首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 709 毫秒
1.
ABSTRACT. Loxodes reached peak abundance close to the oxic-anoxic boundary (O2 5% atm) in two lakes, in test tube cultures, and in glass chambers with horizontal O2 gradients. Vertical profiles of CO2, pH, sulfide, and Fe2+ in a lake were not closely related to Loxodes abundance. In a laboratory experiment, Loxodes followed a retreating source of O2 and was repelled by a high pO2. This behavior was sustained when cells simultaneously swam up or down gradients of both CO2 and pH. Aggregation of cells was abolished by KCN (10-4-10-6 M). Sodium azide (10-1-10-4 M) had no effect and 2,4-DNP sharpened the aggregation. Rotenone, Antimycin A, and HOQNO had no obvious effect. Cytochrome oxidase is probably the oxygen receptor. Loxodes striatus contained low activities of superoxide dismutase and catalase. Extracellular production of superoxide (O-2) and hydrogen peroxide (H2O2) were probably not responsible for the exclusion of Loxodes from water with a high pO2. Continuous exposure of Loxodes to oxygen at normal atmospheric pressure at 10°C led to 50% mortality in 10 days. Cells left free to swim in an oxygen gradient doubled their number in the same period. Light exacerbated the toxic effects of O2. Behavioral responses to the dissolved oxygen tension probably controlled the spatial distribution of Loxodes.  相似文献   

2.
Abstract Two denitrifying bacteria ( Pseudomonas chlororaphis and P. aureofaciens ) and a plant (barley, Hordeum vulgare ) were used to study the effect of O2 concentration on denitrification and NO3 uptake by roots under well-defined aeration conditions. Bacterial cells in the early stationary phase were kept in a chemostat vessel with vigorous stirring and thus a uniform O2 concentration in the solution. Both Pseudomonads lacked N2O reductase and so total denitrification could be directly measured as N2O production.
Denitrification decreased to 6–13% of the anaerobic rate at 0.01% O2 saturation (0.14 μM O2) and was totally inhibited at 0.04% O2 saturation (0.56 μM O2). In this well-mixed system denitrification was 10-times more oxygen sensitive than stated in earlier reports. Uptake of nitrate by plants was measured in the same system under light. The NO3 uptake rate decreased gradually from a maximum in 21% O2-saturated medium (air saturated) to zero at 1.6% O2 saturation (22.4 μM O2). Owing to the very different non-overlapping oxygen requirements of the two processes, direct competition for nitrate between plant roots and denitrifying bacteria cannot occur.  相似文献   

3.
Regulation of nitrate reductase (NR, EC 1.6.6.1) by oxygen concentration and light was studied in segments of oat ( Avena sativa L. cv. Suregrain) leaves, using the in vivo nitrate reductase assay. The activity of NR decreased after excision in either light or darkness; the addition of cycloheximide prevented this decrease. Treatments that increased tissue permeability (anoxia, Triton X-100) also increased NR activity. There was in general less NR activity in the light than in the dark and also less under aerobic (21–100% O2) than under anaerobic (0.3% O2) conditions. Treatments with antioxidants improved the activity in the light, but only at high O2 levels (21–100% O2).
The results suggest that NR may be regulated by inhibitory proteins synthesized in either light or darkness, by permeability changes and by light-induced oxidations that occur when O2 is present. Oxygen may control the activity by stimulating the synthesis of inhibitory proteins in the light and in the dark and by promoting oxidation of SH-groups in the light.  相似文献   

4.
Nitrogenase (N2ase; EC 1.18.6.1) activity (H2 evolution) and root respiration (CO2 evolution) were measured under either N2:O2 or Ar:O2 gas mixtures in intact nodulated roots from white clover ( Trifolium repens L.) plants grown either as spaced or as dense stands. The short-term nitrate (5 m M ) inhibition of N2-fixation was promoted by competition for light between clover shoots, which reduced CO2 net assimilation rate. Oxygen-diffusion permeability of the nodule declined during nitrate treatment but after nitrate removal from the liquid medium its recovery parallelled that of nitrogenase activity. Rhizosphere pO2 was increased from 20 to 80 kPa under N2:O2. A simple mono-exponential model, fitted to the nodule permeability response to pO2, indicated NO3 induced changes in minimum and maximum nodule O2-diffusion permeability. Peak H2 production rates at 80 kPa O2 and in Ar:O2 were close to the pre-decline rates at 20 kPa O2. At the end of the nitrate treatment, this O2-induced recovery in nitrogenase activity reached 71 and 82%; for clover plants from spaced and dense stands, respectively. The respective roles of oxygen diffusion and phloem supply for the short-term inhibition of nitrogenase activity in nitrate-treated clovers are discussed.  相似文献   

