首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
Investigation of genetic diversity is essential for the selection of parents for crop breeding and conservation of genetic resources. To estimate the genetic variability and population structure in the midst of 45 accessions of sponge gourd brought together from different geographical areas of India, morphological traits and two molecular markers, ISSR and SCoT markers were compared. Principal components analysis of 20 morphological traits showed 72.70% variability and significant positive correlations between fruit traits. All three marker techniques clustered all accessions into two groups with few outgroups. High level of polymorphism was observed among ISSR (74.6%) and SCoT (71.5%) primers. The Bayesian model revealed the hidden grouping and showed admixture type of population. The diversity pattern is influenced by genetic marker used, as different molecular markers have different polymorphism evaluation efficiency. This study can be helpful in amplifying the genetic base and selection of specific traits for breeding. Thus, ISSR and SCoT markers are potential marker for identification in sponge gourd and provide valuable data on its genetic correlation and structure.  相似文献   

2.

Date palm (Phoenix dactylifera) is an important crop plant both from nutritional and economic points of view. The assessment of genetic diversity and population differentiation of date palms are evaluative for its dynamic conservation and sustainable utilization of its genetic diversity. Estimates of genetic diversity based on molecular markers and fruit characteristics were performed in samples of 23 date palms growing in Ahvaz city (Khuzestan province of Iran). Clustering based on fruit morphological features separated the cultivars in different groups. These cultivars differed significantly in morphological features (P =?0.001). Start codon targeted (SCoT) polymorphism markers revealed a good level of genetic variability (10.17 to 45.76%) in these cultivars. Moreover, STRUCTURE analysis revealed the presence of within-population genetic variability. Analysis of molecular variance revealed a significant genetic difference among date palms, while it showed a higher degree of within-cultivar genetic variability compared with that of among-population diversity. Some degree of common shared alleles occurred between date palm cultivars. Gst versus Nm analysis showed that some of the SCoT markers have a high discrimination power and may have a potential local adaptive value. The Mantel test showed a significant association (r =?0.40, P =?0.001) between morphological and genetic distances. Therefore, both morphological and SCoT molecular data can be used in genetic screening of date palms in the available germplasm.

  相似文献   

3.

Background

Knowledge about genetic diversity and relationships among germplasms could be an invaluable aid in diospyros improvement strategies.

Methods

This study was designed to analyze the genetic diversity and relationship of local and natural varieties in Guangxi Zhuang Autonomous Region of China using start codon targeted polymorphism (SCoT) markers. The accessions of 95 diospyros germplasms belonging to four species Diospyros kaki Thunb, D. oleifera Cheng, D. kaki var. silverstris Mak, and D. lotus Linn were collected from different eco-climatic zones in Guangxi and were analyzed using SCoT markers.

Results

Results indicated that the accessions of 95 diospyros germplasms could be distinguished using SCoT markers, and were divided into three groups at similarity coefficient of 0.608; these germplasms that belong to the same species were clustered together; of these, the degree of genetic diversity of the natural D. kaki var. silverstris Mak population was richest among the four species; the geographical distance showed that the 12 natural populations of D. kaki var. silverstris Mak were divided into two groups at similarity coefficient of 0.19. Meanwhile, in order to further verify the stable and useful of SCoT markers in diospyros germplasms, SSR markers were also used in current research to analyze the genetic diversity and relationship in the same diospyros germplasms. Once again, majority of germplasms that belong to the same species were clustered together. Thus SCoT markers were stable and especially useful for analysis of the genetic diversity and relationship in diospyros germplasms.

