首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Through interaction with a multitude of target proteins, 14-3-3 proteins participate in the regulation of diverse cellular processes including apoptosis. These 14-3-3-interacting proteins include a proapoptotic Bcl-2 homolog, Bad (Bcl-2/Bcl-XL-associated death promoter). To understand how 14-3-3 interacts with Bad and modulates its function, we have identified structural elements of 14-3-3 necessary for 14-3-3/Bad association. 14-3-3 contains a conserved amphipathic groove that is required for binding to several of its ligands. We used peptides of known binding specificity as competitors to demonstrate that Bad interacts with 14-3-3zeta via its amphipathic groove. More detailed analysis revealed that several conserved residues in the groove, including Lys-49, Val-176, and Leu-220, were critical for Bad interaction. These results were applied to investigations of the ability of 14-3-3 to prevent Bad-induced cell death. When co-expressed with Akt, wild-type 14-3-3 could reduce the ability of Bad to cause death, however 14-3-3zetaK49E, which cannot bind Bad, failed to inhibit Bad. It seems that the amphipathic groove of 14-3-3 represents a general binding site for multiple ligands, raising issues related to competition of ligands for 14-3-3.  相似文献   

2.
Life and death decisions are made by integrating a variety of apoptotic and survival signals in mammalian cells. Therefore, there is likely to be a common mechanism that integrates multiple signals adjudicating between the alternatives. In this study, we propose that 14-3-3 represents such an integration point. Several proapoptotic proteins commonly become associated with 14-3-3 upon phosphorylation by survival-mediating kinases such as Akt. We reported previously that cellular stresses induce c-Jun NH2-terminal kinase (JNK)-mediated 14-3-3zeta phosphorylation at Ser184 (Tsuruta, F., J. Sunayama, Y. Mori, S. Hattori, S. Shimizu, Y. Tsujimoto, K. Yoshioka, N. Masuyama, and Y. Gotoh. 2004. EMBO J. 23:1889-1899). Here, we show that phosphorylation of 14-3-3 by JNK releases the proapoptotic proteins Bad and FOXO3a from 14-3-3 and antagonizes the effects of Akt signaling. As a result of dissociation, Bad is dephosphorylated and translocates to the mitochondria, where it associates with Bcl-2/Bcl-x(L). Because Bad and FOXO3a share the 14-3-3-binding motif with other proapoptotic proteins, we propose that this JNK-mediated phosphorylation of 14-3-3 regulates these proapoptotic proteins in concert and makes cells more susceptible to apoptotic signals.  相似文献   

3.
Koh PO 《Life sciences》2007,81(13):1079-1084
Sexual dysfunction is frequently associated with diabetes in males. The present study was designed to evaluate whether streptozotocin-induced diabetes increases apoptotic cell death in rat testis through the regulation of Bcl-2 family proteins. Diabetes was induced by a single intravenous injection of streptozotocin (40 mg/kg body weight) and testis samples were collected after 3 months. The number of positive cells for TUNEL histochemistry was significantly increased in the testicular germ cells of the diabetic group, compared to those of control. The levels of Bcl-2 and Bcl-X(L), anti-apoptotic proteins, were decreased in the diabetic group. In contrast, the levels of Bax and Bad, pro-apoptotic factors, were increased in the diabetic group, compared with the control group. Moreover, the diabetic condition increased the interaction of Bad and Bcl-X(L), and decreased the binding of pBad and 14-3-3. 14-3-3 acts as an anti-apoptotic factor through interaction with Bad. Our findings suggest that streptozotocin-induced diabetes increases apoptotic cell death in testis tissue through the up-and down-regulation of Bcl-2 family proteins and the interaction of Bad and Bcl-X(L).  相似文献   

