首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Fifty strains representing 38 species of the genus Legionella were examined for biofilm formation on glass, polystyrene, and polypropylene surfaces in static cultures at 25 degrees C, 37 degrees C, and 42 degrees C. Strains of Legionella pneumophila, the most common causative agent of Legionnaires' disease, were found to have the highest ability to form biofilms among the test strains. The quantity, rate of formation, and adherence stability of L. pneumophila biofilms showed considerable dependence on both temperature and surface material. Glass and polystyrene surfaces gave between two- to sevenfold-higher yields of biofilms at 37 degrees C or 42 degrees C than at 25 degrees C; conversely, polypropylene surface had between 2 to 16 times higher yields at 25 degrees C than at 37 degrees C or 42 degrees C. On glass surfaces, the biofilms were formed faster but attached less stably at 37 degrees C or 42 degrees C than at 25 degrees C. Both scanning electron microscopy and confocal laser scanning microscopy revealed that biofilms formed at 37 degrees C or 42 degrees C were mycelial mat like and were composed of filamentous cells, while at 25 degrees C, cells were rod shaped. Planktonic cells outside of biofilms or in shaken liquid cultures were rod shaped. Notably, the filamentous cells were found to be multinucleate and lacking septa, but a recA null mutant of L. pneumophila was unaffected in its temperature-regulated filamentation within biofilms. Our data also showed that filamentous cells were able to rapidly give rise to a large number of short rods in a fresh liquid culture at 37 degrees C. The possibility of this biofilm to represent a novel strategy by L. pneumophila to compete for proliferation among the environmental microbiota is discussed.  相似文献   

2.
Abstract Water and biofilms from two hydrothermal areas in central Portugal, and one hydrothermal area in New Mexico, USA, were examined for Legionella spp. In general, Legionella spp were isolated in higher numbers from biofilms than from water, although one biofilm with a temperature of 50°C, did not yield isolates of these organisms. In one area L. pneumophila serogroup (sg) 3 constituted the major population in the thermal discharge by the stream and the biofilm below it; however, L. pneumophila sg 1 was predominant in the sediments of the stream bed with minor thermal springs below the main discharge and in the water downstream. No Legionellae were isolated from water upstream of the hydrothermal area indicating that the thermal area was the source of the organisms in the stream water. In the other two hydrothermal areas, L. pneumophila sg 1 constituted the major population isolated, whereas L. pneumophila sg 3 was absent or isolated in low numbers. Isolates of L. micdadei were also recovered from one hydrothermal area, while ‘ L. londoniensis ’ was isolated from another.  相似文献   

3.
Biofilms containing diverse microflora were developed in tap water on glass and polybutylene surfaces. Legionella pneumophila within the biofilms was labelled with monoclonal antibodies and visualized with immunogold or fluorescein isothiocyanate conjugates. Development of a differential interference contrast technique in an episcopic mode enabled simultaneous visualization of the total biofilm flora and gold-labelled legionellae. The legionellae occurred in microcolonies within the biofilm in the absence of amoebae, suggesting that the bacterial consortium was supplying sufficient nutrients to enable legionellae to grow extracellularly within the biofilm.  相似文献   

4.
Biofilms containing diverse microflora were developed in tap water on glass and polybutylene surfaces. Legionella pneumophila within the biofilms was labelled with monoclonal antibodies and visualized with immunogold or fluorescein isothiocyanate conjugates. Development of a differential interference contrast technique in an episcopic mode enabled simultaneous visualization of the total biofilm flora and gold-labelled legionellae. The legionellae occurred in microcolonies within the biofilm in the absence of amoebae, suggesting that the bacterial consortium was supplying sufficient nutrients to enable legionellae to grow extracellularly within the biofilm.  相似文献   

5.
Campylobacter jejuni is a major cause of human diarrheal disease in many industrialized countries and is a source of public health and economic burden. C. jejuni, present as normal flora in the intestinal tract of commercial broiler chickens and other livestock, is probably the main source of human infections. The presence of C. jejuni in biofilms found in animal production watering systems may play a role in the colonization of these animals. We have determined that C. jejuni can form biofilms on a variety of abiotic surfaces commonly used in watering systems, such as acrylonitrile butadiene styrene and polyvinyl chloride plastics. Furthermore, C. jejuni biofilm formation was inhibited by growth in nutrient-rich media or high osmolarity, and thermophilic and microaerophilic conditions enhanced biofilm formation. Thus, nutritional and environmental conditions affect the formation of C. jejuni biofilms. Both flagella and quorum sensing appear to be required for maximal biofilm formation, as C. jejuni flaAB and luxS mutants were significantly reduced in their ability to form biofilms compared to the wild-type strain.  相似文献   

