首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Ocean acidification (OA) is a reduction in oceanic pH due to increased absorption of anthropogenically produced CO2. This change alters the seawater concentrations of inorganic carbon species that are utilized by macroalgae for photosynthesis and calcification: CO2 and HCO3? increase; CO32? decreases. Two common methods of experimentally reducing seawater pH differentially alter other aspects of carbonate chemistry: the addition of CO2 gas mimics changes predicted due to OA, while the addition of HCl results in a comparatively lower [HCO3?]. We measured the short‐term photosynthetic responses of five macroalgal species with various carbon‐use strategies in one of three seawater pH treatments: pH 7.5 lowered by bubbling CO2 gas, pH 7.5 lowered by HCl, and ambient pH 7.9. There was no difference in photosynthetic rates between the CO2, HCl, or pH 7.9 treatments for any of the species examined. However, the ability of macroalgae to raise the pH of the surrounding seawater through carbon uptake was greatest in the pH 7.5 treatments. Modeling of pH change due to carbon assimilation indicated that macroalgal species that could utilize HCO3? increased their use of CO2 in the pH 7.5 treatments compared to pH 7.9 treatments. Species only capable of using CO2 did so exclusively in all treatments. Although CO2 is not likely to be limiting for photosynthesis for the macroalgal species examined, the diffusive uptake of CO2 is less energetically expensive than active HCO3? uptake, and so HCO3?‐using macroalgae may benefit in future seawater with elevated CO2.  相似文献   

2.
Mechanisms for inorganic carbon acquisition in macroalgal assemblages today could indicate how coastal ecosystems will respond to predicted changes in ocean chemistry due to elevated carbon dioxide (CO2). We identified the proportion of noncalcifying macroalgae with particular carbon use strategies using the natural abundance of carbon isotopes and pH drift experiments in a kelp forest. We also identified all calcifying macroalgae in this system; these were the dominant component of the benthos (by % cover) at all depths and seasons while cover of noncalcareous macroalgae increased at shallower depths and during summer. All large canopy‐forming macroalgae had attributes suggestive of active uptake of inorganic carbon and the presence of a CO2 concentration mechanism (CCM). CCM species covered, on average, 15–45% of the benthos and were most common at shallow depths and during summer. There was a high level of variability in carbon isotope discrimination within CCM species, probably a result of energetic constraints on active carbon uptake in a low light environment. Over 50% of red noncalcifying species exhibited values below ?30‰ suggesting a reliance on diffusive CO2 uptake and no functional CCM. Non‐CCM macroalgae covered on average 0–8.9% of rock surfaces and were most common in deep, low light habitats. Elevated CO2 has the potential to influence competition between dominant coralline species (that will be negatively affected by increased CO2) and noncalcareous CCM macroalgae (neutral or positive effects) and relatively rare (on a % cover basis) non‐CCM species (positive effects). Responses of macroalgae to elevated CO2 will be strongly modified by light and any responses are likely to be different at times or locations where energy constrains photosynthesis. Increased growth and competitive ability of noncalcareous macroalgae alongside negative impacts of acidification on calcifying species could have major implications for the functioning of coastal reef systems at elevated CO2 concentrations.  相似文献   

3.
The effects of external carbonic anhydrase (CA, E.C. 4.2.1.1) on HCO?3and CO2use under disequilibnum conditions were examined in 14 species of macroalgae. CO2 was added to the algae in synthetic seawater free from inorganic carbon and buffered to pH 8.7. This resulted in a transient O2 evolution, which was similar for most of the species tested: an initial rapid increase in the rate was followed by a gradual decrease, approaching a steady state within 10 min. The initial high rate of O2evolution was attributed to diffusive entry of CO2into the cells and the steady state to use of HCO?3. An enhancement of CO2diffusive entry was obtained with acetazolamide, an inhibitor of external CA activity. Using this enhancement, a variable was developed to quantify the degree to which CO2entry into the cell was prevented by the external CA. This variable, CA (%), was used as a measure of the external CA activity of the alga. Comparative measurements of the external CA activity using a potentiomtric method revealed that the new method was able to detect low levels of external CA activity, where the potentiometric method failed. These two different methods could be used together to increase the reliability of the measurements. The new method was useful for red and brown macroalgae and for those green macroalgae that lacked direct HCO3uptake. Thus prominent external CA activity was found for Valonia utricularis (green), Halopteris scoparia (brown), and Osmunda pinnatifida (red), where the potentiometric method failed, or nearly failed, to indicate any external CA activity. Direct uptake of HCO?3interfered with the new method and the degree of this interference was dependent on the magnitude of the uptake.  相似文献   