Discussion

The molecular characterization and diversity assessment of diospyros were very important for conservation of diospyros germplasm resources, meanwhile for diospyros improvement.  相似文献   

4.
Elymus sibiricus is a perennial, self-pollinating, allotetraploid grass native to northern Asia. It is widely used in cultivated pastures and natural grassland due to excellent cold and drought tolerance, good forage quality, and adaptability to a variety of habitats. Information on the genetic diversity and variation among worldwide E. sibiricus germplasm is limited but necessary for germplasm collection, conservation and effective commercial use. In this study we ana lyzed genetic diversity and variation of 69 E. sibiricus accessions from the species range and constructed DNA fingerprinting profiles of 24 accessions using SCoT markers. A total of 173 bands were generated from 16 SCoT primers, 154 of which were polymorphic with 89.0% of polymorphic bands (PPB) occurring at the species level. The PPB within 8 geographical regions ranged from 2.3 to 54.3 %. Genetic variation was greater within geographical regions (57.9%) than between regions (42.1%). The 24 accessions from Qinghai-Tibet Plateau, Mongolia Plateau, Kazakhstan, and Russia were distinguished by their unique fingerprinting. This is the first report using SCoT markers for identifying cultivars and accessions of E. sibiricus. The DNA fingerprinting profiles of E. sibiricus were useful in germplasm collection and identification. The genetic diversity of worldwide E. sibiricus germplasm has been substantially affected by ecogeographical factors. Our results suggest that collecting and evaluating E. sibiricus germplasm from major geographic regions and unique environments broadens the available genetic base and illustrates the range of variation.  相似文献   

5.
Levels of genetic diversity and population genetic structure of a collection of 230 accessions of seven tetraploid Triticum turgidum L. subspecies were investigated using six morphological, nine seed storage protein loci, 26 SSRs and 970 DArT markers. The genetic diversity of the morphological traits and seed storage proteins was always lower in the durum wheat compared to the wild and domesticated emmer. Using Bayesian clustering (K = 2), both of the sets of molecular markers distinguished the durum wheat cultivars from the other tetraploid subspecies, and two distinct subgroups were detected within the durum wheat subspecies, which is in agreement with their origin and year of release. The genetic diversity of morphological traits and seed storage proteins was always lower in the improved durum cultivars registered after 1990, than in the intermediate and older ones. This marked effect on diversity was not observed for molecular markers, where there was only a weak reduction. At K >2, the SSR markers showed a greater degree of resolution than for DArT, with their identification of a greater number of groups within each subspecies. Analysis of DArT marker differentiation between the wheat subspecies indicated outlier loci that are potentially linked to genes controlling some important agronomic traits. Among the 211 loci identified under selection, 109 markers were recently mapped, and some of these markers were clustered into specific regions on chromosome arms 2BL, 3BS and 4AL, where several genes/quantitative trait loci (QTLs) are involved in the domestication of tetraploid wheats, such as the tenacious glumes (Tg) and brittle rachis (Br) characteristics. On the basis of these results, it can be assumed that the population structure of the tetraploid wheat collection partially reflects the evolutionary history of Triticum turgidum L. subspecies and the genetic potential of landraces and wild accessions for the detection of unexplored alleles.  相似文献   

6.
Genetic diversity existing amongst five Eulophia orchid species were assessed using start codon targeted polymorphism (SCoT) and inter-retrotransposon amplified polymorphism (IRAP) markers. A total of 12 SCoT and 5 IRAP markers revealed an average of 63% genetic variability [SCoT?=?63.87; IRAP?=?64.95%] amongst the five Eulophia species investigated. The genetic similarities were assessed using both UPGMA and Bayesian approaches which indicated identical clustering patterns at a genetic similarity level of 50%. Analysis of molecular variance (AMOVA) revealed the presence of a significant degree of genetic variability, mostly compartmentalized within the species level. Amongst the five assessed Eulophia species, E. parviflora was the most genetically diverse representative whereas E. welwitschii was found to be least diverse based on a comparative assessment of various population genetic parameters like Nei’s gene diversity (h) and Shannon’s information index (I) with an overall gene flow value greater than 1. In order to evaluate the comparative marker efficiency, SCoT and IRAP marker data were subjected to various benchmark analyses like marker index, resolving power, polymorphic index content, multiplex ratio and effective multiplex ratio which revealed the robustness of both the marker techniques in assessment of genetic diversity. The present report provides the first molecular insights into the aspects of inter and intra specific genetic variability in medicinally as well as horticulturally important Eulophia species along with addressing their conservation concerns. In a nutshell, the present approach is simple, rapid and cost effective and can be extended for analysis of genetic diversity of other related plant species.  相似文献   

