首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
The interaction of DNA with Mn2+ was studied in absorbance and optical activity in the electronic and vibrational regions. Based on the data, several stages of the interaction were identified. Con formational transition towards the C-form of DNA was observed in solution at the molar ratio Mn2+/DNA-phosphates between 0.1 and 1.5. The exact ratio depended on the ionic strength and increased with increasing NaCl concentration. Although manganese interacted with the phosphates and bases of DNA at higher metal concentrations, it is unlikely that direct chelation occurred. A model for the interaction between manganese ions and DNA mediated by water is suggested destabilizing the double helix and partially breaking the hydrogen bonds between the base pairs. At high Mn2+ concentrations DNA aggregation was observed.  相似文献   

2.
The effect of physiological concentrations of KCl and MgCl2 on the chemical stability of double-stranded and single-stranded DNA has been studied at temperatures typical for hyperthermophiles. These two salts protect both double and single-stranded DNA against heat-induced cleavage by inhibiting depurination. High KCl concentrations also protect DNA cleavage at apurinic sites, while high MgCl2 concentrations stimulate this cleavage. It has been previously proposed that salt protects double-stranded DNA against depurination by stabilizing the double helix. However, the inhibition of the depurination of single-stranded DNA by KCl and MgCl2 indicates that this effect is more probably due to a direct interaction of salts with purine nucleotides. These results suggest that the number and nature of heat-induced DNA lesions which have to be repaired might be quite different from one hyperthermophile to another, depending on their intracellular salt concentration. High salt concentrations might be also useful to protect DNA in long polymerase chain reaction (PCR) experiments and for long-term preservation. Received: October 12, 1997 / Accepted: January 29, 1998  相似文献   

3.
Abstract

The interaction of the minor groove binding ligand Hoechst 33258 (Hoe) with natural DNA was investigated by high resolution titration rotational viscometry. Analysis of the concomitant DNA conformational changes was performed with two DNA samples of sufficiently different molar mass M, at 4°C, 22°C and 40°C, for Hoe/DNA-P ratios below r = 0.02. In this narrow r range several interaction modes could be resolved. The measured conformational changes were quantified in terms of relative changes of both apparent DNA persistence length, Δa/a, and hydrodynamically operative DNA contour length, ΔL/L. Δa/a(r) primarily is a measure of ligand-induced DNA helix stiffening, but both, Δa/a(r) and ΔL/L(r), generally depend also on ligand binding induced DNA bending or DNA unbending. The essential difference obviously is that Δa/a(r) is influenced by the randomly distributed helix bends and ΔL/L(r) by phased ones. The measurements performed at different temperatures deliver informations about existence and temperature dependent abolition of intrinsic helix curvature.

Both Hoe and netropsin (Nt) prefer binding to AT rich DNA segments, which are candidates for intrinsic DNA helix bends. But our data for Hoe interaction with calf thymus DNA (ctDNA) show characteristic differences to those for Nt-ctDNA interaction. Especially for Hoe, the mode of highest affinity is saturated already at a ligand concentration of roughly 1 nM (r = 0.0015 Hoe/DNA-P). It exhibits an unusually strong temperature dependence of the conformational DNA response. A Hoe-Nt competition experiment shows that Hoe binding to the sites of the very first Hoe mode is almost unaffected by bound Nt. But Hoe binding to the sites of the following Hoe modes does not occur due to the competition with Nt. Thus this mode of strongest Hoe-DNA interaction reflects a unique mechanism, possibly of high relevance for gene regulatory systems.  相似文献   

4.
5.
The influence of ligand length on helix-coil transition parameters in the presence of different ligand concentrations has been considered theoretically. A decrease of this influence with an increase of ligand length when the binding constant has a constant value was shown. When binding free energy is proportional to the ligand length, i. e. when K = K0m (K-binding constant, m-ligand length) the length effect is unambigous. In the presence of low-ligand concentration the stability of DNA double helix increases with their length, whereas in the presence of high concentrations it decreases.  相似文献   

6.
7.
Conformational peculiarities of illexine I2 both in the solution and in the complexes with DNA were studied by circular dichroism, UV-spectroscopy and spectrophotometric melting. IIlexine I2 is shown to have an extended left-handed helical conformation of poly-L-proline II type, that are stable in a wide range of experimental conditions. Upon interaction of illexine I2 with DNA, the parameters of conformation are somewhat distorted but the main peculiarities remain. The DNA double helix changes from B- to the divection of C-form at its interaction with illexine I2. The interaction of illexine I2 with DNA at low ionic strength is non-cooperative and is characterized by some specificity to A--T sequences of DNA. Illexine I2 strongly affects the DNA stability by increasing the melting temperature of DNA.  相似文献   

