首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
2.
《Journal of molecular biology》2019,431(24):5039-5062
Membrane lipids are essential for life; however, research on how cells regulate cell lipid composition has been falling behind for quite some time. One reason was the difficulty in establishing analytical methods able to cope with the cell lipid repertoire. Development of a diversity of mass spectrometry-based technologies, including imaging mass spectrometry, has helped to demonstrate beyond doubt that the cell lipidome is not only greatly cell type dependent but also highly sensitive to any pathophysiological alteration such as differentiation or tumorigenesis. Interestingly, the current popularization of metabolomic studies among numerous disciplines has led many researchers to rediscover lipids. Hence, it is important to underscore the peculiarities of these metabolites and their metabolism, which are both radically different from protein and nucleic acid metabolism. Once differences in lipid composition have been established, researchers face a rather complex scenario, to investigate the signaling pathways and molecular mechanisms accounting for their results. Thus, a detail often overlooked, but of crucial relevance, is the complex networks of enzymes involved in controlling the level of each one of the lipid species present in the cell. In most cases, these enzymes are redundant and promiscuous, complicating any study on lipid metabolism, since the modification of one particular lipid enzyme impacts simultaneously on many species. Altogether, this review aims to describe the difficulties in delving into the regulatory mechanisms tailoring the lipidome at the activity, genetic, and epigenetic level, while conveying the numerous, stimulating, and sometimes unexpected research opportunities afforded by this type of studies.  相似文献   

3.
Sternal pores are important features for identification of male thrips, especially within the subfamily Thripinae. They vary in shape, size and distribution even between species of one genus. Their functional role is speculated to be that of sex- and/or aggregation pheromone production. Yet, sexual aggregations are not reported in Echinothrips americanus, known to have sternal pores, while we observed aggregations in Megalurothrips sjostedti, previously reported to lack them.We examined the sternal glands and pores of the thripine species E. americanus and M. sjostedti males, in comparison with those of Frankliniella occidentalis using light microscopy, as well as scanning and transmission electron microscopy. Pore plates of F. occidentalis were ellipsoid and medial on sternites III–VII, while in E. americanus they were distributed as multiple micro pore plates on sternites III–VIII. In M. sjostedti they appeared as an extremely small pore in front of the posterior margin of each of sternites IV–VII. Pore plate and pore plate area were distributed similarly on sternites III–VII in F. occidentalis. However, in E. americanus the total pore plate area increased significantly from sternites III to VIII. Ultrastructure of cells associated with sternal glands showed typical characteristics of gland cells that differ in size, shape and number. The function of sternal glands is further discussed on the basis of morphological comparisons with other thrips species.  相似文献   

4.
5.
6.
To promote the decomposition of sugarcane bagasse (SCB) for conversion into value-added products and to reduce waste, the capability of fungal mixes (FMs) to degrade SCB was examined. A total of 169 isolates from SCB and non-SCB were categorized as thermotolerant and thermoresistant. Thirty-six fungal candidates were screened for the presence of polyphenol oxidase, endoglucanase (EDN) and xylanase (XLN) activities, and EDN and XLN activities were quantitated. Five identified isolates (Aspergillus flavus AG10; Aspergillus niger AG68 & NB23; and Penicillium citrinum AG93 & AG140) were selected as the best enzyme producers, and 15 moderately to highly xylolytic, cellulolytic and ligninolytic isolates were added to construct FMs. Using a Taguchi design, the top ten reducing sugar-producing FMs (no. 12 showed the maximum amount of reducing sugar, at 2.11 mg g−1, followed by no. 7, 15, 2, 16, 11, 13, 6, 4, & 8) were selected as potential agents for decomposition durations of 1, 2 and 3 months. The maximum decrease in SCB materials compared with the control was generated by FM 6 (9.08% cellulose reduction); FM 13 (21.03% hemicellulose reduction); and FM 16 (9.21% lignin reduction). These results indicate the potential use of SCB as a substrate for synergistic FMs. These FMs could be applied to the large-scale composting of SCB and other related agricultural residues, thus improving the biological pretreatment of lignocellulose.  相似文献   