6.
An environmentally representative stagnant-water model was developed to monitor the growth dynamics of Legionella pneumophila. This model was evaluated for three distinct water treatments: untreated tap water, heat-treated tap water, and heat-treated tap water supplemented with Pseudomonas putida, a known biofilm-forming bacterium. Bringing heat-treated tap water after subsequent cooling into contact with a densely formed untreated biofilm was found to promote the number of L. pneumophila by 4 log units within the biofilm, while the use of untreated water only sustained the L. pneumophila levels. Subsequent colonization of the water phase by L. pneumophila was noticed in the heat-treated stagnant-water models, with concentrations as high as 1 x 10(10) mip gene copies L(-1) stagnant water. Denaturing gradient gel electrophoresis in combination with clustering analysis of the prokaryotic community in the water phase and in the biofilm phase suggests that the different water treatments induced different communities. Moreover, boosts of L. pneumophila arising from heat treatment of water were accompanied by shifts to a more diverse eukaryotic community. Stimulated growth of L. pneumophila after heating of the water may explain the rapid recolonization of L. pneumophila in water systems. These results highlight the need for additional or alternative measures to heat treatment of water in order to prevent or abate potential outbreaks of L. pneumophila.  相似文献   

7.
Legionella pneumophila persists for a long time in aquatic habitats, where the bacteria associate with biofilms and replicate within protozoan predators. While L. pneumophila serves as a paradigm for intracellular growth within protozoa, it is less clear whether the bacteria form or replicate within biofilms in the absence of protozoa. In this study, we analyzed surface adherence of and biofilm formation by L. pneumophila in a rich medium that supported axenic replication. Biofilm formation by the virulent L. pneumophila strain JR32 and by clinical and environmental isolates was analyzed by confocal microscopy and crystal violet staining. Strain JR32 formed biofilms on glass surfaces and upright polystyrene wells, as well as on pins of "inverse" microtiter plates, indicating that biofilm formation was not simply due to sedimentation of the bacteria. Biofilm formation by an L. pneumophila fliA mutant lacking the alternative sigma factor sigma(28) was reduced, which demonstrated that bacterial factors are required. Accumulation of biomass coincided with an increase in the optical density at 600 nm and ceased when the bacteria reached the stationary growth phase. L. pneumophila neither grew nor formed biofilms in the inverse system if the medium was exchanged twice a day. However, after addition of Acanthamoeba castellanii, the bacteria proliferated and adhered to surfaces. Sessile (surface-attached) and planktonic (free-swimming) L. pneumophila expressed beta-galactosidase activity to similar extents, and therefore, the observed lack of proliferation of surface-attached bacteria was not due to impaired protein synthesis or metabolic activity. Cocultivation of green fluorescent protein (GFP)- and DsRed-labeled L. pneumophila led to randomly interspersed cells on the substratum and in aggregates, and no sizeable patches of clonally growing bacteria were observed. Our findings indicate that biofilm formation by L. pneumophila in a rich medium is due to growth of planktonic bacteria rather than to growth of sessile bacteria. In agreement with this conclusion, GFP-labeled L. pneumophila initially adhered in a continuous-flow chamber system but detached over time; the detachment correlated with the flow rate, and there was no accumulation of biomass. Under these conditions, L. pneumophila persisted in biofilms formed by Empedobacter breve or Microbacterium sp. but not in biofilms formed by Klebsiella pneumoniae or other environmental bacteria, suggesting that specific interactions between the bacteria modulate adherence.  相似文献   

8.
A two-stage chemostat model of a plumbing system was developed, with tap water as the sole nutrient source. The model system was populated with a naturally occurring inoculum derived from an outbreak of Legionnaires' disease and containing Legionella pneumophila along with associated bacteria and protozoa. The model system was used to develop biofilms on the surfaces of a range of eight plumbing materials under controlled, reproducible conditions. The materials varied in their abilities to support biofilm development and the growth of L. pneumophila. Elastomeric surfaces had the most abundant biofilms supporting the highest numbers of L. pneumophila CFU; this was attributed to the leaching of nutrients for bacterial growth from the materials. No direct relationship existed between total biofouling and the numbers of L. pneumophila CFU.  相似文献   