4.
Although seagrasses and marine macroalgae (macro‐autotrophs) play critical ecological roles in reef, lagoon, coastal and open‐water ecosystems, their response to ocean acidification (OA) and climate change is not well understood. In this review, we examine marine macro‐autotroph biochemistry and physiology relevant to their response to elevated dissolved inorganic carbon [DIC], carbon dioxide [CO2], and lower carbonate [CO32?] and pH. We also explore the effects of increasing temperature under climate change and the interactions of elevated temperature and [CO2]. Finally, recommendations are made for future research based on this synthesis. A literature review of >100 species revealed that marine macro‐autotroph photosynthesis is overwhelmingly C3 (≥ 85%) with most species capable of utilizing HCO3?; however, most are not saturated at current ocean [DIC]. These results, and the presence of CO2‐only users, lead us to conclude that photosynthetic and growth rates of marine macro‐autotrophs are likely to increase under elevated [CO2] similar to terrestrial C3 species. In the tropics, many species live close to their thermal limits and will have to up‐regulate stress‐response systems to tolerate sublethal temperature exposures with climate change, whereas elevated [CO2] effects on thermal acclimation are unknown. Fundamental linkages between elevated [CO2] and temperature on photorespiration, enzyme systems, carbohydrate production, and calcification dictate the need to consider these two parameters simultaneously. Relevant to calcifiers, elevated [CO2] lowers net calcification and this effect is amplified by high temperature. Although the mechanisms are not clear, OA likely disrupts diffusion and transport systems of H+ and DIC. These fluxes control micro‐environments that promote calcification over dissolution and may be more important than CaCO3 mineralogy in predicting macroalgal responses to OA. Calcareous macroalgae are highly vulnerable to OA, and it is likely that fleshy macroalgae will dominate in a higher CO2 ocean; therefore, it is critical to elucidate the research gaps identified in this review.  相似文献   

5.
CO2 uptake and transport in leaf mesophyll cells   总被引:4,自引:3,他引:1  
Abstract The acquisition of inorganic carbon for photosynthetic assimilation by leaf mesophyll cells and chloroplasts is discussed with particular reference to membrane permeation of CO2 and HCO?3. Experimental evidence indicates that at the apoplast pH normally experienced by leaf mesophyll cells (pH 6–7) CO2 is the principal species of inorganic carbon taken up. Uptake of HCO?3 may also occur under certain circumstances (i.e. pH 8.5), but its contribution to the net flux of inorganic carbon is small and HCO?3 uptake does not function as a CO2-concentrating mechanism. Similarly, CO2 rather than HCO?3 appears to be the species of inorganic carbon which permeates the chloroplast envelope. In contrast to many C3 aquatic plants and C4 plants, C3 terrestrial plants lack specialized mechanisms for the acquisition and transport of inorganic carbon from the intercellular environment to the site of photosynthetic carboxylation, but rely upon the diffusive uptake of CO2.  相似文献   