4.
Interaction of 14-3-3 with Bid during seizure-induced neuronal death   总被引:4,自引:0,他引:4  
Seizure-induced neuronal death may involve coordinated intracellular trafficking and protein-protein interactions of members of the Bcl-2 family. The 14-3-3 proteins are known to sequester certain pro-apoptotic members of this family. BH3-interacting domain death agonist (Bid) may contribute to seizure-induced neuronal death, although regulation by 14-3-3 has not been reported. In this study we examined whether 14-3-3 proteins interact with Bid during seizure-induced neuronal death. Brief seizures were evoked in rats by intraamygdala microinjection of kainic acid to elicit unilateral hippocampal CA3 neuronal death. Coimmunoprecipitation analysis demonstrated that although Bcl-2-associated death promoter (Bad) constitutively bound 14-3-3, there was no interaction between Bid and 14-3-3 in control brain. Seizures triggered Bid cleavage and a commensurate increase in binding of Bid to 14-3-3 within injured hippocampus. Casein kinases I and II, which can inactivate Bid by phosphoserine/threonine modification, did not coimmunoprecipitate with Bid. The largely uninjured contralateral hippocampus did not exhibit Bid cleavage or binding of 14-3-3 to Bid. In vitro experiments confirmed that 14-3-3beta is capable of binding truncated Bid, likely in the absence of phosphoserine/threonine modification. These data suggest 14-3-3 proteins may target active as well as inactive conformations of pro-apoptotic Bcl-2 death agonists, highlighting novel targets for intervention in seizure-induced neuronal death.  相似文献   

5.
Survival-promoting functions of 14-3-3 proteins   总被引:10,自引:0,他引:10  
The 14-3-3 proteins are a family of phosphoserine/phosphothreonine-binding molecules that control the function of a wide array of cellular proteins. We suggest that one function of 14-3-3 is to support cell survival. 14-3-3 proteins promote survival in part by antagonizing the activity of associated proapoptotic proteins, including Bad and apoptosis signal-regulating kinase 1 (ASK1). Indeed, expression of 14-3-3 inhibitor peptides in cells is sufficient to induce apoptosis. Interestingly, these 14-3-3 antagonist peptides can sensitize cells for effective killing by anticancer agents such as cisplatin. Thus, 14-3-3 may be part of the cellular machinery that maintains cell survival, and targeting 14-3-3-ligand interactions may be a useful strategy to enhance the efficacy of conventional anticancer agents.  相似文献   

6.
Integrin ligand binding induces a signaling complex formation via the direct association of the docking protein p130(Cas) (Cas) with diverse molecules. We report here that the 14-3-3zeta protein interacts with Cas in the yeast two-hybrid assay. We also found that the two proteins associate in mammalian cells and that this interaction takes place in a phosphoserine-dependent manner, because treatment of Cas with a serine phosphatase greatly reduced its ability to bind 14-3-3zeta. Furthermore, the Cas-14-3-3zeta interaction was found to be regulated by integrin-mediated cell adhesion. Thus, when cells are detached from the extracellular matrix, the binding of Cas to 14-3-3zeta is greatly diminished, whereas replating the cells onto fibronectin rapidly induces the association. Consistent with these results, we found that the subcellular localization of Cas and 14-3-3 is also regulated by integrin ligand binding and that the two proteins display a significant co-localization during cell attachment to the extracellular matrix. In conclusion, our results demonstrate that 14-3-3 proteins participate in integrin-activated signaling pathways through their interaction with Cas, which, in turn, may contribute to important biological responses regulated by cell adhesion to the extracellular matrix.  相似文献   

7.
14-3-3 proteins play critical roles in the regulation of cell fate through phospho-dependent binding to a large number of intracellular proteins that are targeted by various classes of protein kinases. 14-3-3 proteins play particularly important roles in coordinating progression of cells through the cell cycle, regulating their response to DNA damage, and influencing life-death decisions following internal injury or external cytokine-mediated cues. This review focuses on 14-3-3-dependent pathways that control cell cycle arrest and recovery, and the influence of 14-3-3 on the apoptotic machinery at multiple levels of regulation. Recognition of 14-3-3 proteins as signaling integrators that connect protein kinase signaling pathways to resulting cellular phenotypes, and their exquisite control through feedforward and feedback loops, identifies new drug targets for human disease, and highlights the emerging importance of using systems-based approaches to understand signal transduction events at the network biology level.  相似文献   