7.
Three molecular markers, including start codon targeted (SCoT) polymorphism, directed amplification of minisatellite-region DNA polymerase chain reaction (DAMD-PCR), and inter simple sequence repeat (ISSR) markers, were compared in terms of their informativeness and efficiency for analysis of genetic relationships among 38 accessions of eight annual Cicer species. The results were as follows: (1) the highest level of detected polymorphism was observed for all three marker types; (2) the rate of diversity for the three marker techniques was approximately equal, and the correlation coefficients of similarity were statistically significant for all three marker systems; (3) the three molecular markers showed relatively similar phylogenetic grouping for examined species. Diversity analysis showed that Cicer reticulatum is the closest wild species to the cultivated chickpea, and this finding supports the hypothesis that C.?reticulatum is the most probable progenitor of the cultivated species. C.?bijugum, C.?judaicum, and C.?pinnatifidum were clustered together, and in other clusters C.?yamashitae and C.?cuneatum were grouped close together. To our knowledge, this is the first detailed comparison of performance among two targeted DNA region molecular markers (SCoT and DAMD-PCR) and the ISSR technique on a set of samples of Cicer. The results provide guidance for future efficient use of these molecular methods in genetic analysis of Cicer.  相似文献   

8.
Thick-skinned melon called Hami melon is the most widely cultivated and exported type of melon in China, and mainly grown in Xinjiang province. Here the genetic variation of 64 melon genotypes including 43 Xinjiang Hami melon accessions was analyzed using 36 simple sequence repeat (SSR) markers yielding 145 alleles. The polymorphic information content of SSR markers ranged from 0.09 to 0.83 (average 0.45). Based on the SSR markers, the melon accessions were clustered into 2 major groups (thick and thin-skinned melons). In addition, the sub-cluster analysis based on SSR markers partitioned different botanical groups, even separating similar agronomic trait groups (Xinjiang landraces var. ameri and var. inodorus). SSR analysis showed that 4 SSR markers (CMBR150, CMCTT144, CMBR84 and CMBR12) produced polymorphic bands of different sizes between these two botanical groups. Those four molecular markers might be related to melon fruit maturing time. A considerably low level of genetic diversity was detected in Xinjiang melon accessions. Genetic distances indicated the relatively narrower genetic base but specific taxonomic status of Xinjiang landraces compared with foreign reference accessions.  相似文献   

9.
Oxalis tuberosa is an important crop cultivated in the highest Andean zones. A germplasm collection is maintained ex situ by CIP, which has developed a morphological markers system to classify the accessions into morphotypes, i.e. groups of morphologically identical accessions. However, their genetic uniformity is currently unknown. The ISSR technique was used in two experiments to determine the relationships between both morphological and molecular markers systems. The intra-morphotype genetic diversity, the spatial structures of the diversity and the congruence between both markers systems were determined. In the first experience, 44 accessions representing five morphotypes, clearly distinct from each other, were analyzed. At the molecular level, the accessions exactly clustered according to their morphotypes. However, a genetic variability was observed inside each morphotype. In the second experiment, 34 accessions gradually differing from each other on morphological base were analyzed. The morphological clustering showed no geographical structure. On the opposite, the molecular analysis showed that the genetic structure was slightly related to the collection site. The correlation between both markers systems was weak but significant. The lack of perfect congruence between morphological and molecular data suggests that the morphological system may be useful for the morphotypes management but is not appropriate to study the genetic structure of the oca. The spatial structure of the genetic diversity can be related to the evolution of the species and the discordance between the morphological and molecular structures may result from similar selection pressures at different places leading to similar forms with a different genetic background.  相似文献   