6.
Macroalgal-feeding fishes are considered to be a key functional group on coral reefs due to their role in preventing phase shifts from coral to macroalgal dominance, and potentially reversing the shift should it occur. However, assessments of macroalgal herbivory using bioassay experiments are primarily from systems with relatively high coral cover. This raises the question of whether continued functionality can be ensured in degraded systems. It is clearly important to determine whether the species that remove macroalgae on coral-dominated reefs will still be present and performing significant algal removal on macroalgal-dominated reefs. We compared the identity and effectiveness of macroalgal-feeding fishes on reefs in two conditions post-disturbance—those regenerating with high live coral cover (20–46 %) and those degrading with high macroalgal cover (57–82 %). Using filmed Sargassum bioassays, we found significantly different Sargassum biomass loss between the two conditions; mean assay weight loss due to herbivory was 27.9 ± 4.9 % on coral-dominated reefs and 2.2 ± 1.1 % on reefs with high macroalgal cover. However, once standardised for the availability of macroalgae on the reefs, the rates of removal were similar between the two reef conditions (4.8 ± 4.1 g m?2 h?1 on coral-dominated and 5.3 ± 2.1 g m?2 h?1 on macroalgal-dominated reefs). Interestingly, the Sargassum-assay consumer assemblages differed between reef conditions; nominally grazing herbivores, Siganus puelloides and Chlorurus sordidus, and the browser, Siganus sutor, dominated feeding on high coral cover reefs, whereas browsing herbivores, Naso elegans, Naso unicornis, and Leptoscarus vaigiensis, prevailed on macroalgal-dominated reefs. It appeared that macroalgal density in the surrounding habitat had a strong influence on the species driving the process of macroalgal removal. This suggests that although the function of macroalgal removal may continue, the species responsible may change with context, differing between systems that are regenerating versus degrading.  相似文献   

7.
While increasing atmospheric carbon dioxide (CO2) concentration alters global water chemistry (Ocean Acidification; OA), the degree of changes vary on local and regional spatial scales. Inshore fringing coral reefs of the Great Barrier Reef (GBR) are subjected to a variety of local pressures, and some sites may already be marginal habitats for corals. The spatial and temporal variation in directly measured parameters: Total Alkalinity (TA) and dissolved inorganic carbon (DIC) concentration, and derived parameters: partial pressure of CO2 (pCO2); pH and aragonite saturation state (Ωar) were measured at 14 inshore reefs over a two year period in the GBR region. Total Alkalinity varied between 2069 and 2364 µmol kg−1 and DIC concentrations ranged from 1846 to 2099 µmol kg−1. This resulted in pCO2 concentrations from 340 to 554 µatm, with higher values during the wet seasons and pCO2 on inshore reefs distinctly above atmospheric values. However, due to temperature effects, Ωar was not further reduced in the wet season. Aragonite saturation on inshore reefs was consistently lower and pCO2 higher than on GBR reefs further offshore. Thermodynamic effects contribute to this, and anthropogenic runoff may also contribute by altering productivity (P), respiration (R) and P/R ratios. Compared to surveys 18 and 30 years ago, pCO2 on GBR mid- and outer-shelf reefs has risen at the same rate as atmospheric values (∼1.7 µatm yr−1) over 30 years. By contrast, values on inshore reefs have increased at 2.5 to 3 times higher rates. Thus, pCO2 levels on inshore reefs have disproportionately increased compared to atmospheric levels. Our study suggests that inshore GBR reefs are more vulnerable to OA and have less buffering capacity compared to offshore reefs. This may be caused by anthropogenically induced trophic changes in the water column and benthos of inshore reefs subjected to land runoff.  相似文献   

8.
Photosynthesis of most seagrass species seems to be limited by present concentrations of dissolved inorganic carbon (DIC). Therefore, the ongoing increase in atmospheric CO2 could enhance seagrass photosynthesis and internal O2 supply, and potentially change species competition through differential responses to increasing CO2 availability among species. We used short‐term photosynthetic responses of nine seagrass species from the south‐west of Australia to test species‐specific responses to enhanced CO2 and changes in HCO3?. Net photosynthesis of all species except Zostera polychlamys were limited at pre‐industrial compared to saturating CO2 levels at light saturation, suggesting that enhanced CO2 availability will enhance seagrass performance. Seven out of the nine species were efficient HCO3? users through acidification of diffusive boundary layers, production of extracellular carbonic anhydrase, or uptake and internal conversion of HCO3?. Species responded differently to near saturating CO2 implying that increasing atmospheric CO2 may change competition among seagrass species if co‐occurring in mixed beds. Increasing CO2 availability also enhanced internal aeration in the one species assessed. We expect that future increases in atmospheric CO2 will have the strongest impact on seagrass recruits and sparsely vegetated beds, because densely vegetated seagrass beds are most often limited by light and not by inorganic carbon.  相似文献   

