.
Aerobic organisms experience oxidative stress due to generation of reactive oxygen species during normal aerobic metabolism. In addition, several chemicals also generate reactive oxygen species which induce oxidative stress. Thus oxidative stress constitutes a major threat to organisms living in aerobic environments. Programmed cell death or apoptosis is a physiological mechanism of cell death, that probably evolved with multicellularity, and is indispensable for normal growth and development.Dictyostelium discoideum, an eukaryotic developmental model, shows both unicellular and multicellular forms in its life cycle and exhibits apparent caspase-independent programmed cell death, and also shows high resistance to oxidative stress. An attempt has been made to investigate the biochemical basis for high resistance ofD. discoideum cell death induced by different oxidants. Dose-dependent induction of cell death by exogenous addition of hydrogen peroxide (H2O2),in situ generation of H2O2 by hydroxylamine, and nitric oxide (NO) generation by sodium nitroprusside treatment inD. discoideum were studied. The AD50 doses (concentration of the oxidants cusing 50% of the cells to die) after 24 h of treatment were found to be 0.45 mM, 4 mM and 1 mM, respectively. Studies on enzymatic antioxidant status ofD. discoideum when subjected to oxidative stress, NO and nutrient stress reveal that superoxide dismutase and catalase were unchanged; a significant induction of glutathione peroxidase was observed. Interestingly, oxidative stress-induced lipid membrane peroxidative damage could not be detected. The results shed light on the biochemical basis for the observed high resistance to oxidative stress inD. discoideum.  相似文献   

16.
It has been proposed that the relative scarcity of Staphylococcus aureus and Streptococcus pneumoniae cocolonization in the nasopharynxes of humans can be attributed to hydrogen peroxide-mediated interference competition. Previously it has been shown in vitro that H2O2 produced by S. pneumoniae is bactericidal to S. aureus. To ascertain whether H2O2 has this inhibitory effect in the nasal passages of neonatal rats, colonization experiments were performed with S. aureus and S. pneumoniae. The results of these experiments with neonatal rats are inconsistent with the hypothesis that hydrogen peroxide-mediated killing of S. aureus by S. pneumoniae is responsible for the relative scarcity of cocolonization by these bacteria. In mixed-inoculum colonization experiments and experiments where S. aureus invaded the nasopharynxes of rats with established S. pneumoniae populations, the density of S. aureus did not differ whether the S. pneumoniae strain was H2O2 secreting or non-H2O2 secreting (SpxB). Moreover, the advantage of catalase production by S. aureus in competition with a non-catalase-producing strain (KatA) during nasal colonization was no greater in the presence of H2O2-producing S. pneumoniae than in the presence of non-H2O2-producing S. pneumoniae.  相似文献   

17.
Metformin (N,N-dimethylbiguanide), buformin (1-butylbiguanide), and phenformin (1-phenethylbiguanide) are anti-diabetic biguanide drugs, expected to having anti-cancer effect. The mechanism of anti-cancer effect by these drugs is not completely understood. In this study, we demonstrated that these drugs dramatically enhanced oxidative DNA damage under oxidative condition. Metformin, buformin, and phenformin enhanced generation of 8-oxo-7,8-dihydro-2’-deoxyguanosine (8-oxodG) in isolated DNA reacted with hydrogen peroxide (H2O2) and Cu(II), although these drugs did not form 8-oxodG in the absence of H2O2 or Cu(II). An electron paramagnetic resonance (EPR) study, utilizing alpha-(4-pyridyl-1-oxide)-N-tert-butylnitrone and 3,3,5,5-tetramethyl-1-pyrroline-N-oxide as spin trapping agents, showed that nitrogen-centered radicals were generated from biguanides in the presence of Cu(II) and H2O2, and that these radicals were decreased by the addition of DNA. These results suggest that biguanides enhance Cu(II)/H2O2-mediated 8-oxodG generation via nitrogen-centered radical formation. The enhancing effect on oxidative DNA damage may play a role on anti-cancer activity.  相似文献   