9.
This study examined whether Legionella pneumophila is able to thrive on heat-killed microbial cells (necrotrophy) present in biofilms or heat-treated water systems. Quantification by means of plate counting, real-time PCR, and flow cytometry demonstrated necrotrophic growth of L. pneumophila in water after 96 h, when at least 100 dead cells are available to one L. pneumophila cell. Compared to the starting concentration of L. pneumophila, the maximum observed necrotrophic growth was 1.89 log units for real-time PCR and 1.49 log units for plate counting. The average growth was 1.57 +/- 0.32 log units (n = 5) for real-time PCR and 1.14 +/- 0.35 log units (n = 5) for plate counting. Viability staining and flow cytometry showed that the fraction of living cells in the L. pneumophila population rose from the initial 54% to 82% after 96 h. Growth was measured on heat-killed Pseudomonas putida, Escherichia coli, Acanthamoeba castellanii, Saccharomyces boulardii, and a biofilm sample. Gram-positive organisms did not result in significant growth of L. pneumophila, probably due to their robust cell wall structure. Although necrotrophy showed lower growth yields compared to replication within protozoan hosts, these findings indicate that it may be of major importance in the environmental persistence of L. pneumophila. Techniques aimed at the elimination of protozoa or biofilm from water systems will not necessarily result in a subsequent removal of L. pneumophila unless the formation of dead microbial cells is minimized.  相似文献   

10.
Campylobacter jejuni is a major cause of human diarrheal disease in many industrialized countries and is a source of public health and economic burden. C. jejuni, present as normal flora in the intestinal tract of commercial broiler chickens and other livestock, is probably the main source of human infections. The presence of C. jejuni in biofilms found in animal production watering systems may play a role in the colonization of these animals. We have determined that C. jejuni can form biofilms on a variety of abiotic surfaces commonly used in watering systems, such as acrylonitrile butadiene styrene and polyvinyl chloride plastics. Furthermore, C. jejuni biofilm formation was inhibited by growth in nutrient-rich media or high osmolarity, and thermophilic and microaerophilic conditions enhanced biofilm formation. Thus, nutritional and environmental conditions affect the formation of C. jejuni biofilms. Both flagella and quorum sensing appear to be required for maximal biofilm formation, as C. jejuni flaAB and luxS mutants were significantly reduced in their ability to form biofilms compared to the wild-type strain.  相似文献   

11.
The need for protozoa for the proliferation of Legionella pneumophila in aquatic habitats is still not fully understood and is even questioned by some investigators. This study shows the in vivo growth of L. pneumophila in protozoa in aquatic biofilms developing at high concentrations on plasticized polyvinyl chloride in a batch system with autoclaved tap water. The inoculum, a mixed microbial community including indigenous L. pneumophila originating from a tap water system, was added in an unfiltered as well as filtered (cellulose nitrate, 3.0-microm pore size) state. Both the attached and suspended biomasses were examined for their total amounts of ATP, for culturable L. pneumophila, and for their concentrations of protozoa. L. pneumophila grew to high numbers (6.3 log CFU/cm2) only in flasks with an unfiltered inoculum. Filtration obviously removed the growth-supporting factor, but it did not affect biofilm formation, as determined by measuring ATP. Cultivation, direct counting, and 18S ribosomal DNA-targeted PCR with subsequent sequencing revealed the presence of Hartmannella vermiformis in all flasks in which L. pneumophila multiplied and also when cycloheximide had been added. Fluorescent in situ hybridization clearly demonstrated the intracellular growth of L. pneumophila in trophozoites of H. vermiformis, with 25.9% +/- 10.5% of the trophozoites containing L. pneumophila on day 10 and >90% containing L. pneumophila on day 14. Calculations confirmed that intracellular growth was most likely the only way for L. pneumophila to proliferate within the biofilm. Higher biofilm concentrations, measured as amounts of ATP, gave higher L. pneumophila concentrations, and therefore the growth of L. pneumophila within engineered water systems can be limited by controlling biofilm formation.  相似文献   