8.
Zhou Y  Li Y 《Biophysical chemistry》2004,107(3):273-281
DNA interaction with cationic polyelectrolytes promises to be a versatile and effective synthetic transfection agent. This paper presents the study on interaction between a simple artificial cationic polymer, poly(allylamine hydrochloride) (PAA), and herring sperm DNA (hsDNA) using several spectroscopic methods, including light scattering, microscopic FTIR-, CD-spectroscopy and so on. The results show that PAA interacts with DNA through both the phosphate groups and the nitrogenous bases of DNA. The formation of DNA/PAA complex may change the micro-environment of double helix of DNA from B- to C-form and the great changes in DNA morphology occur when N:P ratio is near to 1.0. At the same time, the spectroscopic changes of ethidium bromide (EB) on its binding to DNA are utilized to study the interaction between PAA and DNA. Reversion of the maximum absorption wavelength (numax), reduction of induced circular dichroism and decrease in fluorescence intensity of DNA-EB on addition of PAA indicate that the formation of the complex between DNA and PAA is not in favor of the interaction between DNA and EB. The binding constant of EB and the number of binding sites per nucleotide decrease with increase in the concentrations of PAA, indicating noncompetitive inhibition of EB binding to DNA in the presence of PAA. It is also proved that the formation of the DNA/PAA complex is influenced by pH value and ionic strength.  相似文献   

9.
Infrared linear dichroism measurements and Roman scattering spectra show that the cysteamine molecule binds strongly to the DNA stabilizing the double helix in a B geometry conformation. The B→A conformational transition is not observed for a cysteamine/DNA ratio of one cysteamine molecule per two phosphate sites. No evidence of interaction has been found between the radioprotector and the DNA bases. A model is proposed in which the cysteamine molecule is bound by its two ends through electrostatic interaction to two consecutive phosphate groups along the same DNA strand.  相似文献   

10.
The conformational transition of DNA induced by the interaction between DNA and a cationic lipid vesicle, didodecyldimethylammonium bromide (DDAB), had been investigated by circular dichroism (CD) and UV spectroscopy methods. We used singular value decomposition least squares method (SVDLS) to analyze the experimental CD spectra. Although pH value influenced the conformation of DNA in solution, the results showed that upon binding to double helical DNA, positively charged liposomes induced a conformational transition of DNA molecules from the native B-form to more compact conformations. At the same time, no obvious conformational changes occurred at single-strand DNA (ssDNA). While the cationic lipid vesicles and double-strand DNA (dsDNA) were mixed at a high molar ratio of DDAB vesicles to dsDNA, the conformation of dsDNA transformed from the B-form to the C-form resulting in an increase in duplex stability (DeltaT(m)=8+/-0.4 degrees C). An increasing in T(m) was also observed while the cationic lipid vesicles interacted with ssDNA.  相似文献   

11.
12.
Two factors are mainly responsible for the stability of the DNA double helix: base pairing between complementary strands and stacking between adjacent bases. By studying DNA molecules with solitary nicks and gaps we measure temperature and salt dependence of the stacking free energy of the DNA double helix. For the first time, DNA stacking parameters are obtained directly (without extrapolation) for temperatures from below room temperature to close to melting temperature. We also obtain DNA stacking parameters for different salt concentrations ranging from 15 to 100 mM Na+. From stacking parameters of individual contacts, we calculate base-stacking contribution to the stability of A•T- and G•C-containing DNA polymers. We find that temperature and salt dependences of the stacking term fully determine the temperature and the salt dependence of DNA stability parameters. For all temperatures and salt concentrations employed in present study, base-stacking is the main stabilizing factor in the DNA double helix. A•T pairing is always destabilizing and G•C pairing contributes almost no stabilization. Base-stacking interaction dominates not only in the duplex overall stability but also significantly contributes into the dependence of the duplex stability on its sequence.  相似文献   