7.
8.
9.
The aim of this study was to investigate the impact of prolonged storage at 4 °C on survival of cat preantral follicles (PAFs) pre- and post-vitrification. Ovaries were obtained from 12 queens and transported at 4 ºC within 2–6 h. Parts of the ovaries were stored for an additional 24 h or 72 h. The ovarian cortex was dissected, analyzed for viability (neutral red - NR) and morphology (histology - HE and ultrastructural analysis by TEM) and vitrified. We used 2 mm biopsy punches to obtain equal size pieces as the experimental units. After NR assessment, each sample was fixed and embedded in paraffin for HE staining to determine the number of morphologically intact follicles. Another 2 mm piece of ovary was subjected to TEM. NR viability assessment and HE results showed a similar tendency with PAF survival postvitrification even after prolonged cooling at 24 h and 72 h. With TEM, integrity of mitochondria, plasma and basal membranes as well as the presence of pre-granulose cells of PAFs were documented postvitrification for the control group and 24 h prolonged storage group, but not after 72 h storage. Our results showed that cat PAFs can survive prolonged storage followed by vitrification. The described set of techniques are applicable towards creating a gamete bank for endangered feline species.  相似文献   

10.
Transposable elements (TEs) are widespread in insect's genomes. However, there are wide differences in the proportion of the total DNA content occupied by these repetitive sequences in different species. We have analyzed the TEs present in R. prolixus (vector of the Chagas disease) and showed that 3.0% of this genome is occupied by Class II TEs, belonging mainly to the Tc1-mariner superfamily (1.65%) and MITEs (1.84%). Interestingly, most of this genomic content is due to the expansion of two subfamilies belonging to: irritans himar, a well characterized subfamily of mariners, and prolixus1, one of the two novel subfamilies here described. The high amount of sequences in these subfamilies suggests that bursts of transposition occurred during the life cycle of this family. In an attempt to characterize these elements, we performed an in silico analysis of the sequences corresponding to the DDD/E domain of the transposase gene. We performed an evolutionary analysis including network and Bayesian coalescent-based methods in order to infer the dynamics of the amplification, as well as to estimate the time of the bursts identified in these subfamilies. Given our data, we hypothesized that the TE expansions occurred around the time of speciation of R. prolixus around 1.4 mya. This suggestion lays on the “Transposon Model” of TE evolution, in which the members of a TE population that are replicative active are present at multiple loci in the genome, but their replicative potential varies, and of the “Life Cycle Model” that states that when present-day TEs have been involved in amplification bursts, they share an ancestral copy that dates back to this initial amplification.  相似文献   

11.
The FGLamide allatostatins (FGL/ASTs) are a family of neuropeptides with pleiotropic functions, including the inhibition of juvenile hormone (JH) biosynthesis, vitellogenesis and muscle contraction. In the cockroach, Diploptera punctata, thirteen FGLa/ASTs and one allatostatin receptor (AstR) have been identified. However, the mode of action of ASTs in regulation of JH biosynthesis remains unclear. Here, we determined the tissue distribution of Dippu-AstR. And we expressed Dippu-AstR in vertebrate cell lines, and activated the receptor with the Dippu-ASTs. Our results show that all thirteen ASTs activated Dippu-AstR in a dose dependent manner, albeit with different potencies. Functional analysis of AstR in multiple cell lines demonstrated that activation of the AstR receptor resulted in elevated levels of Ca2+ and cAMP, which suggests that Dippu-AstR can act through the Gαq and Gαs protein pathways. The study on the target of AST action reveals that FGL/AST affects JH biosynthesis prior to the entry of acetyl-CoA into the JH biosynthetic pathway.  相似文献   

12.
The complete mitochondrial genome (mitogenome) of Pycnonotus xanthorrhous was sequenced via next generation sequencing. The full length of the circular genome is 16,952 bp. It consists of 37 typical animal mitochondrial genes including 13 protein-coding genes (PCGs), 22 transfer RNA (tRNA) and 2 ribosomal RNA (rRNA) genes. P. xanthorrhous also contains one control region (CR) and one pseudo-control region, and shares the identical gene arrangements with sequenced Pycnonotus spp. which differs from the typical vertebrates gene order. Phylogenetic analyses indicates that Passerida sensu stricto contains three major clades and the core Sylvioidea form a monophyletic group. Furthermore, we investigated the evolution of control region within this lineage and revealed the multiple independent origins of duplicate control region.  相似文献   