5.
The effects of short-term NaCl-salinity on nodules of soybean ( Glycine max L. cv. Kingsoy) were studied on hydroponically-grown plants. Both acetylene reducing activity (ARA) and nodule respiration (O2 uptake and CO2 evolution) were immediately inhibited, and the stimulation of them by rising the external partial pressure of O2 (pO2) was diminished by the application of 0.1 M NaCl in the nutrient solution. The permeability of the nodule to O2 diffusion, estimated by O2 consumption or CO2 evolution, was significantly lower in the stressed nodules than in the cootrol ones. The respiratory quotient of intact nodules and the ethanol production of excised nodules were increased by low pO2 and by salt stress. These data confirm that in salt-stressed soybean nodules, O2 availability is reduced and fermentative pathways are stimulated.  相似文献   

6.
Glycolate metabolism in cyanobacteria   总被引:2,自引:0,他引:2  
A comparative analysis of glycolate excretion in 11 cyanobacteria showed that 8 strains, although grown and assayed in air, excreted glycolate. The largest quantities were excreted by the filamentous strains Plectonema boryanum 73110 and Anabaena cylindrica (Lemm). The carbon lost by excretion was at most 9% of the net fixed carbon in air for heterocystous cyanobacteria but increased (up to 60%) in some strains under a high pO2 (0.03 kPa CO2 in pure O2). A. cylindrica excreted glycolate at a maximum level of 2 and 10 μmol (mg chl a )−1 h−1 in air and at high pO2, respectively. The excretion continued for several hours. Increases in light intensity and pO2 and a shift in pH from 7 to 9 increased the amount of glycolate excreted. A. cylindrica also showed the most O2-sensitive fixation of CO2. In vitro activity of phosphoglycolate phosphatase (EC 3.1.3.18) was found in all strains tested, with the highest activities noted for Gloeobacter violaceus 7.82 and Gloeothece 6909 and for young cultures of A. cylindrica . The lowest activities were found in Anabaena 7120 and Anacystis nidulans 625, strains excreting no or only minor quantities of glycolate.  相似文献   

7.
Plasma membrane ferric reductase activity was enhanced 5-fold under iron limitation in the unicellular green alga Chlorella kessleri Fott et Nováková. Furthermore, ferric reductase activity in iron-limited cells was approximately 50% higher in the light than in the dark. In contrast, iron uptake rates of iron-limited cells were unaffected by light versus dark treatments. Rates of iron uptake were much lower than rates of ferric reduction, averaging approximately 2% of the dark ferric reduction rate. Ferric reduction was associated with an increased rate of O2 consumption in both light and dark, the increase in the light being approximately 1.5 times as large as in the dark. The increased rate of O2 consumption could be decreased by half by the addition of catalase, indicating that H2O2 is the product of the O2 consumption and that the increased O2 consumption is nonrespiratory. The stimulation of O2 consumption was almost completely abolished by the addition of bathophenanthroline disulfonate, a strong chelator of Fe2 + . Anaerobic conditions or the presence of exogenous superoxide dismutase affected neither ferric reduction nor iron uptake. We suggest that the O2 consumption associated with ferric reductase activity resulted from superoxide formation from the aerobic oxidation of Fe2 + , which is the product of ferric reductase activity. At saturating concentrations of Fe3 + chelates, ferric reductase activity is much greater than the iron uptake rate, leading to rapid oxidation of Fe2 + and superoxide generation. Therefore, O2 consumption is not an integral part of the iron assimilation process.  相似文献   