12.
13.
AIMS: Monitoring of microbial changes during and after application of various disinfection treatments in a model domestic water system. METHODS AND RESULTS: A pilot-scale domestic water system consisting of seven galvanized steel re-circulation loops and copper dead legs was constructed. Culture techniques, confocal laser scanning microscopy after fluorescent in situ hybridization and viability staining with the BacLight LIVE/DEAD kit were used for planktonic and biofilm flora monitoring. Before starting the treatments, the system was highly contaminated with Legionella pneumophila and biofilm populations mainly consisted of beta-proteobacteria. In the water and the biofilm of the loops, continuous application of chlorine dioxide (0.5 mg l(-1)), or chlorine (2.5 mg l(-1)) were very effective in reducing the microbial flora, including L. pneumophila. Heterotrophic bacteria, although strongly reduced, were still detectable after ozone application (0.5 mg l(-1)), whereas with monochloramine (0.5 mg l(-1)) and copper-silver ionization (0.8/0.02 mg l(-1)), the contamination remained significantly higher. Monochloramine and copper-silver did not remove the biofilm. During copper-silver application, Legionella re-growth was observed. Only chlorine dioxide led to detectable effects in the dead leg. Amoebae could not be eliminated, and after interrupting the treatments, L. pneumophila quickly recovered their initial levels, in all cases. CONCLUSIONS: Chlorine dioxide, applied as a continuous treatment, was identified in this study as the most efficient for controlling L. pneumophila in a domestic water system. Chlorine dioxide showed a longer residual activity, leading to improved performance in the dead leg. Amoebae resisted to all the treatments applied and probably acted as reservoirs for L. pneumophila, allowing a quick re-colonization of the system once the treatments were interrupted. SIGNIFICANCE AND IMPACT OF THE STUDY: Control of microbial contamination requires maintenance of a constant disinfectant residual throughout the water system. Treatment strategies targeting free-living amoebae should lead to improved control of L. pneumophila. Such treatment strategies still have to be investigated.  相似文献   

14.
Abstract A gas chromatographic-mass spectrometric method was used to detect Legionella pneumophila in biofilms in potable water containing a complex microbial consortium. The unique 3-hydroxy and 2,3-dihydroxy fatty acids of the L. pneumophila lipopolysaccharides (LPS) were detected in both the planktonic phase of the continuous culture model and in the biofilms forming on both copper and polyethylene substrata. The technique confirmed that lower numbers of Legionella colonised and grew on copper in comparison to polyethylene and offers promise for routine detection of Legionella in biofilms in the environment.  相似文献   

15.
Ability of biofilm formation was studied in 28 strains belonging to 12 species of Legionella. Optimal conditions for formation of biofilms were ascertained using reference strain Legionella pneumophila Philadelphia 1. Comparative assessment of the ability of Legionella spp. to form biofilms was performed by cultivation in proteosopepton broth (for 96 hours) and in water (for up to 2 weeks). Highest rates of biofilm formation were observed for strains of L. pneumophila and L. longbeachae. Between L. pneumophila strains the most prominent ability to form biofilms was observed in newly isolated strains BLR-05 and TOTAL 1. Opportunity to use different ability of Legionella species to biofilm formation as a epidemiologically significant marker and for modeling of biofilms of Legionella in association with other microorganisms was discussed.  相似文献   

16.
The opportunistic pathogen Mycobacterium avium is a significant inhabitant of biofilms in drinking water distribution systems. M. avium expresses on its cell surface serovar-specific glycopeptidolipids (ssGPLs). Studies have implicated the core GPL in biofilm formation by M. avium and by other Mycobacterium species. In order to test this hypothesis in a directed fashion, three model systems were used to examine biofilm formation by mutants of M. avium with transposon insertions into pstAB (also known as nrp and mps). pstAB encodes the nonribosomal peptide synthetase that catalyzes the synthesis of the core GPL. The mutants did not adhere to polyvinyl chloride plates; however, they adhered well to plastic and glass chamber slide surfaces, albeit with different morphologies from the parent strain. In a model that quantified surface adherence under recirculating water, wild-type and pstAB mutant cells accumulated on stainless steel surfaces in equal numbers. Unexpectedly, pstAB mutant cells were >10-fold less abundant in the recirculating-water phase than parent strain cells. These observations show that GPLs are directly or indirectly required for colonization of some, but by no means all, surfaces. Under some conditions, GPLs may play an entirely different role by facilitating the survival or dispersal of nonadherent M. avium cells in circulating water. Such a function could contribute to waterborne M. avium infection.  相似文献   

