首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Transgenic chilli pepper (Capsicum annuum L.) plants tolerant to salinity stress were produced by introducing the wheat Na+/H+ antiporter gene (TaNHX2) via Agrobacterium-mediated transformation. Cotyledonary explants were infected with Agrobacterium tumefaciens strain LBA4404 harboring a binary vector pBin438 that contains a wheat antiporter (TaNHX2) gene driven by the double CaMV 35S promoter and NPT II gene as a selectable marker. PCR and semiquantitative RT-PCR analysis confirmed that the TaNHX2 gene had been integrated and expressed in the T1 generation of transgenic pepper plants as compared to the non-transformed plants. Southern blot analysis further verified the integration and presence of TaNHX2 gene in the genome of chilli pepper plants. Biochemical assays of these transgenic plants revealed enhanced levels of proline, chlorophyll, superoxide dismutase, ascorbate peroxidase, relative water content, and reduced levels of hydrogen peroxide (H2O2), malondialdehyde compared to wild-type plants under salt stress conditions. The present investigation clearly showed that overexpression of the TaNHX2 gene enhanced salt stress tolerance in transgenic chilli pepper plants.  相似文献   

2.

Introduction

Citrus canker, a disease caused by Xanthomonas axonopodis pv. citri (Xac) bacteria, has been responsible for extensive economic losses in citriculture. In this work, we report the metabolic responses of citrus plants during disease development. This information can be useful for understanding the natural mechanism of plant defense beyond helping design new varieties and/or genetically modified genotypes for tolerance/resistance against citrus canker.

Objectives

To understand how primary metabolism is affected in two sweet orange genotypes during citrus canker development.

Methods

1H NMR spectroscopy together with chemometrics was used to evaluate the metabolic changes caused by Xac infection at various time points (days 4, 12 and 20) in Citrus sinensis L. Osbeck leaves from non-transgenic and transgenic plants expressing the antibacterial peptide sarcotoxin.

Results

The results revealed a high level of metabolic similarity between the studied genotypes without Xac infection. However, after Xac infection, the plants responded differently to disease development. The non-transgenic genotype showed altered early precursors of some secondary metabolites (tryptophan, tyrosine and putrescine) in addition to signaling metabolites of biotic stress (putrescine and dimethylamine), and the drastic reduction of gluconeogenesis was the overall metabolic cost for defense. The transgenic genotype suffered late metabolic changes due to the protective stoichiometric role of sarcotoxin. In addition, the oxidative stress response was more balanced in transgenic than in non-transgenic plants.

Conclusion

An NMR-based metabolomic approach was useful for understanding plant–pathogen interactions in citrus canker. Our findings provide valuable preliminary insights into different stages of citrus canker development.
  相似文献   

3.
Soft rot caused by Pectobacterium carotovorum subsp. carotovorum (Pcc) is a serious disease in Chinese cabbage (Brassica rapa L. subsp. pekinensis). To reduce the severity of soft rot symptoms in Chinese cabbage, Arabidopsis AtWRKY75 was introduced into Chinese cabbage by Agrobacterium-mediated transformation, which was previously reported to reduce susceptibility to Pcc infection in Arabidopsis. Three independent Chinese cabbage transgenic lines carrying AtWRKY75 were obtained. The growth phenotypes of AtWRKY75 overexpression (OE) lines were normal. Bacterial soft rot symptoms and Pcc growth were reduced in AtWRKY75-OE Chinese cabbage lines compared with WT plants. In contrast, overexpression of AtWRKY75 had no effect on infection with a hemibiotrophic pathogen, Xanthomonas campestris pv. campestris (Xcc) causing black rot disease. These results are consistent with those observed in the transgenic Arabidopsis. We found that AtWRKY75 activated a subset of Chinese cabbage genes related to defense against Pcc infection, such as Meri15B, BrPR4, and BrPDF1.2 (but not BrPGIP2). Moreover, overexpression of AtWRKY75 caused H2O2 production and activation of H2O2 scavenge enzyme genes, suggesting that H2O2 played a role in AtWRKY75-mediated resistance to Pcc. Together, these results demonstrated that AtWRKY75 decreased the severity of Pcc-caused bacterial soft rot and activated a subset of Pcc infection defense-related genes in Chinese cabbage similar to in Arabidopsis. It is suggested that AtWRKY75 is a candidate gene for use in crop improvement, because it results in reduced severity of disease symptoms without concurrent growth abnormalities.  相似文献   