9.
Invasive species can transform ecological communities. Their profound effects may alter the sources and pathways of primary production. We investigated the effects of the reef forming polychaete Ficopomatus enigmaticus invasion on the biomass and distribution of estuarine macroalgae in a SW Atlantic coastal lagoon (Mar Chiquita, 37° 40′S, 57° 23′W, Argentina). Reefs built by this species serve as substrates for macroalgal development and furnish structures that modify physical and biological conditions for the surrounding benthos. We showed that (1) the red macroalga Polysiphonia subtilissima settles and grows almost exclusively on the surface of the reef, (2) the green macroalgae Cladophora sp. and Enteromorpha intestinalis are found almost exclusively in areas without reefs attached to mollusk shells and, (3) no macroalgae occur in the sediment between reefs. Manipulative experiments show that reefs provide a complex substrate for settlement and survival and therefore benefit red macroalga. These experiments also show that the invasive reef builder has negative indirect effects on green macroalgae by increasing grazing and probably by increased sedimentation between reefs. Via these direct and indirect effects, reefs change the relative biomass contribution of each macroalgal species to the overall production in the lagoon. Knowledge of these processes is important not only for predicting net effects on primary production but also because changes in macroalgal species composition may produce effects that cascade through the food web.  相似文献   

10.
Direct evaluation of macroalgal removal by herbivorous coral reef fishes   总被引:5,自引:5,他引:0  
Few studies have examined the relative functional impacts of individual herbivorous fish species on coral reef ecosystem processes in the Indo-Pacific. This study assessed the potential grazing impact of individual species within an inshore herbivorous reef fish assemblage on the central Great Barrier Reef (GBR), by determining which fish species were able to remove particular macroalgal species. Transplanted multiple-choice algal assays and remote stationary underwater digital video cameras were used to quantify the impact of local herbivorous reef fish species on 12 species of macroalgae. Macroalgal removal by the fishes was rapid. Within 3 h of exposure to herbivorous reef fishes there was significant evidence of intense grazing. After 12 h of exposure, 10 of the 12 macroalgal species had decreased to less than 15% of their original mass. Chlorodesmis fastigiata (Chlorophyta) and Galaxaura sp. (Rhodophyta) showed significantly less susceptibility to herbivorous reef fish grazing than all other macroalgae, even after 24 h exposure. Six herbivorous and/or nominally herbivorous reef fish species were identified as the dominant grazers of macroalgae: Siganus doliatus, Siganus canaliculatus, Chlorurus microrhinos, Hipposcarus longiceps, Scarus rivulatus and Pomacanthus sexstriatus. The siganid S. doliatus fed heavily on Hypnea sp., while S. canaliculatus fed intensively on Sargassum sp. Variation in macroalgal susceptibility was not clearly correlated with morphological and/or chemical defenses that have been previously suggested as deterrents against herbivory. Nevertheless, the results stress the potential importance of individual herbivorous reef fish species in removing macroalgae from coral reefs.  相似文献   

11.
Anthropogenic stressors can alter the structure and functioning of infaunal communities, which are key drivers of the carbon cycle in marine soft sediments. Nonetheless, the compounded effects of anthropogenic stressors on carbon fluxes in soft benthic systems remain largely unknown. Here, we investigated the cumulative effects of ocean acidification (OA) and hypoxia on the organic carbon fate in marine sediments, through a mesocosm experiment. Isotopically labelled macroalgal detritus (13C) was used as a tracer to assess carbon incorporation in faunal tissue and in sediments under different experimental conditions. In addition, labelled macroalgae (13C), previously exposed to elevated CO2, were also used to assess the organic carbon uptake by fauna and sediments, when both sources and consumers were exposed to elevated CO2. At elevated CO2, infauna increased the uptake of carbon, likely as compensatory response to the higher energetic costs faced under adverse environmental conditions. By contrast, there was no increase in carbon uptake by fauna exposed to both stressors in combination, indicating that even a short‐term hypoxic event may weaken the ability of marine invertebrates to withstand elevated CO2 conditions. In addition, both hypoxia and elevated CO2 increased organic carbon burial in the sediment, potentially affecting sediment biogeochemical processes. Since hypoxia and OA are predicted to increase in the face of climate change, our results suggest that local reduction of hypoxic events may mitigate the impacts of global climate change on marine soft‐sediment systems.  相似文献   