8.
Photosynthetic oxygen evolution within Sesbania rostrata stem nodules   总被引:1,自引:0,他引:1  
The tropical wetland legume, Sesbania rostrata Brem. forms N2-fixing nodules along its stem and on its roots after infection by Azorhizobium caulinodans . The N2-fixing tissue is surrounded by a cortex of uninfected cells which, in the stem nodules (but not the root nodules), contain chloroplasts. The photosynthetic competence of these chloroplasts was assessed through a novel technique involving image analysis of chlorophyll a fluorescence. Calculation of the quantum efficiency of photosystem II (PS II) photochemistry from these images indicated that most of the chloroplasts with potential for non-cyclic photosynthetic electron transport were concentrated within the mid- and inner-cortex, close to the edge of the N2-fixing tissue. PS II activity in the cortical cells was confirmed in vivo using O2-specific microelectrodes which showed that the concentration of O2 (pO2) in the outer cortex could rise from less than 1% up to 23.4% upon increased irradiance of the nodule, but that the pO2 of the inner cortex and infected tissue remained less than 0.0025%. Nitrogenase activity of stem nodules, as measured using a flow-through acetylene reduction assay (no H2 evolution was evident), showed a reversible increase of 28% upon exposure of the nodules to supplemental light. This increase resembled that obtained with stem nodules upon their exposure to an external pO2 of 40%.  相似文献   

9.
Measurements of the short-term response of nodulated roots of soybean ( Glycine max L. Merr, cv. Harosoy: Bradyrhizobium japonicum USDA 16) to rapid changes in surrounding pO2 indicate that their ability to reversibly adjust gaseous diffusive resistance is retained whether plants are cultured in rhizospheres of very low (2.8%) or very high (61.2%) pO2. Thus the capacity for reversible short-term diffusion adjustment is additional to structural changes in the fixed diffusional barriers of nodules which allow their continued fixation of N2 in unfavourably high or low external pO2. Anatomical evidence, involving quantitative measurement of intercellular spaces in the cortical tissues using electron microscopy of thin sections, indicates that the major fixed diffusional barrier is a boundary layer of cells in the inner cortex which may be as small as one cell thick in nodules from 2.8% O2 to 5 or 6 cells thick, and almost completely devoid of intercellular spaces, in those from 61.2% O2. The data are interpreted to indicate that the variable diffusion harrier is distinct from the boundary layer and is most likely to be a property of cells and/or intercellular spaces inside the boundary layer of the nodule cortex.  相似文献   

10.
Symploca PCC 8002 Kützing is a filamentous cyanobacterium that lacks the specialized cells, known as heterocysts, that protect nitrogenase from O2 in most aerobic N2-fixing cyanobacteria. Nevertheless, Symploca is able to carry out N2 fixation in the light under aerobic conditions. When cultures were grown under light/dark cycles, nitrogenase activity commenced and increased in the light phase and declined towards zero in the dark. Immunolocalization of dinitrogenase reductase in sectioned Symploca trichomes showed that the enzyme was present only in 9% of the cells. These cells lacked any obvious mechanical protection against atmospheric O2 and their ultrastructural characteristics were similar to those of cells that did not contain any dinitrogenase reductase. The nitrogenase-containing cells possessed carboxysomes that were rich in ribulose-1,5-bisphosphate carboxylase/oxygenase and phycoerythrin, a light harvesting pigment of PS II. This indicates that these cells had a capacity for both N2 fixation and photosynthesis. The significance of the localization pattern for dinitrogenase reductase is discussed in the context of N2 fixation in Symploca PCC 8002.  相似文献   

11.
Abstract: Very large numbers (3466 ml−1) of ciliated protozoa were found living beneath the oxic-anoxic boundary in a stratified freshwater pond. Most ciliates (96%) contained symbiotic algae ( Chlorella spp.). Peak abundance was in anoxic water with almost 1 mol free CO2 m−3 and a midday irradiance of 6 μmol photon m−2 s−1. Photosynthetic rate measurements of metalimnetic water indicated a light compensation point of 1.7 μmol photon m−2 s−1 which represents 0.6% of sub-surface light. We calculate that photosynthetic evolution of O2 by symbionts is sufficient to meet the demand of the host ciliates for 13 to 14 hours each day. Each 'photosynthetic ciliate' may therefore become an aerobic island surrounded by anoxic water.  相似文献   

