首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We describe the development of a method for assembling structures of multidomain proteins from structures of isolated domains. The method consists of an initial low-resolution search in which the conformational space of the domain linker is explored using the Rosetta de novo structure prediction method, followed by a high-resolution search in which all atoms are treated explicitly and backbone and side chain degrees of freedom are simultaneously optimized. The method recapitulates, often with very high accuracy, the structures of existing multidomain proteins.  相似文献   

2.
3.
Secondary structure prediction is a crucial task for understanding the variety of protein structures and performed biological functions. Prediction of secondary structures for new proteins using their amino acid sequences is of fundamental importance in bioinformatics. We propose a novel technique to predict protein secondary structures based on position-specific scoring matrices (PSSMs) and physico-chemical properties of amino acids. It is a two stage approach involving multiclass support vector machines (SVMs) as classifiers for three different structural conformations, viz., helix, sheet and coil. In the first stage, PSSMs obtained from PSI-BLAST and five specially selected physicochemical properties of amino acids are fed into SVMs as features for sequence-to-structure prediction. Confidence values for forming helix, sheet and coil that are obtained from the first stage SVM are then used in the second stage SVM for performing structure-to-structure prediction. The two-stage cascaded classifiers (PSP_MCSVM) are trained with proteins from RS126 dataset. The classifiers are finally tested on target proteins of critical assessment of protein structure prediction experiment-9 (CASP9). PSP_MCSVM with brainstorming consensus procedure performs better than the prediction servers like Predator, DSC, SIMPA96, for randomly selected proteins from CASP9 targets. The overall performance is found to be comparable with the current state-of-the art. PSP_MCSVM source code, train-test datasets and supplementary files are available freely in public domain at: and  相似文献   

4.
Protein domains are functional and structural units of proteins. Therefore, identification of domain–domain interactions (DDIs) can provide insight into the biological functions of proteins. In this article, we propose a novel discriminative approach for predicting DDIs based on both protein–protein interactions (PPIs) and the derived information of non‐PPIs. We make a threefold contribution to the work in this area. First, we take into account non‐PPIs explicitly and treat the domain combinations that can discriminate PPIs from non‐PPIs as putative DDIs. Second, DDI identification is formalized as a feature selection problem, in which it tries to find out a minimum set of informative features (i.e., putative DDIs) that discriminate PPIs from non‐PPIs, which is plausible in biology and is able to predict DDIs in a systematic and accurate manner. Third, multidomain combinations including two‐domain combinations are taken into account in the proposed method, where multidomain cooperations may help proteins to interact with each other. Numerical results on several DDI prediction benchmark data sets show that the proposed discriminative method performs comparably well with other top algorithms with respect to overall performance, and outperforms other methods in terms of precision. The PPI data sets used for prediction of DDIs and prediction results can be found at http://csb.shu.edu.cn/dipd . Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

5.
Sim J  Kim SY  Lee J 《Proteins》2005,59(3):627-632
Successful prediction of protein domain boundaries provides valuable information not only for the computational structure prediction of multidomain proteins but also for the experimental structure determination. Since protein sequences of multiple domains may contain much information regarding evolutionary processes such as gene-exon shuffling, this information can be detected by analyzing the position-specific scoring matrix (PSSM) generated by PSI-BLAST. We have presented a method, PPRODO (Prediction of PROtein DOmain boundaries) that predicts domain boundaries of proteins from sequence information by a neural network. The network is trained and tested using the values obtained from the PSSM generated by PSI-BLAST. A 10-fold cross-validation technique is performed to obtain the parameters of neural networks using a nonredundant set of 522 proteins containing 2 contiguous domains. PPRODO provides good and consistent results for the prediction of domain boundaries, with accuracy of about 66% using the +/-20 residue criterion. The PPRODO source code, as well as all data sets used in this work, are available from http://gene.kias.re.kr/ approximately jlee/pprodo/.  相似文献   

6.
Functional annotation of protein sequences with low similarity to well characterized protein sequences is a major challenge of computational biology in the post genomic era. The cyclin protein family is once such important family of proteins which consists of sequences with low sequence similarity making discovery of novel cyclins and establishing orthologous relationships amongst the cyclins, a difficult task. The currently identified cyclin motifs and cyclin associated domains do not represent all of the identified and characterized cyclin sequences. We describe a Support Vector Machine (SVM) based classifier, CyclinPred, which can predict cyclin sequences with high efficiency. The SVM classifier was trained with features of selected cyclin and non cyclin protein sequences. The training features of the protein sequences include amino acid composition, dipeptide composition, secondary structure composition and PSI-BLAST generated Position Specific Scoring Matrix (PSSM) profiles. Results obtained from Leave-One-Out cross validation or jackknife test, self consistency and holdout tests prove that the SVM classifier trained with features of PSSM profile was more accurate than the classifiers based on either of the other features alone or hybrids of these features. A cyclin prediction server--CyclinPred has been setup based on SVM model trained with PSSM profiles. CyclinPred prediction results prove that the method may be used as a cyclin prediction tool, complementing conventional cyclin prediction methods.  相似文献   