17.
AIMS: An evaluation was made of the prevalence of Legionella species in hot water distribution systems in the city of Bologna (Italy) and their possible association with bacterial contamination (total counts and Pseudomonadaceae) and the chemical characteristics of the water (pH, Ca, Mg, Fe, Mn, Cu, Zn and Total Organic Carbon, TOC). METHODS AND RESULTS: A total of 137 hot water samples were analysed: 59 from the same number of private apartments, 46 from 11 hotels and 32 from five hospitals, all using the same water supply. Legionella species were detected in 40.0% of the distribution systems, L. pneumophila in 33.3%. The highest colonization was found in the hot water systems of hospitals (93.7% of samples positive for L. pneumophila, geometric mean: 2.4 x 10(3) CFU l(-1)), followed by the hotels (60.9%, geometric mean: 127.3 CFU l(-1)) and the apartments with centralized heating (41.9%, geometric mean: 30.5 CFU l(-1)). The apartments with independent heating systems showed a lower level of colonization (3.6% for Legionella species), with no evidence of L. pneumophila. Correlation analysis suggests that copper exerts an inhibiting action, while the TOC tends to favour the development of L. pneumophila. No statistically significant association was seen with Pseudomonadaceae, which were found at lower water temperatures than legionellae and in individual distribution points rather than in the whole network. CONCLUSIONS: The water recirculation system used by centralized boilers enhances the spreading of legionellae throughout the whole network, both in terms of the number of colonized sites and in terms of CFU count. SIGNIFICANCE AND IMPACT OF THE STUDY: Differences in Legionella colonization between types of buildings are not due to a variation in water supply but to other factors. Besides the importance of water recirculation, the study demonstrates the inhibiting action of copper and the favourable action of TOC on the development of L. pneumophila.  相似文献   

18.
The surface physicochemical properties of Listeria monocytogenes LO28 under different conditions (temperature and growth phase) were determined by use of microelectrophoresis and microbial adhesion to solvents. The effect of these parameters on adhesion and biofilm formation by L. monocytogenes LO28 on hydrophilic (stainless steel) and hydrophobic (polytetrafluoroethylene [PTFE]) surfaces was assessed. The bacterial cells were always negatively charged and possessed hydrophilic surface properties, which were negatively correlated with growth temperature. The colonization of the two surfaces, monitored by scanning electron microscopy, epifluorescence microscopy, and cell enumeration, showed that the strain had a great capacity to colonize both surfaces whatever the incubation temperature. However, biofilm formation was faster on the hydrophilic substratum. After 5 days at 37 or 20 degrees C, the biofilm structure was composed of aggregates with a three-dimensional shape, but significant detachment took place on PTFE at 37 degrees C. At 8 degrees C, only a bacterial monolayer was visible on stainless steel, while no growth was observed on PTFE. The growth phase of bacteria used to inoculate surfaces had a significant effect only in some cases during the first steps of biofilm formation. The surface physicochemical properties of the strain are correlated with adhesion and surface colonization.  相似文献   

19.
The survival of a strain of Legionella pneumophila (Lp-1) inoculated in artificial water microcosms was investigated with and without an amoebal host and varying environmental conditions, such as biofilm formation, amount of nutrients and incubation temperature. The results obtained using short (micromethod) and long (macromethod) term methods showed that L. pneumophila Lp-1 dies rapidly at 4 degrees C in the "macromethod" assay. When the same temperature (4 degrees C) was applied to the "micromethod" assay, L. pneumophila Lp-1 survived for three weeks, although it progressively decreased. At an incubation temperature of 30 degrees C, the aquatic environment was more favourable and better survival emerged in the "macromethod"; in contrast, this favourable temperature condition did not improve the survival of L. pneumophila Lp-1 cultured with the "micromethod". The role of the protozoa Acanthamoeba polyphaga proved to be indispensable for legionella survival only when environmental conditions become unfavourable.  相似文献   

20.
Flavobacterium columnare is a bacterial fish pathogen that affects many freshwater species worldwide. The natural reservoir of this pathogen is unknown, but its resilience in closed aquaculture systems posits biofilm as the source of contagion for farmed fish. The objectives of this study were (i) to characterize the dynamics of biofilm formation and morphology under static and flow conditions and (ii) to evaluate the effects of temperature, pH, salinity, hardness, and carbohydrates on biofilm formation. Nineteen F. columnare strains, including representatives of all of the defined genetic groups (genomovars), were compared in this study. The structure of biofilm was characterized by light microscopy, confocal laser scanning microscopy, and scanning electron microscopy. F. columnare was able to attach to and colonize inert surfaces by producing biofilm. Surface colonization started within 6 h postinoculation, and microcolonies were observed within 24 h. Extracellular polysaccharide substances and water channels were observed in mature biofilms (24 to 48 h). A similar time course was observed when F. columnare formed biofilm in microfluidic chambers under flow conditions. The virulence potential of biofilm was confirmed by cutaneous inoculation of channel catfish fingerlings with mature biofilm. Several physicochemical parameters modulate attachment to surfaces, with the largest influence being exerted by hardness, salinity, and the presence of mannose. Maintenance of hardness and salinity values within certain ranges could prevent biofilm formation by F. columnare in aquaculture systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号