13.
14.
Autophagy regulates cell survival (or cell death in several cases), whereas apoptosis regulates cell death. However, the relationship between autophagy and apoptosis and the regulative mechanism is unclear. We report that steroid hormone 20-hydroxyecdysone (20E) promotes switching from autophagy to apoptosis by increasing intracellular calcium levels in the midgut of the lepidopteran insect Helicoverpa armigera. Autophagy and apoptosis sequentially occurred during midgut programmed cell death under 20E regulation, in which lower concentrations of 20E induced microtubule-associated protein 1 light chain 3–phosphatidylethanolamine (LC3–II, also known as autophagy-related gene 8, ATG8) expression and autophagy. High concentrations of 20E induced cleavage of ATG5 to NtATG5 and pro-caspase-3 to active caspase-3, which led to a switch from autophagy to apoptosis. Blocking autophagy by knockdown of ATG5, ATG7, or ATG12, or with the autophagy inhibitor 3-methyladenine, inhibited 20E-induced autophagy and apoptosis. Blocking apoptosis by using the apoptosis inhibitor Ac-DEVD-CHO did not prevent 20E-induced autophagy, suggesting that apoptosis relies on autophagy. ATG5 knockdown resulted in abnormal pupation and delayed pupation time. High concentrations of 20E induced high levels of intracellular Ca2+, NtATG5, and active caspase-3, which mediated the switch from autophagy to apoptosis. Blocking 20E-mediated increase of cellular Ca2+ caused a decrease of NtATG5 and active caspase-3 and repressed the transformation from autophagy to apoptosis, thereby promoting cell survival. 20E induces an increase in the concentration of intracellular Ca2+, thereby switching autophagic cell survival to apoptotic cell death.  相似文献   

15.
The acyl-CoA-binding proteins (ACBP) constitute a family of conserved proteins that bind acyl-CoA with high affinity and protect it from hydrolysis. Thus, ACBPs may have essential roles in basal cellular lipid metabolism. The genome of the insect Rhodnius prolixus encodes five ACBP genes similar to those described for other insect species. The qPCR analysis revealed that these genes have characteristic expression profiles in insect organs, suggesting that they have specific roles in insect physiology. Recombinant RpACBP-1 was able to bind acyl-CoA in an in vitro gel-shift assay. Moreover, heterologous RpACBP-1 expression in acb1Δ mutant yeast rescued the multi-lobed vacuole phenotype, indicating that RpACBP-1 acts as a bona fide acyl-CoA-binding protein. RpACBP-1 knockdown using RNAi caused triacylglycerol accumulation in the insect posterior midgut and a reduction in the number of deposited eggs. The amount of stored triacylglycerol was reduced in flight muscle, and the incorporation of fatty acids in cholesteryl esters was increased in the fat body. These results showed that RpACBP-1 participates in several lipid metabolism steps in R. prolixus.  相似文献   

16.
Wood frogs, Rana sylvatica, can undergo prolonged periods of whole body freezing during winter, locking as much as 65–70% of total body water into extracellular ice and imposing both anoxia and dehydration on their cells. Metabolic rate depression (MRD) is an adaptation used by R. sylvatica to survive these environmental stresses, where a finite amount of ATP generated through anaerobic metabolism is directed towards maintaining pro-survival functions, while most ATP-expensive cellular processes are temporarily reduced in function. Pyruvate dehydrogenase (PDH) is a vital metabolic enzyme that links anaerobic glycolysis to the aerobic TCA cycle and is an important regulatory site in MRD. PDH enzymatic activity is regulated via reversible protein phosphorylation in response to energetic demands of cells. This study explored the posttranslational regulation of PDH at three serine sites (S232, S293, S300) on the catalytic E1α subunit along with protein expression of four pyruvate dehydrogenase kinases (PDHK1-4) in response to 24 h Freezing, 8 h Thaw, 24 h Anoxia, and 4 h Recovery in the liver and skeletal muscle of R. sylvatica using Luminex multiplex technology and western immunoblotting. Overall, inhibitory regulation of PDH was evident during 24 h Freezing and 24 h Anoxia, which could indicate a notable reduction in glycoytic flux and carbon entry into the tricarboxylic acid cycle as part of MRD. Furthermore, the expression of PDHK1-4 and phosphorylation of PDH at S232, S293, and S300 were highly tissue and stress-specific, indicative of how different tissues respond differently to stress within the same organism.  相似文献   