7.
It has been known even since relatively few structures had been solved that longer protein chains often contain multiple domains, which may fold separately and play the role of reusable functional modules found in many contexts. In many structural biology tasks, in particular structure prediction, it is of great use to be able to identify domains within the structure and analyze these regions separately. However, when using sequence data alone this task has proven exceptionally difficult, with relatively little improvement over the naive method of choosing boundaries based on size distributions of observed domains. The recent significant improvement in contact prediction provides a new source of information for domain prediction. We test several methods for using this information including a kernel smoothing‐based approach and methods based on building alpha‐carbon models and compare performance with a length‐based predictor, a homology search method and four published sequence‐based predictors: DOMCUT, DomPRO, DLP‐SVM, and SCOOBY‐DOmain. We show that the kernel‐smoothing method is significantly better than the other ab initio predictors when both single‐domain and multidomain targets are considered and is not significantly different to the homology‐based method. Considering only multidomain targets the kernel‐smoothing method outperforms all of the published methods except DLP‐SVM. The kernel smoothing method therefore represents a potentially useful improvement to ab initio domain prediction. Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

8.
Protein domain prediction is often the preliminary step in both experimental and computational protein research. Here we present a new method to predict the domain boundaries of a multidomain protein from its amino acid sequence using a fuzzy mean operator. Using the nr-sequence database together with a reference protein set (RPS) containing known domain boundaries, the operator is used to assign a likelihood value for each residue of the query sequence as belonging to a domain boundary. This procedure robustly identifies contiguous boundary regions. For a dataset with a maximum sequence identity of 30%, the average domain prediction accuracy of our method is 97% for one domain proteins and 58% for multidomain proteins. The presented model is capable of using new sequence/structure information without re-parameterization after each RPS update. When tested on a current database using a four year old RPS and on a database that contains different domain definitions than those used to train the models, our method consistently yielded the same accuracy while two other published methods did not. A comparison with other domain prediction methods used in the CASP7 competition indicates that our method performs better than existing sequence-based methods.  相似文献   

9.

The prediction of domain/linker residues in protein sequences is a crucial task in the functional classification of proteins, homology-based protein structure prediction, and high-throughput structural genomics. In this work, a novel consensus-based machine-learning technique was applied for residue-level prediction of the domain/linker annotations in protein sequences using ordered/disordered regions along protein chains and a set of physicochemical properties. Six different classifiers—decision tree, Gaussian naïve Bayes, linear discriminant analysis, support vector machine, random forest, and multilayer perceptron—were exhaustively explored for the residue-level prediction of domain/linker regions. The protein sequences from the curated CATH database were used for training and cross-validation experiments. Test results obtained by applying the developed PDP-CON tool to the mutually exclusive, independent proteins of the CASP-8, CASP-9, and CASP-10 databases are reported. An n-star quality consensus approach was used to combine the results yielded by different classifiers. The average PDP-CON accuracy and F-measure values for the CASP targets were found to be 0.86 and 0.91, respectively. The dataset, source code, and all supplementary materials for this work are available at https://cmaterju.org/cmaterbioinfo/ for noncommercial use.

  相似文献   

10.
Ebina T  Toh H  Kuroda Y 《Biopolymers》2009,92(1):1-8
The prediction of structural domains in novel protein sequences is becoming of practical importance. One important area of application is the development of computer-aided techniques for identifying, at a low cost, novel protein domain targets for large-scale functional and structural proteomics. Here, we report a loop-length-dependent support vector machine (SVM) prediction of domain linkers, which are loops separating two structural domains. (DLP-SVM is freely available at: http://www.tuat.ac.jp/ approximately domserv/cgi-bin/DLP-SVM.cgi.) We constructed three loop-length-dependent SVM predictors of domain linkers (SVM-All, SVM-Long and SVM-Short), and also built SVM-Joint, which combines the results of SVM-Short and SVM-Long into a single consolidated prediction. The performances of SVM-Joint were, in most aspects, the highest, with a sensitivity of 59.7% and a specificity of 43.6%, which indicated that the specificity and the sensitivity were improved by over 2 and 3% respectively, when loop-length-dependent characteristics were taken into account. Furthermore, the sensitivity and specificity of SVM-Joint were, respectively, 37.6 and 17.4% higher than those of a random guess, and also superior to those of previously reported domain linker predictors. These results indicate that SVMs can be used to predict domain linkers, and that loop-length-dependent characteristics are useful for improving SVM prediction performances.  相似文献   