12.
Ocean acidification refugia of the Florida reef tract   总被引:1,自引:0,他引:1  
Ocean acidification (OA) is expected to reduce the calcification rates of marine organisms, yet we have little understanding of how OA will manifest within dynamic, real-world systems. Natural CO2, alkalinity, and salinity gradients can significantly alter local carbonate chemistry, and thereby create a range of susceptibility for different ecosystems to OA. As such, there is a need to characterize this natural variability of seawater carbonate chemistry, especially within coastal ecosystems. Since 2009, carbonate chemistry data have been collected on the Florida Reef Tract (FRT). During periods of heightened productivity, there is a net uptake of total CO2 (TCO2) which increases aragonite saturation state (Ωarag) values on inshore patch reefs of the upper FRT. These waters can exhibit greater Ωarag than what has been modeled for the tropical surface ocean during preindustrial times, with mean (± std. error) Ωarag-values in spring = 4.69 (±0.101). Conversely, Ωarag-values on offshore reefs generally represent oceanic carbonate chemistries consistent with present day tropical surface ocean conditions. This gradient is opposite from what has been reported for other reef environments. We hypothesize this pattern is caused by the photosynthetic uptake of TCO2 mainly by seagrasses and, to a lesser extent, macroalgae in the inshore waters of the FRT. These inshore reef habitats are therefore potential acidification refugia that are defined not only in a spatial sense, but also in time; coinciding with seasonal productivity dynamics. Coral reefs located within or immediately downstream of seagrass beds may find refuge from OA.  相似文献   

13.
Carbon uptake in the green macroalga Cladophora glomerata (L.) Kütz. from the brackish Baltic Sea was studied by recording changes in pH, alkalinity, and inorganic carbon concentration of the seawater medium during photosynthesis. The use of specific inhibitors identified three uptake mechanisms: 1) dehydration of HCO3 ? into CO2 by periplasmic carbonic anhydrase, followed by diffusion of CO2 into the cell; 2) direct uptake of HCO3 ? via a 4,4′‐diisothiocyanato‐stilbene‐2,2′‐disulfonate‐sensitive mechanism; and 3) uptake of inorganic carbon by the involvement of a vanadate‐sensitive P‐type H + ‐ATPase (proton pump). A decrease in the alkalinity of the seawater medium during carbon uptake, except when treated with vanadate, indicated a net uptake of the ionic species contributing to alkalinity (i.e. HCO3 ? , CO32 ? , and OH ? ) from the medium, where OH ? influx is equivalent to H + efflux. This would suggest that the proton pump is involved in HCO3 ? transport. We also show that the proton pump can be induced by carbon limitation. The inducibility of carbon uptake in C. glomerata may partly explain why this species is so successful in the upper littoral zone of the Baltic Sea. Usually, carbon limitation is not a problem in the upper littoral of the sea. However, it may occur frequently within dense Cladophora belts with high photosynthetic rates that create high pH and low carbon concentrations in the alga's microenvironment.  相似文献   

14.
Threats to coral reefs may be manifested through an increase in macroalgae. Across the globe, phase-shifts from coral to macroalgal dominance have been reported from the Caribbean, Indian and Pacific Oceans. While the Great Barrier Reef (GBR) is in relatively good condition, inshore reefs may exhibit over 50% macroalgal cover. However, our understanding of the processes preventing the macroalgal expansion remains uncertain. Using a remote video bioassay approach, this study quantified herbivory in three bays along the leeward margin of Orpheus Island. Despite significant with-in bay variation in herbivory there was no detectable statistical difference in the rates of herbivory among bays. Furthermore, of the 45 herbivore species recorded from the island, only three played a significant role in bioassay removal, Siganus canaliculatus, Siganus javus and Kyphosus vaigiensis, with only one species predominating in each bay. Reefs of the GBR may therefore be more vulnerable than previously thought, with the removal of macroalgae depending on just a few species, which exhibit considerable spatial variability in their feeding behaviour.  相似文献   