8.
Wang XT  Pei DS  Xu J  Guan QH  Sun YF  Liu XM  Zhang GY 《Cellular signalling》2007,19(9):1844-1856
Increasing evidence suggests that the Bcl-2 family proteins play pivotal roles in regulation of the mitochondria cell-death pathway on transient cerebral ischemia. Bad, a BH3-only proapoptotic Bcl-2 family protein, has been shown to be phosphorylated extensively on serine by kinds of kinases. However, the exact mechanisms of the upstream kinases in regulation of Bad signaling pathway remain unknown. Here, we reported that Bad could be phosphorylated not only by Akt1 but also by JNK1/2 after transient global ischemia in rat hippocampal CA1 region. Our data demonstrated that Akt1 mediated the phosphorylation of Bad at serine 136, which increased the interaction of serine 136-phosphorylated Bad with 14-3-3 proteins and prevented the dimerization of Bad with Bcl-Xl, inhibited the release of cytochrome c to the cytosol and the death effector caspase-3 activation, leading to the survival of neuron. In contrast, JNK1/2 induced the phosphorylation of Bad at a novel site of serine 128 after brain ischemia/reperfusion, which inhibited the interaction of PI3K/Akt-induced serine 136-phosphorylated Bad with 14-3-3 proteins, thereby promoted the apoptotic effect of Bad. In addition, activated Akt1 inhibited the activation of Bad(S128) through downregulating JNK1/2 activation, thus inhibiting JNK-mediated Bad apoptosis pathway. Furthermore, the fate of cell to survive or to die was determined by a balance between prosurvival and proapoptotic signals. Taken together, our studies reveal that Bad phosphorylation at two distinct sites induced by Akt1 and JNK1/2 have opposing effects on ischemic brain injury, and present the possibility of Bad as a potential therapeutic target for stroke treatment.  相似文献   

9.
A structural basis for 14-3-3sigma functional specificity   总被引:4,自引:0,他引:4  
The 14-3-3 family of proteins includes seven isotypes in mammalian cells that play numerous diverse roles in intracellular signaling. Most 14-3-3 proteins form homodimers and mixed heterodimers between different isotypes, with overlapping roles in ligand binding. In contrast, one mammalian isoform, 14-3-3sigma, expressed primarily in epithelial cells, appears to play a unique role in the cellular response to DNA damage and in human oncogenesis. The biological and structural basis for these 14-3-3sigma-specific functions is unknown. We demonstrate that endogenous 14-3-3sigma preferentially forms homodimers in cells. We have solved the x-ray crystal structure of 14-3-3sigma bound to an optimal phosphopeptide ligand at 2.4 angstroms resolution. The structure reveals the presence of stabilizing ring-ring and salt bridge interactions unique to the 14-3-3sigma homodimer structure and potentially destabilizing electrostatic interactions between subunits in 14-3-3sigma-containing heterodimers, rationalizing preferential homodimerization of 14-3-3sigma in vivo. The interaction of the phosphopeptide with 14-3-3 reveals a conserved mechanism for phospho-dependent ligand binding, implying that the phosphopeptide binding cleft is not the critical determinant of the unique biological properties of 14-3-3sigma. Instead, the structure suggests a second ligand binding site involved in 14-3-3sigma-specific ligand discrimination. We have confirmed this by site-directed mutagenesis of three sigma-specific residues that uniquely define this site. Mutation of these residues to the alternative sequence that is absolutely conserved in all other 14-3-3 isotypes confers upon 14-3-3sigma the ability to bind to Cdc25C, a ligand that is known to bind to other 14-3-3 proteins but not to sigma.  相似文献   

10.
Truong AB  Masters SC  Yang H  Fu H 《Proteins》2002,49(3):321-325
14-3-3 proteins are a family of conserved dimeric molecules that interact with a broad range of target proteins, most of which contain phosphoserine/threonine. The amphipathic groove of 14-3-3 is the main structural feature involved in mediating its associations. We have studied another domain of 14-3-3, the C-terminal loop, to determine what role it plays in ligand interaction. A truncated form of 14-3-3zeta lacking this C-terminal loop was generated and found to bind with higher affinity than the wild-type 14-3-3zeta protein to the ligands Raf-1 and Bad. Interestingly, the truncated 14-3-3zeta also showed increased association with the 14-3-3 binding-deficient Bad/S136A mutant. Taken together, these data support a role for the C-terminal loop as a general inhibitor of 14-3-3/ligand interactions. This may provide a mechanism by which inappropriate associations with 14-3-3 are prevented.  相似文献   