4.
Alpha-dioxygenases (α-DOX) catalyzing the primary oxygenation of fatty acids to oxylipins were recently found in plants. Here, the biological roles of the pepper α-DOX (Ca-DOX) gene, which is strongly induced during non-host pathogen infection in chili pepper, were examined. Virus-induced gene silencing demonstrated that down-regulation of Ca-DOX enhanced susceptibility to bacterial pathogens and suppressed the hypersensitive response via the suppression of pathogenesis-related genes such as PR4, proteinase inhibitor II and lipid transfer protein (PR14). Ca-DOX-silenced pepper plants also exhibited more retarded growth with lower epidermal cell numbers and reduced cell wall thickness than control plants. To better understand regulation of Ca-DOX, transgenic Arabidopsis plants harboring the β-glucuronidase (GUS) reporter gene driven from a putative Ca-DOX promoter were generated. GUS expression was significantly induced upon avirulent pathogen infection in transgenic Arabidopsis leaves, whereas GUS induction was relatively weak upon virulent pathogen treatment. After treatment with plant hormones, early and strong GUS expression was seen after treatment of salicylic acid, whereas ethylene and methyl jasmonate treatments produced relatively weak and late GUS signals. These results will enable us to further understand the role of α-DOX, which is important in lipid metabolism, defense responses, and growth development in plants.  相似文献   

5.
6.

Main conclusion

Resistance against anthracnose fungi was enhanced in transgenic pepper plants that accumulated high levels of a carboxylesterase, PepEST in anthracnose-susceptible fruits, with a concurrent induction of antioxidant enzymes and SA-dependent PR proteins. A pepper esterase gene (PepEST) is highly expressed during the incompatible interaction between ripe fruits of pepper (Capsicum annuum L.) and a hemibiotrophic anthracnose fungus (Colletotrichum gloeosporioides). In this study, we found that exogenous application of recombinant PepEST protein on the surface of the unripe pepper fruits led to a potentiated state for disease resistance in the fruits, including generation of hydrogen peroxide and expression of pathogenesis-related (PR) genes that encode mostly small proteins with antimicrobial activity. To elucidate the role of PepEST in plant defense, we further developed transgenic pepper plants overexpressing PepEST under the control of CaMV 35S promoter. Molecular analysis confirmed the establishment of three independent transgenic lines carrying single copy of transgenes. The level of PepEST protein was estimated to be approximately 0.002 % of total soluble protein in transgenic fruits. In response to the anthracnose fungus, the transgenic fruits displayed higher expression of PR genes, PR3, PR5, PR10, and PepThi, than non-transgenic control fruits did. Moreover, immunolocalization results showed concurrent localization of ascorbate peroxidase (APX) and PR3 proteins, along with the PepEST protein, in the infected region of transgenic fruits. Disease rate analysis revealed significantly low occurrence of anthracnose disease in the transgenic fruits, approximately 30 % of that in non-transgenic fruits. Furthermore, the transgenic plants also exhibited resistance against C. acutatum and C. coccodes. Collectively, our results suggest that overexpression of PepEST in pepper confers enhanced resistance against the anthracnose fungi by activating the defense signaling pathways.
  相似文献   

7.
8.

Background

Plant natriuretic peptides (PNPs) are systemically mobile molecules that regulate homeostasis at nanomolar concentrations. PNPs are up-regulated under conditions of osmotic stress and PNP-dependent processes include changes in ion transport and increases of H2O uptake into protoplasts and whole tissue.