11.
12.
13.
Catch-bonds refer to the counterintuitive notion that the average lifetime of a bond has a maximum at a nonzero applied force. They have been found in several ligand-receptor pairs and their origin is still a topic of debate. Here, we use coarse-grained simulations and kinetic theory to demonstrate that a multimeric protein, with self-interacting domain pairs, can display catch-bond behavior. Our model is motivated by one of the largest proteins in the human body, the von Willebrand Factor, which has been found to display this behavior. In particular, our model polymer consists of a series of repeating units that self-interact with their nearest neighbors along the chain. Each of the units mimics a domain of the protein. Apart from the short-range specific interaction, we also include a linker chain that will hold the domains together if unbinding occurs. This linker molecule represents the sequence of unfolded amino acids that connect contiguous domains, as is typically found in multidomain proteins. The units also interact with an immobilized ligand, but the interaction is masked by the presence of the self-interacting neighbor along the chain. Our results show that this model displays all the features of catch-bonds because the average lifetime of a binding event between the polymer and the immobilized receptor has a maximum at a nonzero pulling force of the polymer. The effects of the energy barriers for detaching the masking domain and the ligand from the binding domain, as well as the effects of the properties of the polypeptide chain connecting the contiguous domains, are also studied. Our study suggests that multimeric proteins can engage in catch-bonds if their self-interactions are carefully tuned, and this mechanism presumably plays a major role in the mechanics of extracellular proteins that share a multidomain character. Furthermore, our biomimetic design clearly shows how one could build and tune macromolecules that exhibit catch-bond characteristics.  相似文献   

14.
The identification and annotation of protein domains provides a critical step in the accurate determination of molecular function. Both computational and experimental methods of protein structure determination may be deterred by large multi-domain proteins or flexible linker regions. Knowledge of domains and their boundaries may reduce the experimental cost of protein structure determination by allowing researchers to work on a set of smaller and possibly more successful alternatives. Current domain prediction methods often rely on sequence similarity to conserved domains and as such are poorly suited to detect domain structure in poorly conserved or orphan proteins. We present here a simple computational method to identify protein domain linkers and their boundaries from sequence information alone. Our domain predictor, Armadillo (http://armadillo.blueprint.org), uses any amino acid index to convert a protein sequence to a smoothed numeric profile from which domains and domain boundaries may be predicted. We derived an amino acid index called the domain linker propensity index (DLI) from the amino acid composition of domain linkers using a non-redundant structure dataset. The index indicates that Pro and Gly show a propensity for linker residues while small hydrophobic residues do not. Armadillo predicts domain linker boundaries from Z-score distributions and obtains 35% sensitivity with DLI in a two-domain, single-linker dataset (within +/-20 residues from linker). The combination of DLI and an entropy-based amino acid index increases the overall Armadillo sensitivity to 56% for two domain proteins. Moreover, Armadillo achieves 37% sensitivity for multi-domain proteins, surpassing most other prediction methods. Armadillo provides a simple, but effective method by which prediction of domain boundaries can be obtained with reasonable sensitivity. Armadillo should prove to be a valuable tool for rapidly delineating protein domains in poorly conserved proteins or those with no sequence neighbors. As a first-line predictor, domain meta-predictors could yield improved results with Armadillo predictions.  相似文献   

15.
Many proteins are composed of several domains that pack together into a complex tertiary structure. Multidomain proteins can be challenging for protein structure modeling, particularly those for which templates can be found for individual domains but not for the entire sequence. In such cases, homology modeling can generate high quality models of the domains but not for the orientations between domains. Small-angle X-ray scattering (SAXS) reports the structural properties of entire proteins and has the potential for guiding homology modeling of multidomain proteins. In this article, we describe a novel multidomain protein assembly modeling method, SAXSDom that integrates experimental knowledge from SAXS with probabilistic Input-Output Hidden Markov model to assemble the structures of individual domains together. Four SAXS-based scoring functions were developed and tested, and the method was evaluated on multidomain proteins from two public datasets. Incorporation of SAXS information improved the accuracy of domain assembly for 40 out of 46 critical assessment of protein structure prediction multidomain protein targets and 45 out of 73 multidomain protein targets from the ab initio domain assembly dataset. The results demonstrate that SAXS data can provide useful information to improve the accuracy of domain-domain assembly. The source code and tool packages are available at https://github.com/jianlin-cheng/SAXSDom .  相似文献   

16.