11.
14-3-3 proteins are a family of homologous eukaryotic molecules with seven distinct isoforms in mammalian cells. Isoforms of 14-3-3 proteins interact with diverse ligands and are involved in the regulation of mitogenesis, cell cycle progression, and apoptosis. However, whether different 14-3-3 isoforms are responsible for distinct functions remains elusive. Here we report that multiple isoforms of 14-3-3 proteins were capable of binding to several ligands, Bad, Raf-1, and Cbl. In a functional assay of 14-3-3 isoforms, all mammalian 14-3-3 isoforms could inhibit Bad-induced apoptosis. Thus, 14-3-3 function in regulating one of its ligands, Bad, is conserved among mammalian isoforms. We addressed whether 14-3-3 isoforms are differentially expressed in tissues, which may in part determine isoform-specific interactions. In situ hybridization revealed that 14-3-3zeta was present in most tissues tested, but sigma was preferentially expressed in epithelial cells. Thus, isoforms of 14-3-3 can interact and control the function of selected protein ligands, and differential tissue distribution of 14-3-3 isoforms may contribute to their specific interactions and subsequent downstream signaling events.  相似文献   

12.
Nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is formed by nitrosation of nicotine and has been identified as the most potent carcinogen in cigarette smoke. NNK cannot only induce DNA damage but also promotes the survival of human lung cancer cells. Protein kinase C (PKC)iota is an atypical PKC isoform and plays an important role in cell survival, but the downstream survival substrate(s) is not yet identified. Bad, a proapoptotic BH3-only member of Bcl2 family, is co-expressed with PKCiota in both small cell lung cancer and non-small cell lung cancer cells. We discovered that NNK potently induces multisite Bad phosphorylation at Ser-112, Ser-136, and Ser-155 via activation of PKCiota in association with increased survival of human lung cancer cells. Purified, active PKCiota can directly phosphorylate both endogenous and recombinant Bad at these three sites and disrupt Bad/Bcl-XL binding in vitro. Overexpression of PKCiota results in an enhancement of Bad phosphorylation. NNK also stimulates activation of c-Src, which is a known PKCiota upstream kinase. Treatment of cells with the PKC inhibitor (staurosporine) or a Src-specific inhibitor (PP2) can block NNK-induced Bad phosphorylation and promote apoptotic cell death. The beta-adrenergic receptor inhibitor propranolol blocks both NNK-induced activation of PKCiota and Bad phosphorylation, indicating that NNK-induced Bad phosphorylation occurs at least in part through the upstream beta-adrenergic receptor. Mechanistically, NNK-induced Bad phosphorylation prevents its interaction with Bcl-XL. Because the specific depletion of PKCiota by RNA interference inhibits both NNK-induced Bad phosphorylation and survival, this confirms that PKCiota is a necessary component in NNK-mediated survival signaling. Collectively, these findings reveal a novel role for PKCiota as an NNK-activated physiological Bad kinase that can directly phosphorylate and inactivate this proapoptotic BH3-only protein, which leads to enhanced survival and chemoresistance of human lung cancer cells.  相似文献   

13.
14.
The Bcl-2 related protein Bad is a promoter of apoptosis and has been shown to dimerize with the anti-apoptotic proteins Bcl-2 and Bcl-XL. Overexpression of Bad in murine FL5.12 cells demonstrated that the protein not only could abrogate the protective capacity of coexpressed Bcl-XL but could accelerate the apoptotic response to a death signal when it was expressed in the absence of exogenous Bcl-XL. Using deletion analysis, we have identified the minimal domain in the murine Bad protein that can dimerize with Bcl-xL. A 26-amino-acid peptide within this domain, which showed significant homology to the alpha-helical BH3 domains of related apoptotic proteins like Bak and Bax, was found to be necessary and sufficient to bind Bcl-xL. To determine the role of dimerization in regulating the death-promoting activity of Bad and the death-inhibiting activity of Bcl-xL, mutations within the hydrophobic BH3-binding pocket in Bcl-xL that eliminated the ability of Bcl-xL to form a heterodimer with Bad were tested for the ability to promote cell survival in the presence of Bad. Several of these mutants retained the ability to impart protection against cell death regardless of the level of coexpressed Bad protein. These results suggest that BH3-containing proteins like Bad promote cell death by binding to antiapoptotic members of the Bcl-2 family and thus inhibiting their survival promoting functions.  相似文献   