Presentation of the hypothesis

The bacterial citrus pathogen Xanthomonas axonopodis pv. Citri str. 306 contains a gene encoding a PNP-like protein. We hypothesise that this bacterial protein can alter plant cell homeostasis and thus is likely to represent an example of molecular mimicry that enables the pathogen to manipulate plant responses in order to bring about conditions favourable to the pathogen such as the induced plant tissue hyper-hydration seen in the wet edged lesions associated with Xanthomonas axonopodis infection.

Testing the hypothesis

We found a Xanthomonas axonopodis PNP-like protein that shares significant sequence similarity and identical domain organisation with PNPs. We also observed a significant excess of conserved residues between the two proteins within the domain previously identified as being sufficient to induce biological activity. Structural modelling predicts identical six stranded double-psi β barrel folds for both proteins thus supporting the hypothesis of similar modes of action. No significant similarity between the Xanthomonas axonopodis protein and other bacterial proteins from GenBank was found. Sequence similarity of the Xanthomonas axonopodis PNP-like protein with the Arabidopsis thaliana PNP (AtPNP-A), shared domain organisation and incongruent phylogeny suggest that the PNP-gene may have been acquired by the bacteria in an ancient lateral gene transfer event. Finally, activity of a recombinant Xanthomonas axonopodis protein in plant tissue and changes in symptoms induced by a Xanthomonas axonopodis mutant with a knocked-out PNP-like gene will be experimental proof of molecular mimicry.

Implication of the hypothesis

If the hypothesis is true, it could at least in part explain why the citrus pathogen Xanthomonas campestris that does not contain a PNP-like gene produces dry corky lesions while the closely related Xanthomonas axonopodis forms lesions with wet edges. It also suggests that genes typically found in the host, horizontally transferred or heterologous, can help to explain aspects of the physiology of the host-pathogen interactions.
  相似文献   

9.
Diaphorina citri (Kuwayama) is a global pest of citrus that transmits the bacteria associated with the disease, Huanglongbing. Entomopathogenic fungi and the parasitoid Tamarixia radiata (Waterston) are important biological control agents of this pest and likely to interact in D. citri populations. As a basis for interaction studies, we determined the susceptibility of nymphs and adults of D. citri and adults of the parasitoid T. radiata to six fungal isolates from the species Beauveria bassiana s.l. (Bals.-Criv.) Vuill. (isolates B1 and B3), Metarhizium anisopliae s.s. (Metsch.) (Ma129 and Ma65) and Isaria fumosorosea Wize (I2 and Pae). We conducted experiments evaluating infection levels in all three insect groups following inoculation with a series of conidial concentrations (1 × 104–1 × 108 conidia mL?1). Results showed that D. citri nymphs and T. radiata were more susceptible to fungal isolates than D. citri adults. Overall, B. bassiana and M. anisopliae isolates caused the greatest infection compared with I. fumosorosea isolates in all three groups of insects. Isolates B1 (B. bassiana) and Ma129 (M. anisopliae) infected a greater proportion of adults and nymphs of D. citri, respectively. Both isolates of B. bassiana caused greater infection in T. radiata compared with isolates of the other fungal species. We propose that isolates B1 and Ma129 are the strongest candidates for control of D. citri. Our results represent the first report of entomopathogenic fungi infecting T. radiata, and the basis for future studies to design a biological control programme that uses both agents more efficiently against D. citri populations.  相似文献   

10.

Key message

CaVIL1 is a homolog of VIL1, a regulator of vernalization response in Arabidopsis and acts as a flowering promoter in pepper which does not respond to vernalization and photoperiod.