Background  

This paper presents the use of Support Vector Machines (SVMs) for prediction and analysis of antisense oligonucleotide (AO) efficacy. The collected database comprises 315 AO molecules including 68 features each, inducing a problem well-suited to SVMs. The task of feature selection is crucial given the presence of noisy or redundant features, and the well-known problem of the curse of dimensionality. We propose a two-stage strategy to develop an optimal model: (1) feature selection using correlation analysis, mutual information, and SVM-based recursive feature elimination (SVM-RFE), and (2) AO prediction using standard and profiled SVM formulations. A profiled SVM gives different weights to different parts of the training data to focus the training on the most important regions.  相似文献   

17.
Information of protein quaternary structure can help to understand the biological functions of proteins. Because wet-lab experiments are both time-consuming and costly, we adopt a novel computational approach to assign proteins into 10 kinds of quaternary structures. By coding each protein using its biochemical and physicochemical properties, feature selection was carried out using Incremental Feature Selection (IFS) method. The thus obtained optimal feature set consisted of 97 features, with which the prediction model was built. As a result, the overall prediction success rate is 74.90% evaluated by Jackknife test, much higher than the overall correct rate of a random guess 10% (1/10). The further feature analysis indicates that protein secondary structure is the most contributed feature in the prediction of protein quaternary structure.  相似文献   

18.
Afridi TH  Khan A  Lee YS 《Amino acids》2012,42(4):1443-1454
Mitochondria are all-important organelles of eukaryotic cells since they are involved in processes associated with cellular mortality and human diseases. Therefore, trustworthy techniques are highly required for the identification of new mitochondrial proteins. We propose Mito-GSAAC system for prediction of mitochondrial proteins. The aim of this work is to investigate an effective feature extraction strategy and to develop an ensemble approach that can better exploit the advantages of this feature extraction strategy for mitochondria classification. We investigate four kinds of protein representations for prediction of mitochondrial proteins: amino acid composition, dipeptide composition, pseudo amino acid composition, and split amino acid composition (SAAC). Individual classifiers such as support vector machine (SVM), k-nearest neighbor, multilayer perceptron, random forest, AdaBoost, and bagging are first trained. An ensemble classifier is then built using genetic programming (GP) for evolving a complex but effective decision space from the individual decision spaces of the trained classifiers. The highest prediction performance for Jackknife test is 92.62% using GP-based ensemble classifier on SAAC features, which is the highest accuracy, reported so far on the Mitochondria dataset being used. While on the Malaria Parasite Mitochondria dataset, the highest accuracy is obtained by SVM using SAAC and it is further enhanced to 93.21% using GP-based ensemble. It is observed that SAAC has better discrimination power for mitochondria prediction over the rest of the feature extraction strategies. Thus, the improved prediction performance is largely due to the better capability of SAAC for discriminating between mitochondria and non-mitochondria proteins at the N and C terminus and the effective combination capability of GP. Mito-GSAAC can be accessed at . It is expected that the novel approach and the accompanied predictor will have a major impact to Molecular Cell Biology, Proteomics, Bioinformatics, System Biology, and Drug Development.  相似文献   

19.
Tordai H  Nagy A  Farkas K  Bányai L  Patthy L 《The FEBS journal》2005,272(19):5064-5078
Originally the term 'protein module' was coined to distinguish mobile domains that frequently occur as building blocks of diverse multidomain proteins from 'static' domains that usually exist only as stand-alone units of single-domain proteins. Despite the widespread use of the term 'mobile domain', the distinction between static and mobile domains is rather vague as it is not easy to quantify the mobility of domains. In the present work we show that the most appropriate measure of the mobility of domains is the number of types of local environments in which a given domain is present. Ranking of domains with respect to this parameter in different evolutionary lineages highlighted marked differences in the propensity of domains to form multidomain proteins. Our analyses have also shown that there is a correlation between domain size and domain mobility: smaller domains are more likely to be used in the construction of multidomain proteins, whereas larger domains are more likely to be static, stand-alone domains. It is also shown that shuffling of a limited set of modules was facilitated by intronic recombination in the metazoan lineage and this has contributed significantly to the emergence of novel complex multidomain proteins, novel functions and increased organismic complexity of metazoa.  相似文献   

20.
基于SVM 的药物靶点预测方法及其应用   总被引:1,自引:0,他引:1       下载免费PDF全文
目的:基于已知药物靶点和潜在药物靶点蛋白的一级结构相似性,结合SVM技术研究新的有效的药物靶点预测方法。方法:构造训练样本集,提取蛋白质序列的一级结构特征,进行数据预处理,选择最优核函数,优化参数并进行特征选择,训练最优预测模型,检验模型的预测效果。以G蛋白偶联受体家族的蛋白质为预测集,应用建立的最优分类模型对其进行潜在药物靶点挖掘。结果:基于SVM所建立的最优分类模型预测的平均准确率为81.03%。应用最优分类器对构造的G蛋白预测集进行预测,结果发现预测排位在前20的蛋白质中有多个与疾病相关。特别的,其中有两个G蛋白在治疗靶点数据库(TTD)中显示已作为临床试验的药物靶点。结论:基于SVM和蛋白质序列特征的药物靶点预测方法是有效的,应用该方法预测出的潜在药物靶点能够为发现新的药靶提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号