15.
Reviews suggest that that the biogeochemical threshold for sustained coral reef growth will be reached during this century due to ocean acidification caused by increased uptake of atmospheric CO2. Projections of ocean acidification, however, are based on air‐sea fluxes in the open ocean, and not for shallow‐water systems such as coral reefs. Like the open ocean, reef waters are subject to the chemical forcing of increasing atmospheric pCO2. However, for reefs with long water residence times, we illustrate that benthic carbon fluxes can drive spatial variation in pH, pCO2 and aragonite saturation state (Ωa) that can mask the effects of ocean acidification in some downstream habitats. We use a carbon flux model for photosynthesis, respiration, calcification and dissolution coupled with Lagrangian transport to examine how key groups of calcifiers (zooxanthellate corals) and primary producers (macroalgae) on coral reefs contribute to changes in the seawater carbonate system as a function of water residence time. Analyses based on flume data showed that the carbon fluxes of corals and macroalgae drive Ωain opposing directions. Areas dominated by corals elevate pCO2 and reduce Ωa, thereby compounding ocean acidification effects in downstream habitats, whereas algal beds draw CO2 down and elevate Ωa, potentially offsetting ocean acidification impacts at the local scale. Simulations for two CO2 scenarios (600 and 900 ppm CO2) suggested that a potential shift from coral to algal abundance under ocean acidification can lead to improved conditions for calcification in downstream habitats, depending on reef size, water residence time and circulation patterns. Although the carbon fluxes of benthic reef communities cannot significantly counter changes in carbon chemistry at the scale of oceans, they provide a significant mechanism of buffering ocean acidification impacts at the scale of habitat to reef.  相似文献   

16.
Mass spectromelry has been used to investigate the uptake of CO2 by two marine diatoms, Phaeodactylum tricornutum and Cyclotella sp. The time course of CO2 formation in the dark after addition of 100 mmol m?3 dissolved inorganic carbon (DIC) to cell suspensions showed that external carbonic anhydrase (CA) was not present in cells of P. tricornutum but was present in Cyclotella sp. In the absence of external CA, or when it was inhibited by 5 mmol m?3 acetazolamide, cells of both species preincubated with 100 mmol m?3 DIG rapidly depleted almost all of the free CO2 (3·2mmol m?31 at pH7·5) from the suspending medium within seconds of illumination and prior to the onset of steady-state photosynthesis. Addition of bovine CA quickly restored the HCO3?–CO2 equilibrium in the medium, indicating that the initial depletion of CO2 resulted from the selective uptake of CO2 rather than uptake of all DIG species. Transfer of cells to the dark caused a rapid increase in the CO2 concentration in the medium, largely as a result of the efflux of unfixed inorganic carbon from the cells. The measured CO2 uptake rates for both species accounted for 50% of the total DIG uptake at HCO3?–CO2 equilibrium, indicating that HCOHCO3? was also being taken up. These results indicate that both Phaeodactylum tricornutum and Cyclotella sp. have the capacity to transport CO2 actively against concentration and pH gradients.  相似文献   

17.
Macrocystis pyrifera is a widely distributed, highly productive, seaweed. It is known to use bicarbonate (HCO3?) from seawater in photosynthesis and the main mechanism of utilization is attributed to the external catalyzed dehydration of HCO3? by the surface‐bound enzyme carbonic anhydrase (CAext). Here, we examined other putative HCO3? uptake mechanisms in M. pyrifera under pHT 9.00 (HCO3?: CO2 = 940:1) and pHT 7.65 (HCO3?: CO2 = 51:1). Rates of photosynthesis, and internal CA (CAint) and CAext activity were measured following the application of AZ which inhibits CAext, and DIDS which inhibits a different HCO3? uptake system, via an anion exchange (AE) protein. We found that the main mechanism of HCO3? uptake by M. pyrifera is via an AE protein, regardless of the HCO3?: CO2 ratio, with CAext making little contribution. Inhibiting the AE protein led to a 55%–65% decrease in photosynthetic rates. Inhibiting both the AE protein and CAext at pHT 9.00 led to 80%–100% inhibition of photosynthesis, whereas at pHT 7.65, passive CO2 diffusion supported 33% of photosynthesis. CAint was active at pHT 7.65 and 9.00, and activity was always higher than CAext, because of its role in dehydrating HCO3? to supply CO2 to RuBisCO. Interestingly, the main mechanism of HCO3? uptake in M. pyrifera was different than that in other Laminariales studied (CAext‐catalyzed reaction) and we suggest that species‐specific knowledge of carbon uptake mechanisms is required in order to elucidate how seaweeds might respond to future changes in HCO3?:CO2 due to ocean acidification.  相似文献   