Abstract

As part of our goal to study the genetic and molecular basis of transition to flowering in pepper, we isolated the late-flowering mutant E-2698. Aside from late flowering, multiple pleiotropic alterations of the shoot structure, such as enlarged and distorted leaves, weak apical dominance, and reduced angle of the lateral branches were observed, indicating a broad role for the mutated gene in pepper development. Genetic mapping and sequence analyses revealed that the disrupted gene in E-2698 is the pepper homolog of VERNALIZATION INSENSITIVE 3-LIKE 1 (VIL1) that acts as a regulator of vernalization in Arabidopsis through chromatin modification. The pepper gene, CaVIL1, contains a plant homeodomain motif associated with chromatin modification and a VERNALIZATION INSENSITIVE 3-interacting domain that is truncated in E-2698 and in two other allelic mutants. Because pepper flowering does not respond to vernalization, we postulate that CaVIL1 regulates flowering time via chromatin modification of unknown targets. Expression analysis indicated that CaVIL1 activates the flowering promoter CaFLOWERING LOCUS T and represses the flowering repressor CaAPETALA2. Furthermore, CaVIL1 represses several genes from the FLOWERING LOCUS C (FLC)-LIKE clade that are clustered together in the pepper genome. This indicates their possible involvement in flowering regulation in this species. Our results show that CaVIL1 is a major regulator of flowering and interacts with other flowering promoters and repressors, as well as with FLC-LIKE genes whose function in flowering regulation is not yet known in pepper.
  相似文献   

11.
12.
13.

Key message

Next-generation sequencing enabled a fast discovery of QTLs controlling CMV resistant in pepper. The gene CA02g19570 as a possible candidate gene of qCmr2.1 was identified for resistance to CMV in pepper.

Abstract

Cucumber mosaic virus (CMV) is one of the most important viruses infecting pepper, but the genetic basis of CMV resistance in pepper is elusive. In this study, we identified a candidate gene for CMV resistance QTL, qCmr2.1 through SLAF-seq. Segregation analysis in F2, BC1 and F2:3 populations derived from a cross between two inbred lines ‘PBC688’ (CMV-resistant) and ‘G29’ (CMV-susceptible) suggested quantitative inheritance of resistance to CMV in pepper. Genome-wide comparison of SNP profiles between the CMV-resistant and CMV-susceptible bulks constructed from an F2 population identified two QTLs, designated as qCmr2.1 on chromosome 2 and qCmr11.1 on chromosome 11 for resistance to CMV in PBC688, which were confirmed by InDel marker-based classical QTL mapping in the F2 population. As a major QTL, joint SLAF-seq and traditional QTL analysis delimited qCmr2.1 to a 330 kb genomic region. Two pepper genes, CA02g19570 and CA02g19600, were identified in this region, which are homologous with the genes LOC104113703, LOC104248995, LOC102603934 and LOC101248357, which were predicted to encode N-like protein associated with TMV-resistant in Solanum crops. Quantitative RT-PCR revealed higher expression levels of CA02g19570 in CMV resistance genotypes. The CA02g19600 did not exhibit obvious regularity in expression patterns. Higher relative expression levels of CA02g19570 in PBC688 and F1 were compared with those in G29 during days after inoculation. These results provide support for CA02g19570 as a possible candidate gene of qCmr2.1 for resistance to CMV in pepper.
  相似文献   

14.
Natural root-knot nematode resistance genes are unique resources to control this major pest in pepper (Capsicum annuum). Although four genes (Me1, Me3, Me7 and N) conferring broad-spectrum resistance were mapped to a cluster in a 28-cm interval on chromosome P9, limited markers targeting this region were available. In the present study, the Me-gene cluster was structurally annotated for resistance genes to develop markers targeting the N gene. As a result, the Me-gene cluster (4.07 Mb in size) was found to contain three resistance gene hotspots. In addition, a SSR maker tightly linked to the N gene (0.8 cM away) was developed for marker-assisted selection in pepper.  相似文献   