13.
DNA interstrand cross-links are usually formed due to bidentate covalent or coordination binding of a cross-linking agent to nucleotides of different strands. However interstrand linkages can be also caused by any type of chemical modification that gives rise to a strong local stabilization of the double helix. These stabilized sites conserve their helical structure and prevent local and total strand separation at temperatures above the melting of ordinary AT and GC base pairs. This local stabilization makes DNA melting fully reversible and independent of strand concentration like ordinary covalent interstrand cross-links. The stabilization can be caused by all the types of chemical modifications (interstrand cross-links, intrastrand cross-links or monofunctional adducts) if they give rise to a strong enough local stabilization of the double helix. Our calculation demonstrates that an increase in stability by 25 to 30 kcal in the free energy of a single base pair of the double helix is sufficient for this "cross-linking effect" (i.e. conserving the helicity of this base pair and preventing strand separation after melting of ordinary base pairs). For the situation where there is more then one stabilized site in a DNA duplex (e.g., 1 stabilized site per 1000 bp), a lower stabilization per site is sufficient for the "cross-linking effect" (18 - 20 kcal). A substantial increase in DNA stability was found in various experimental studies for some metal-based anti-tumor compounds. These compounds may give rise to the effect described above. If ligand induced stabilization is distributed among several neighboring base pairs, a much lower minimum increase per stabilized base pair is sufficient to produce the cross-linking effect (1 bp- 24.4 kcal; 5 bp- 5.3 kcal; 10 bp- 2.9 kcal, 25 bp- 1.4 kcal; 50 bp- 1.0 kcal). The relatively weak non-covalent binding of histones or protamines that cover long regions of DNA (20- 40 bp) can also cause this effect if the salt concentration of the solution is sufficiently low to cause strong local stabilization of the double helix. Stretches of GC pairs more than 25 bp in length inserted into poly(AT) DNA also exhibit properties of stabilizing interstrand cross-links.  相似文献   

14.
Abstract

DNA interstrand cross-links are usually formed due to bidentate covalent or coordination binding of a cross-linking agent to nucleotides of different strands. However interstrand linkages can be also caused by any type of chemical modification that gives rise to a strong local stabilization of the double helix. These stabilized sites conserve their helical structure and prevent local and total strand separation at temperatures above the melting of ordinary AT and GC base pairs. This local stabilization makes DNA melting fully reversible and independent of strand concentration like ordinary covalent interstrand cross-links. The stabilization can be caused by all the types of chemical modifications (interstrand cross-links, intrastrand cross-links or monofunctional adducts) if they give rise to a strong enough local stabilization of the double helix. Our calculation demonstrates that an increase in stability by 25 to 30 kcal in the free energy of a single base pair of the double helix is sufficient for this “cross-linking effect” (i.e. conserving the helicity of this base pair and preventing strand separation after melting of ordinary base pairs). For the situation where there is more then one stabilized site in a DNA duplex (e.g., 1 stabilized site per 1000 bp), a lower stabilization per site is sufficient for the “cross-linking effect” (18–20 kcal). A substantial increase in DNA stability was found in various experimental studies for some metal-based anti-tumor compounds. These compounds may give rise to the effect described above. If ligand induced stabilization is distributed among several neighboring base pairs, a much lower minimum increase per stabilized base pair is sufficient to produce the cross-linking effect (1 bp- 24.4 kcal; 5 bp- 5.3 kcal; 10 bp- 2.9 kcal, 25 bp- 1.4 kcal; 50 bp- 1.0 kcal). The relatively weak non-covalent binding of histones or protamines that cover long regions of DNA (20–40 bp) can also cause this effect if the salt concentration of the solution is sufficiently low to cause strong local stabilization of the double helix. Stretches of GC pairs more than 25 bp in length inserted into poly(AT) DNA also exhibit properties of stabilizing interstrand cross-links.  相似文献   

15.
Mechanical stability of single DNA molecules   总被引:10,自引:0,他引:10       下载免费PDF全文
Using a modified atomic force microscope (AFM), individual double-stranded (ds) DNA molecules attached to an AFM tip and a gold surface were overstretched, and the mechanical stability of the DNA double helix was investigated. In lambda-phage DNA the previously reported B-S transition at 65 piconewtons (pN) is followed by a second conformational transition, during which the DNA double helix melts into two single strands. Unlike the B-S transition, the melting transition exhibits a pronounced force-loading-rate dependence and a marked hysteresis, characteristic of a nonequilibrium conformational transition. The kinetics of force-induced melting of the double helix, its reannealing kinetics, as well as the influence of ionic strength, temperature, and DNA sequence on the mechanical stability of the double helix were investigated. As expected, the DNA double helix is considerably destabilized under low salt buffer conditions (相似文献   