12.
Abstract. The rate of O2 consumption was measured in five coprophilous beetle species (common in Denmark) at O2 concentrations from 1–21%. With the exception of the mainly soil-living Geotrupes spiniger (Marsham) (Geotrupidae), these beetles are probably exposed to severe hypoxia in fresh cattle pats. Aphodius fossor (Linnaeus), A. contaminatus (Herbst) (Aphodiidae) and Sphaeridium lunatum Fabricius (Hydrophilidae) maintained normal movements and a normal rate of 02 uptake (for at least 30 min) at only 1% O2. There is no evidence, therefore, that the beetles switch to anaerobic metabolism under these conditions. This ability to regulate respiration, and hence to extract 02 at very low concentrations, is exceptional even among terrestrial arthropods living in soil or other potentially hypoxic substrates. In A. rufipes (Linnaeus), respiration declined at ambient concentrations below 2% O2, and in G. spiniger the ability to regulate respiration seemed to fail at even higher concentrations. In four of the species (G. spiniger was not tested), about 11% CO2 (the level in a dung pat at 2% O2) did not affect the O2 uptake at 2% O2.  相似文献   

13.
The diel rhythms in metabolic rate ( MR ) and activity level ( AL ) were measured for single post-hatching dogfish (weight range, 2.76–10.61 g) at 15° C by the indirect calorimetric method of rate of oxygen consumption ( V O2) and by video-observation respectively, over a period of 72 b. The mean VO 2 increased from 62.0 (s.e. 2.9) mg O2 kg−1 h−1 in the daylight hours to 85.5 (s.e. 3.1) mg O2 kg−1 h−1 during the dark (light regíme, 12 h L: 12 h D). The simultaneous measurement of A L also showed mean night elevation from 0.6 (s.e. 0.2) min h−1 in the light phase to 14.5 (s.e. 1.6) min h−1 during the darkness. Bimodal nocturnal activity (BNA) was exhibited by the post-hatching dogfish within the 12 h dark period, with V O2 increasing from 71.4 (s.e. 2.8) mg O2 kg−1 h−1 before 01.00 hours to 99.5 (s.e. 4.2) mg O2 kg−1 h−1 after 01.00 hours. Similarly, A L also increased from 8.9 (s.e. I.7)min h−1 before 01.00 hours to 21.1 (s.e. 2.8) min h−1 after 01.00 hours. The importance of the results presented to the natural behavioural ecology of the hatching dogfish are discussed.  相似文献   

14.
The effect of dissolved oxygen partial pressure on the accumulation of astaxanthin in the green alga Haematococcus lacustris ( Gir.) Rostaf (UTEX16) was studied in N-limited continuous chemostat cultures. The steady-state astaxanthin content measured against culture volume, cell number, and biomass dry weigh of Haematococcus cultures was proportional to the dissolved O2 partial pressure in the culture medium, over the range of 0–50% O2 The steady-state biomass dry weight concentrations remained at between 0.52 and 0.57 g. L-1 over the range of dissolved O2 partial pressure studied. Steady-state cell densities at dissolved O2 partial pressures above the air saturation level (1.13–1.58 × 105 cells.mL-1) were about half of that measured at lower dissolved O2 partial pressures (2.42–2.63 × 105 cells.mL-1). Both biflagellated zoospores and nonmotile aplanospores were found at steady state. The fraction of nonmotile cells was higher at dissolved O2 partial pressures above the air saturation level (94.44–98.01%) than at dissolved O2 partial pressure below the air level (79.64–86.12 and 91.75% ).  相似文献   

15.
Abstract The effects of O2 on growth of the anaerobic amoeboflagellate Psalteriomonas lanterna were studied. The organism tolerates low oxygen tensions (about 1% O2 atm. sat.) and under these conditions growth was stimulated in mixed populations. Catalase could not be found in the cells, whereas superoxide dismutase was present. Addition of O2 resulted in loss of the methanogenic endosymbionts and favoured the transformation to amoeba cells. Symbiont-free cells did not grow under anaerobic conditions probably due to the accumulation of H2.  相似文献   

16.
Reduced growth of Atlantic cod in non-lethal hypoxic conditions   总被引:4,自引:0,他引:4  
Growth in length and mass, improvements in condition, as well as final condition of c. 700 g Atlantic cod Gadus morhua were significantly less at 45% and 56% O2 saturation than at 65%, 75%, 84% and 93% O2 saturation. Hypoxia decreased food consumption. In turn, food consumption explained 97% of the variation in growth. Conversion efficiency varied slightly, but significantly, with level of dissolved O2, except that the group reared at 93% O2 had a lower than expected conversion efficiency. Slow growth in low O2 was not due to increased activity, because activity decreased in hypoxia. In the Gulf of St Lawrence, waters deeper than 200 m usually are <65% saturated in O2, and thus should impact negatively on cod growth.  相似文献   