15.
BACKGROUND: Growth factors activate an array of cell survival signaling pathways. Mitogen-activated protein (MAP) kinases transduce signals emanating from their upstream activators MAP kinase kinases (MEKs). The MEK-MAP kinase signaling cassette is a key regulatory pathway promoting cell survival. The downstream effectors of the mammalian MEK-MAP kinase cell survival signal have not been previously described. RESULTS: We identify here a pro-survival role for the serine/threonine kinase Rsk1, a downstream target of the MEK-MAP kinase signaling pathway. In cells that are dependent on interleukin-3 (IL-3) for survival, pharmacological inhibition of MEKs antagonized the IL-3 survival signal. In the absence of IL-3, a kinase-dead Rsk1 mutant eliminated the survival effect afforded by activated MEK. Conversely, a novel constitutively active Rsk1 allele restored the MEK-MAP kinase survival signal. Experiments in vitro and in vivo demonstrated that Rsk1 directly phosphorylated the pro-apoptotic protein Bad at the serine residues that, when phosphorylated, abrogate Bad's pro-apoptotic function. Constitutively active Rsk1 caused constitutive Bad phosphorylation and protection from Bad-modulated cell death. Kinase-inactive Rsk1 mutants antagonize Bad phosphorylation. Bad mutations that prevented phosphorylation by Rsk1 also inhibited Rsk1-mediated cell survival. CONCLUSIONS: These data support a model in which Rsk1 transduces the mammalian MEK-MAP kinase signal in part by phosphorylating Bad.  相似文献   

16.
GTPase-activating proteins are required to terminate signaling by Rap1, a small guanine nucleotide-binding protein that controls integrin activity and cell adhesion. Recently, we identified Rap1GAP2, a GTPase-activating protein of Rap1 in platelets. Here we show that 14-3-3 proteins interact with phosphorylated serine 9 at the N terminus of Rap1GAP2. Platelet activation by ADP and thrombin enhances serine 9 phosphorylation and increases 14-3-3 binding to endogenous Rap1GAP2. Conversely, inhibition of platelets by endothelium-derived factors nitric oxide and prostacyclin disrupts 14-3-3 binding. These effects are mediated by cGMP- and cAMP-dependent protein kinases that phosphorylate Rap1GAP2 at serine 7, adjacent to the 14-3-3 binding site. 14-3-3 binding does not change the GTPase-activating function of Rap1GAP2 in vitro. However, 14-3-3 binding attenuates Rap1GAP2 mediated inhibition of cell adhesion. Our findings define a novel crossover point of activatory and inhibitory signaling pathways in platelets.  相似文献   

17.
Laminin-5 and α3β1 integrin promote keratinocyte survival; however, the downstream signaling pathways for laminin-5/α3β1 integrin-mediated cell survival had not been fully established. We report the unexpected finding of multiple interactions between 14-3-3 isoforms and proapoptotic proteins in the survival signaling pathway. Ln5-P4 motif within human laminin-5 α3 chain promotes cell survival and anti-apoptosis by inactivating Bad and YAP. This effect is achieved through the formation of 14-3-3ζ/p-Bad and 14-3-3σ/p-YAP complexes, which is initiated by α3β1 integrin and FAK/PI3K/Akt signaling. These complexes result in cytoplasmic sequestration of Bad and YAP and their subsequent inactivation. An increase in Akt1 activity in cells induces 14-3-3ζ and σ, p-Bad, and p-YAP, promoting cell survival, whereas decreasing Akt activity suppresses the same proteins and inhibits cell survival. Suppression of 14-3-3ζ with RNA-interference inhibits cell viability and promotes apoptosis. These results reveal a new mechanism of cell survival whereby the formation of 14-3-3ζ/p-Bad and 14-3-3σ/p-YAP complexes is initiated by laminin-5 stimulation via the α3β1 integrin and FAK/PI3K/Akt signaling pathways, thereby resulting in cell survival and anti-apoptosis.  相似文献   

18.
19.
14-3-3 proteins in neuronal development and function   总被引:20,自引:0,他引:20  
The 14-3-3 proteins are small, cytosolic, evolutionaritly conserved proteins expressed abundantly in the nervous system. Although they were discovered more than 30 yr ago, their function in the nervous system has remained enigmatic. Several recent studies have helped to clarify their biological function. Crystallographic investigations have revealed that 14-3-3 proteins exist as dimers and that they contain a specific region for binding to other proteins. The interacting proteins, in turn, contain a 14-3-3 binding motif; proteins that interact with 14-3-3 dimers include PKC and Raf, protein kinases with critical roles in neuronal signaling. These proteins are capable of activating Raf in vitro, and this role has been verified by in vivo studies inDrosophila. Most interestingly, mutations in theDrosophila 14-3-3 genes disrupt neuronal differentiation, synaptic plasticity, and behavioral plasticity, establishing a role for these proteins in the development and function of the nervous system.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号