15.
The chickweed (Stellaria media L.) pro-SmAMP2 gene encodes the hevein-like peptides that have in vitro antimicrobial activity against certain harmful microorganisms. These peptides play an important role in protecting the chickweed plants from infection, and the pro-SmAMP2 gene was previously used to protect transgenic tobacco and Arabidopsis plants from phytopathogens. In this study, the pro-SmAMP2 gene under control of viral CaMV35S promoter or under control of its own pro-SmAMP2 promoter was transformed into cultivated potato plants of two cultivars, differing in the resistance to Alternaria: Yubiley Zhukova (resistant) and Skoroplodny (susceptible). With the help of quantitative real-time PCR, it was demonstrated that transgenic potato plants expressed the pro-SmAMP2 gene under control of both promoters at the level comparable to or exceeding the level of the potato actin gene. Assessment of the immune status of the transformants demonstrated that expression of antimicrobial peptide pro-SmAMP2 gene was able to increase the resistance to a complex of Alternaria sp. and Fusarium sp. phytopathogens only in potato plants of the Yubiley Zhukova cultivar. The possible role of the pro-SmAMP2 products in protecting potatoes from Alternaria sp. and Fusarium sp. is discussed.  相似文献   

16.
This study aimed to isolate acaricidal active fractions from acetone extract of Aloe vera L. and investigate the toxicity of these fractions against Tetranychus cinnabarinus (T. cinnabarinus) and Panonychus citri (P. citri). Acetone extract of A. vera L. was isolated by immersing in acetone for 72 h, and diverse fractions were fractionated by column chromatography. The acaricidal activity of each fractions was evaluated by corrected mortality of T. cinnabarinus through slide-dip bioassay. The 8th and 13th fractions of acetone extract with good acaricidal activity were indentified by LC/MS, and the toxicity of these two fractions to T. cinnabarinus and P. citri was identified by regression analysis. Acetone extract of A. vera L. exhibited obvious acaricidal activity, from which a total of 18 fractions were isolated. The 8th and 13th fractions with strong acaricidal activity against T. cinnabarinus were identified to be 3-O-alpha-d-mannopyranosyl-d-mannopyranose (OAMM) and aloe emodin. When compared with spirodiclofen, both OAMM and aloe emodin exhibited higher toxicity to T. cinnabarinus, while only OAMM exhibited a higher toxicity to P. citri (P < 0.05). OAMM and aloe emodin isolated from acetone extract of A. vera L. exhibited obvious acaricidal activities against T. cinnabarinus and P. citri.  相似文献   

17.

Background

Xanthomonas campestris pathovar campestris (Xcc) is the causal agent of black rot disease of crucifers worldwide. The molecular genetic diversity and host specificity of Xcc are poorly understood.

Results

We constructed a microarray based on the complete genome sequence of Xcc strain 8004 and investigated the genetic diversity and host specificity of Xcc by array-based comparative genome hybridization analyses of 18 virulent strains. The results demonstrate that a genetic core comprising 3,405 of the 4,186 coding sequences (CDSs) spotted on the array are conserved and a flexible gene pool with 730 CDSs is absent/highly divergent (AHD). The results also revealed that 258 of the 304 proved/presumed pathogenicity genes are conserved and 46 are AHD. The conserved pathogenicity genes include mainly the genes involved in type I, II and III secretion systems, the quorum sensing system, extracellular enzymes and polysaccharide production, as well as many other proved pathogenicity genes, while the AHD CDSs contain the genes encoding type IV secretion system (T4SS) and type III-effectors. A Xcc T4SS-deletion mutant displayed the same virulence as wild type. Furthermore, three avirulence genes (avrXccC, avrXccE1 and avrBs1) were identified. avrXccC and avrXccE1 conferred avirulence on the hosts mustard cultivar Guangtou and Chinese cabbage cultivar Zhongbai-83, respectively, and avrBs1 conferred hypersensitive response on the nonhost pepper ECW10R.

Conclusion

About 80% of the Xcc CDSs, including 258 proved/presumed pathogenicity genes, is conserved in different strains. Xcc T4SS is not involved in pathogenicity. An efficient strategy to identify avr genes determining host specificity from the AHD genes was developed.  相似文献   