17.
Vaccination represents one of the greatest public health triumphs; in part due to the effect of adjuvants that have been included in vaccine preparations to boost the immune responses through different mechanisms. Although a variety of novel adjuvants have been under development, only a limited number have been approved by regulatory authorities for human vaccines. This report reflects the conclusions of a group of scientists from academia, regulatory agencies and industry who attended a conference on the current state of the art in the adjuvant field. Held at the U.S. Pharmacopeial Convention (USP) in Rockville, Maryland, USA, from 18 to 19 April 2013 and organized by the International Association for Biologicals (IABS), the conference focused particularly on the future development of effective adjuvants and adjuvanted vaccines and on overcoming major hurdles, such as safety and immunogenicity assessment, as well as regulatory scrutiny. More information on the conference output can be found on the IABS website, http://www.iabs.org/.  相似文献   

18.
In the silkworm Bombyx mori, three fibroin genes, fibroin-heavy-chain (fibH), fibroin-light-chain (fibL) and fibrohexamerin (fhx), are coexpressed only in the posterior silk gland (PSG) cells, while the sericin genes encoding silk glue proteins are expressed in the middle silk gland (MSG) cells. Silk gland factor-2 (SGF-2) is a PSG-specific activator complex of fibH, composed of a LIM-homeodomain protein, Awh, and its cofactors, Ldb and Lcaf. We investigated whether SGF-2 can activate other fibroin genes using transgenic silkworms. The genes for Ldb and Lcaf were expressed ubiquitously in various tissues, while the gene for Awh was expressed strictly specific in PSG of the wild type silkworms. Misexpression of Awh in transgenic silkworms induced ectopic expression of fibL and fhx as well as fibH in MSG. Coincidently with the induction of fibL and fhx by Awh, binding of SGF-2 to the promoter of fibL and fhx was detected in vitro, and SGF-2 binds directly to the fhx core promoter. Ectopic expression of the fibroin genes was observed at high levels in the middle part of MSG. Moreover, fibL and fhx were induced in the anterior silk gland (ASG) of the transgenic silkworms, but fibH was not. These results indicate that Awh is a key activator of all three fibroin genes, and the activity is probably regulated in conjunction with additional factors.  相似文献   

19.
Silk is a protein of interest to both biological and industrial sciences. The silkworm, Bombyx mori, forms this protein into strong threads starting from soluble silk proteins using a number of biochemical and physical cues to allow the transition from liquid to fibrous silk. A pH gradient has been measured along the gland, but the methodology employed was not able to precisely determine the pH at specific regions of interest in the silk gland. Furthermore, the physiological mechanisms responsible for the generation of this pH gradient are unknown.In this study, concentric ion selective microelectrodes were used to determine the luminal pH of B. mori silk glands. A gradient from pH 8.2 to 7.2 was measured in the posterior silk gland, with a pH 7 throughout the middle silk gland, and a gradient from pH 6.8 to 6.2 in the beginning of the anterior silk gland where silk processing into fibers occurs. The small diameter of the most anterior region of the anterior silk gland prevented microelectrode access in this region. Using a histochemical method, the presence of active carbonic anhydrase was identified in the funnel and anterior silk gland of fifth instar larvae. The observed pH gradient collapsed upon addition of the carbonic anhydrase inhibitor methazolamide, confirming an essential role for this enzyme in pH regulation in the B. mori silk gland. Plastic embedding of whole silk glands allowed clear visualization of the morphology, including the identification of four distinct epithelial cell types in the gland and allowed correlations between silk gland morphology and silk stages of assembly related to the pH gradient.B. mori silk glands have four different epithelial cell types, one of which produces carbonic anhydrase. Carbonic anhydrase is necessary for the mechanism that generates an intraluminal pH gradient, which likely regulates the assembly of silk proteins and then the formation of fibers from soluble silk proteins. These new insights into native silk formation may lead to a more efficient production of artificial or regenerated silkworm silk fibers.  相似文献   

20.
Dietary protein intake is important for skeletal muscle protein synthesis. In this study, we investigated the differential effect of protein sources on hypertrophy of plantaris muscle induced by surgical ablation of gastrocnemius and soleus muscles. Six-week old mice were fed diets containing caseinate, whey, or soy as protein sources for 2 weeks. Plantaris muscle hypertrophy was induced by a unilateral ablation of synergistic muscles after a week. Food intake of soy protein-fed mice was higher than that of caseinate and whey-fed mice, resulting in higher body and fat weights. Plantaris muscle weight in sham-operated mice was not different across the groups. Overload-operated plantaris muscle weight and increased ratio of overloaded muscle to sham-operated muscle weights were higher in caseinate-fed mice than in whey- and soy protein-fed mice, suggesting caseinate as a promising protein source for muscle hypertrophy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号