17.
During starch degradation in intact isolated chloroplasts from Chlamydomonas reinhardtii gas exchange was studied with a mass spectrometer. Oxygen uptake by intact chloroplasts in the dark never exceeded 1.5% of the starch degradation rate [maximum 15 nmol O2 (mg Chl)−1 h−1 consumed. 1 000 nmol glucose (mg Chl)−1h−1 degraded]. Evolution of CO2 under aerobic conditions [9.8–28 nmol (mg Chl)−1 h−1] was stimulated by addition of 0.1–0.5 m M oxaloacetate [393–425 nmol CO2 (mg Chl)−1 h−1]. Pyridoxal phosphate (5 m M ) inhibited starch degradation by more than 80%, but had no effect on O2 uptake. Starch degradation rates and CO2 evolution did not differ under acrobic and anaerobic conditions. Increasing Pi in the reaction medium from 0.5 m M to 5.0 m M stimulated starch degradation by 230 and 260% under aerobic and anaerobic conditions, respectively. A rapid autooxidation of reduced ferredoxin was observed in a reconstituted system consisting of purified Chlamydomonas ferredoxin, purified Chlamydomonas NADP-ferredoxin oxidoreductase (EC 1.6.7.1) and NADPH. Addition of isolated thylakoids from C. reinhardtii did not affect the rate of O2 uptake. Our results clearly indicate the absence of any oxygen requirement during starch degradation in isolated chloroplasts.  相似文献   

18.
Abstract The products of anaerobic and micro-aerobic (0.8% O2) metabolism of the sapropelic ciliate Trimyema compressum strain N were studied. Under anaerobic conditions ethanol was formed in large amounts representing 44% of the total carbon excreted. Acetate, lactate, formate, CO2 and H2 were minor products, while succinate was formed in hardly detectable amounts. Under micro-aerobic conditions O2 was consumed, CO2 and formate were produced as major end products and no H2, ethanol and succinate were formed.  相似文献   

19.
Rates of CO2 production and O2 consumption from aged disks of carrot ( Daucus carota L.) root tissues were measured for 4 h after they were transferred from 21% to 0, 1, 2, 4 or 8% O2 in gas mixtures. A transient peak in the rate of CO2 production started 5 to 7 min after transfer to 2% or lower O2 mixtures and peaked at 50 min. After the peaks in CO2 production from the 0, 1 and 2% O2 treatments and after the stable production from the 4 and 8% O2 treatments, the rate of CO2 production from all low O2 treatments started to decline at 50 min, reaching stable rates by 160 to 240 min. Concentrations of lactate and ethanol that were significantly higher than the 21% O2 controls had started to accumulate in disks between 10 and 50 min after exposure to atmospheres containing 2% or less O2. Production of CO2 started to increase 5 to 7 min after transfer to 0, 1 and 2% O2, while the initial decline and then rise in pH and the accumulation of ethanol did not occur until 30 min after the change in atmosphere. Ethanol accumulation paralleled the increase in pH; first at 0.4 μmol g−1 h−1 from 30 to 60 min as the pH shifted from 5.97 to 6.11, and then at 0.08 μmol g−1 h−1 from 60 to 100 min as the pH stablized around 6.12. The peak at 50 min in CO2 production roughly coincided with the shift from the rapid to the slow change in pH and ethanol accumulation.  相似文献   

20.
Abstract The temperature profiles have been determined for O2 reduction by activating substrates for whole cells and cell extracts of the psychrophilic, obligately anaerobic bacterium, strain B6, belonging to the Bacteroidaceae. The profiles were similar whether the cells were grown at 15 or 1°C, and also for cells harvested in the exponential or stationary phase. The H2O producing pyruvate oxidase displayed in cell-free extracts a considerably higher activity than the H2O2 producing NADH and NADPH oxidases at all temperatures in the range 30–1°C, and characteristically makes up a larger proportion of the total O2 reduction capacity the lower the temperature. It thus seems that the O2 scavenging property of the pyruvate oxidase, postulated to be utilized in a defense mechanism against the detrimental effects of the H2O2 producing pyridine nucleotide oxidases, is particularly well adapted to function at the low temperatures of the Barents Sea, from which this obligately anaerobic organism originates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号