18.
We investigated feeding and oviposition behavior of the Asian citrus psyllid, Diaphorina citri, when exposed to the foraging trails of the convergens ladybird beetle, Hippodamia convergens. Diaphorina citri females feeding on citrus leaves directly exposed to the ladybird adults or treated with trail extract excreted significantly less honeydew droplets than controls. The trail chemicals of the ladybird beetle also decreased oviposition by D. citri females on citrus. In a no-choice experiment, D. citri females preferred to oviposit on control flush and plants than those with ladybird trail-extract treatments. In two-choice experiments, 68.0% of D. citri released into cages exhibited strong selection preference for settling and eventual oviposition on control plants than plants treated with ladybird trail extract. Diaphorina citri eggs were found on all new leaf flush of control plants, whereas only 29.5% of flush on treatment plants were selected for oviposition. The trail chemical deposited by the convergens ladybird beetle elicits repellency of D. citri feeding and oviposition. Therefore, the trail chemicals my contain components that could be useful for behavior-based management of D. citri and HLB disease by reducing psyllid feeding and oviposition.  相似文献   

19.
The Asian citrus psyllid Diaphorina citri Kuwayama (Hemiptera: Liviidae) is a damaging pest of citrus globally and has recently been detected in Tanzania. Although direct damage by the pest is seldom of economic importance, the insect is more notorious for its ability to vector the fastidious phloem-limited bacterium Candidatus Liberibacter asiaticus (CLas), the putative causal bacterium of Huanglongbing or Asian citrus greening disease. For many years, Trioza erytreae (Del Guercio) (Hemiptera: Triozidae) was known to be the main vector of the African citrus greening disease caused by Candidatus Liberibacter africanus (CLaf), but the recent arrival of D. citri on the continent adds to the dynamics of infection and spread of both diseases on mainland Africa. Following the recent report of the presence of D. citri in Tanzania, an additional delimiting survey was carried out in the region, focusing on Kenya, mainland Tanzania and Zanzibar to detect the presence and ascertain the extent of spread of D. citri. We employed molecular tools based on the use of DNA barcoding to confirm the identity of D. citri. In addition to D. citri, the occurrence of T. erytreae in the same sampling locations is also reported. Adults and nymphs of either D. citri or T. erytreae were collected from citrus at many of the surveyed sites ranging from 19 to 668 m above sea level (masl) in Tanzania, 20–1666 masl in Kenya, and 42–48 masl in Zanzibar. Diaphorina citri was sympatric with T. erytreae at the mid to higher elevations of 1375–1666 masl and no T. erytreae or its open-gall symptoms were detected below 523 masl. Sequences obtained were queried via BLAST and all linked to D. citri of different accession numbers already available on GenBank. This is the first report of the presence of D. citri in Kenya and Zanzibar. The potential implication of the detection and spread of the two pathogens, CLaf and CLas to the citrus industry in East Africa and movement of suitable host plants is discussed.  相似文献   

20.
Flowering time in members of the Solanaceae plant family, such as pepper (Capsicum spp.) and tomato (Solanum lycopersicum), is an important agronomic trait for controlling shoot architecture and improving yield. To investigate the feasibility of flowering time regulation in tomato, an RNA-binding protein (RBP) encoding gene homologous to human Nucleolar protein interacting with the forkhead-associated (FHA) domain of pKI-67 (NIFK), CaRBP, was isolated from hot pepper. The function of CaRBP was determined in transgenic tomato. The deduced amino acid sequence includes an RNA recognition motif (RRM) and showed most similarity to the RRM present in a putative RBP encoded by human NIFK. CaRBP was highly expressed in the vegetative and reproductive tissues, such as leaves and fruits, respectively. Subcellular localization analysis indicated that CaRBP is a nucleolar protein. Heterologous expression of CaRBP under 35S promoter in tomato plants induced severe alteration of flowering with additional defects of vegetative organs. This floral retardation was associated with the alteration of SFT/SP3D and SlSOC1s as floral integrators. Furthermore, CaRBP reduces the expression levels of SlCOLs/TCOLs via changes in the expression of SlCDF3, SlFBHs, and SlFKF1s. This indicates a repressive effect of CaRBP on the regulation of flowering time in tomato. Overall, these results suggest that alteration in CaRBP expression levels may provide an effective means of controlling flowering time in day-neutral Solanaceae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号