18.
Streptococcus pneumoniae, a Gram-positive bacterium, is a major cause of invasive infection-related diseases such as pneumonia and sepsis. In blood, erythrocytes are considered to be an important factor for bacterial growth, as they contain abundant nutrients. However, the relationship between S. pneumoniae and erythrocytes remains unclear. We analyzed interactions between S. pneumoniae and erythrocytes, and found that iron ion present in human erythrocytes supported the growth of Staphylococcus aureus, another major Gram-positive sepsis pathogen, while it partially inhibited pneumococcal growth by generating free radicals. S. pneumoniae cells incubated with human erythrocytes or blood were subjected to scanning electron and confocal fluorescence microscopic analyses, which showed that the bacterial cells adhered to and invaded human erythrocytes. In addition, S. pneumoniae cells were found associated with human erythrocytes in cultures of blood from patients with an invasive pneumococcal infection. Erythrocyte invasion assays indicated that LPXTG motif-containing pneumococcal proteins, erythrocyte lipid rafts, and erythrocyte actin remodeling are all involved in the invasion mechanism. In a neutrophil killing assay, the viability of S. pneumoniae co-incubated with erythrocytes was higher than that without erythrocytes. Also, H2O2 killing of S. pneumoniae was nearly completely ineffective in the presence of erythrocytes. These results indicate that even when S. pneumoniae organisms are partially killed by iron ion-induced free radicals, they can still invade erythrocytes. Furthermore, in the presence of erythrocytes, S. pneumoniae can more effectively evade antibiotics, neutrophil phagocytosis, and H2O2 killing.  相似文献   

19.
Cystathionine β‐synthase (CBS) catalyzes the formation of l ‐cystathionine from l ‐serine and l ‐homocysteine. The resulting l ‐cystathionine is decomposed into l ‐cysteine, ammonia, and α‐ketobutylic acid by cystathionine γ‐lyase (CGL). This reverse transsulfuration pathway, which is catalyzed by both enzymes, mainly occurs in eukaryotic cells. The eukaryotic CBS and CGL have recently been recognized as major physiological enzymes for the generation of hydrogen sulfide (H2S). In some bacteria, including the plant‐derived lactic acid bacterium Lactobacillus plantarum, the CBS‐ and CGL‐encoding genes form a cluster in their genomes. Inactivation of these enzymes has been reported to suppress H2S production in bacteria; interestingly, it has been shown that H2S suppression increases their susceptibility to various antibiotics. In the present study, we characterized the enzymatic properties of the L. plantarum CBS, whose amino acid sequence displays a similarity with those of O‐acetyl‐l ‐serine sulfhydrylase (OASS) that catalyzes the generation of l ‐cysteine from O‐acetyl‐l ‐serine (l ‐OAS) and H2S. The L. plantarum CBS shows l ‐OAS‐ and l ‐cysteine‐dependent CBS activities together with OASS activity. Especially, it catalyzes the formation of H2S in the presence of l ‐cysteine and l ‐homocysteine, together with the formation of l ‐cystathionine. The high affinity toward l ‐cysteine as a first substrate and tendency to use l ‐homocysteine as a second substrate might be associated with its enzymatic ability to generate H2S. Crystallographic and mutational analyses of CBS indicate that the Ala70 and Glu223 residues at the substrate binding pocket are important for the H2S‐generating activity.  相似文献   

20.
Nobiletin (3′,4′,5,6,7,8‐hexamethoxyflavone), a dietary polymethoxylated flavonoid found in Citrus fruits, has been reported to have antioxidant effect. However, the effect of nobiletin on human retinal pigment epithelium (RPE) cells induced by hydrogen peroxide (H2O2) is still unclear. Therefore, we investigated the protective effect of nobiletin against H2O2‐induced cell death in RPE cells. Our results demonstrated that nobiletin significantly increased cell viability from oxidative stress. Nobiletin inhibited H2O2‐induced ROS production and caspase‐3/7 activity in ARPE‐19 cells. Furthermore, nobiletin significantly increased Akt phosphorylation in ARPE‐19 cells exposed to H2O2. Meanwhile, LY294002, an inhibitor of PI3K/Akt, abolished the protective effect of nobiletin against H2O2‐induced decreased cell viability and increased caspase‐3/7 activity in ARPE‐19 cells. In summary, these data show that nobiletin protects RPE cells against oxidative stress through activation of the Akt‐signaling pathway. Thus, nobiletin should be an oxidant that attenuates the development of age‐related macular degeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号