18.
Community metabolism and air-sea carbon dioxide (CO2) fluxes were investigated in July 1992 on a fringing reef at Moorea (French Polynesia). The benthic community was dominated by macroalgae (85% substratum cover) and comprised of Phaeophyceae Padina tenuis (Bory), Turbinaria ornata (Turner) J. Agardh, and Hydroclathrus clathratus Bory (Howe); Chlorophyta Halimeda incrassata f. ovata J. Agardh (Howe); and Ventricaria ventricosa J. Agardh (Olsen et West), as well as several Rhodophyta (Actinotrichia fragilis Forskál (Børgesen) and several species of encrusting coralline algae). Algal biomass was 171 g dry weight· m?2. Community gross production (Pg), respiration (R), and net calcification (G) were measured in an open-top enclosure. Pg and R were respectively 248 and 240 mmol Co2·m?2·d?1, and there was a slight net dissolution of CaCO3 (0.8 mmol · m?2·d?1). This site was a sink for atmospheric CO2 (10 ± 4 mmol CO2·m?2·d?1), and the analysis of data from the literature suggests that this is a general feature of algal-dominated reefs. Measurement of air-sea CO2 fluxes in open water close to the enclosure demonstrated that changes in small-scale hydrodynamics can lead to misleading conclusions. Net CO2 evasion to the atmosphere was measured on the fringing reef due to changes in the current pattern that drove water from the barrier reef (a C02 source) to the study site.  相似文献   

19.
Ulva lactuca, collected on the west coast of Sweden at the end of May, was able to utilize the HCO3 ? pool of seawater only through extracellular dehydration via carbonic anhydrase, followed by uptake of the CO2 formed. A decrease in the CO2 supply via this mechanism resulted in the gradual development of an additional method of HCO3 ? utilization, namely a direct uptake of HCO3 ? . Photosynthesis could then be supported by either a ‘HCO3 ? dehydration mechanism’ or a ‘HCO3 ? uptake mechanism’. Through selective inhibition of either of these mechanisms, the physiological properties of the other could be assessed. These properties suggest that the HCO3 ? uptake mechanism of U. lactuca is important under conditions when low concentrations of inorganic C, high pH and high external O2 concentrations would limit photosynthesis supported by the HCO3 ? dehydration mechanism. Such conditions may occur during intense irradiation of the alga in rockpools or in shallow bays with low rates of water exchange. The results are discussed in relation to a possible coupling between mechanisms for inorganic C acquisition and cell structure (or even morphology) of green macroalgae. They also illustrate some necessary precautions when using Michaelis–Menten kinetics for estimations of Vmax and K1/2 values.  相似文献   

20.
Inshore reefs of the Great Barrier Reef (GBR) are subject to episodic nutrient supply, mainly by flood events, whereas midshelf reefs have a more consistent low nutrient availability. Alkaline phosphatase activity (APA) enables macroalgae to increase their phosphorus (P) supply by using organic P. APA was high (~4.0 to 15.5 µmol PO43- g DW-1 h-1) in species colonising predominantly inshore reefs and low (<2 µmol PO43- g DW-1 h-1) in species with a cross-shelf distribution. However, APA values of GBR algae in this study were much lower than data reported from other coral reef systems. In experiments with two Sargassum species tissue P levels were correlated negatively, and N:P ratios were positively correlated with APA. High APA can compensate for a relative P-limitation of macroalgae in coral reef systems that are subject to significant N-inputs, such as the GBR inshore reefs. APA and other mechanisms to acquire a range of nutrient species allow inshore species to thrive in habitats with episodic nutrient supply. These species also are likely to benefit from an increased nutrient supply caused by human activity, which currently is a global problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号