16.
Abstract

The interaction of the nonintercalating bisquaternary ammonium heterocyclic drugs SN- 18071 and SN-6999 with a DNA triple helix has been studied using thermal denaturation and CD spectroscopy. Our data show, that both minor groove binders can bind to the triple helix of poly(dA)-2poly(dT) under comparable ionic conditions, but they influence the stability of the triplex relative to the duplex structure of poly(dA)-poly(dT) in a different manner. SN- 18071, a ligand devoid of forming hydrogen bonds, can promote triplex formation and thermally stabilizes it up to 500 mM Na+ concentration. SN-6999 destabilizes the triplex to duplex equibilirium whereas it stabilizes the duplex. The binding constant of SN-18071 is found to be greater than that to the duplex. The stabilizing effect of SN-18071 is explained by electrostatic inetractions of three ligand molecules with the three grooves of the triple stranded structure. From the experiments it is concluded that SN-6999 binds to the triplex minor groove thereby destabilizing the triplex similar as previously reported for netropsin.  相似文献   

17.
Intercalating complexes of rhodium(III) are strong photo-oxidants that promote DNA strand cleavage or electron transfer through the double helix. The 1.2 A resolution crystal structure of a sequence-specific rhodium intercalator bound to a DNA helix provides a rationale for the sequence specificity of rhodium intercalators. It also explains how intercalation in the center of an oligonucleotide modifies DNA conformation. The rhodium complex intercalates via the major groove where specific contacts are formed with the edges of the bases at the target site. The phi ligand is deeply inserted into the DNA base pair stack. The primary conformational change of the DNA is a doubling of the rise per residue, with no change in sugar pucker from B-form DNA. Based upon the five crystallographically independent views of an intercalated DNA helix observed in this structure, the intercalator may be considered as an additional base pair with specific functional groups positioned in the major groove.  相似文献   

18.
The interaction of anticancer agents, analogues of adriamycin and of photo-chemotherapeutic compounds of the psoralen structural type with DNA was investigated using spectroscopic, hydrodynamic and chiroptical techniques. The nucleic acid may undergo conformational changes from the B form to more compact structures as a result of the binding process to charged compounds. Different complex geometries adopted byvarious drugs were observed and discussed in terms of intercalation into the polynucleotide double helix and orientation of the ligand in the base-pair pocket. The binding of chemotherapeutic agents to functionally organized DNA was also studied. Lower binding affinities and modified spectral responsesareindicativeofdifferent drug-DNA complexation patternsinthiscase. The results of these studies allow a better understanding of drug-nucleic acid interactions at a molecular level.  相似文献   

19.
The amides of L-phenylalanine, L-tyrosine and L-tryptophane decrease the melting temperatures tm of poly(A)*poly(U) and poly(I)*poly(C) double helices at low concentrations (1 mM), whereas high concentrations finally lead to an increase of tm. This dependence of the tm-values upon the ligand concentration can be represented quantitatively by a simple site binding model, providing binding parameters for the interaction between the amides and the nucleic acids both in the double- and the single-stranded conformation. According to these data the affinity to the single strands is higher than that to the double strands and increases in the series Phe less than Tyr less than Trp. The binding constants decrease with increasing salt concentration as expected for an interaction driven by electrostatic attraction. However, part of the interaction is also due to stacking between the aromatic amides and the nucleic acid bases. The present results indicate a direct correlation between the presence of aromatic amino acids at the binding site of helix destabilising proteins and the properties of simple derivatives of these amino acids. Furthermore the results suggest that very simple peptides containing aromatic amino acids served as a starting point for the evolution of helix destabilising proteins.  相似文献   

20.
Spectral properties including circular and linear dichroism (CD and LD) of M-DNA, a molecular electric wire, formed at a high Zn(2+) concentration have been studied using a minor groove binding drug 4',6-diamidino-2-phenylindole (DAPI) as a probe. As the Zn(2+) concentration increased, the magnitude of LD in the DNA absorption region decreased at pH 8.5, implying the aggregation of DNA, which is in contrast with the retained LD magnitude at pH 7.0. As the M-DNA formed, change in the secondary structure of DNA was observed by CD spectrum, which resembles that of the C-form DNA, although overall structure seemed to remain as a right handed double helix. The DAPI-DNA complex in the presence of high concentration of Zn(2+) ions at pH 7.0 exhibited the similar CD spectrum with that in the absence of Zn(2+) ion, consisting of type I, II and III. In contrast, at pH 8.5 at a high Zn(2+) concentration in which DNA is in its M-form, DNA bound DAPI produced only the type III CD, suggesting that DAPI binds at the surface of M-DNA: the presence of Zn(2+) ions prevents the minor groove binding of DAPI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号