10.
Bamboo is an important member of the giant grass subfamily Bambusoideae of Poaceae. In this study, 13 bamboo accessions belonging to 5 different genera were subjected to morphological evaluation and sequence-related amplified polymorphism (SRAP) analysis. Unweighted pair-group method of arithmetic averages (UPGMA) cluster analysis was used to construct a dendrogram and to estimate the genetic distances among accessions. On the basis of morphological characteristics, the 13 accessions were distinctly classified into 2 major clusters; 3 varieties, PPYX, PGNK, and PLYY were grouped as cluster A, and 10 accessions were categorized under cluster B. Similarity coefficients ranging from 0.23 to 0.96 indicated abundant genetic variation among bamboo varieties. Approximately 38 SRAP primer combinations generated 186 bands, with 150 bands (80.65%) showing polymorphisms among the 13 accessions. Based on SRAP analysis, 13 bamboo accessions were grouped into 3 major clusters. Five species comprised Cluster I (PASL, PLYY, PTSC, SCNK, and BMAK), which belongs to genus Phyllostachys. Cluster II consisted of 5 varieties, PASL, PLYY, PTSC, SCNK, and BMAK; Cluster III included 3 varieties, PGNK, PLSY, and BMRS. Comparison of the results generated by morphological and SRAP analyses showed that the classification based on SRAP markers was more concordant to the taxonomic results of Gamble than that performed using morphological characters, thus suggesting that SRAP analysis is more efficient in evaluating genetic diversity in bamboos compared to morphological analysis. The SRAP technique serves as an alternative method in assessing genetic diversity within bamboo collections.  相似文献   

11.
The anonymous marker systems microsatellites (simple sequence repeats), amplified fragment length polymorphisms and sequence-specific amplified polymorphisms were compared with the targeted marker systems sequence-related amplified polymorphisms, target region amplification polymorphisms and nucleotide binding site profiling for their ability to describe the genetic diversity in a selected set of 80 Lactuca accessions. The accessions were also described morphologically, and all characterisation methods were evaluated against the genetic diversity assessed by a panel of three crop experts. The morphological data showed a low level of association with the molecular data, and did not display a consistently better relationship with the experts’ assessments in comparison with the molecular data. In general, the diversity described by the targeted molecular markers did not differ markedly from that of the anonymous markers, resulting in only slight differences in performance when related to the expert-based assessments. It was argued that markers targeted to specific gene sequences may still behave as anonymous markers and that the type of marker system used is irrelevant when at low taxonomic levels a clear genetic structure is absent due to intensive breeding activities.  相似文献   

12.
Start Codon Targeted markers were used to establish phylogenetic relationship among seven species from Citrus L. genus. Twelve SCoT primers were used for their ability to reveal polymorphism of the targeted codon of initiation. A total of 132 amplicons were generated and 93.9% of them were polymorphic. The polymorphism information content of 0.884 and the resolving power of 75.22 illustrate the efficiency of the tested SCoT primers in highlighting polymorphism. The average Nei's (1973) gene diversity (0.376), the Schannon's index (0.548) and the Gst parameter (0.346) describe an important polymorphism at the interspecies level in Citrus genus. Analysis of molecular variance suggested significant genetic differences within species. In fact, 84% of variance occurs within the species, whereas 16% of the variation was recorded among the species of Citrus. The limited gene flow (Nm = 0.941) was recognized as a major factor to explain the partition of the observed diversity. The principal coordinates analyses, Neighbor Joining and the Bayesian clustering approach based on the SCoT markers also confirm the discrimination of the species of Citrus. Our results confirm the relevance and suggest the effectiveness of the SCoT markers for assessing genetic diversity, characterization and identification of the species of Citrus.  相似文献   

13.
Maldandi is a popular sorghum variety for post-rainy or rabi cultivation in southern and central states of India, which is predominantly used for food purpose. Over time many landraces have been collected from these states which have vernacular connection with Maldandi. Genetic diversity among 82 Maldandi landraces, collected from such geographical regions was evaluated using both morphological (quantitative and qualitative) and SSR markers. In general, both morphological and SSR diversity revealed wide variability among the accessions studied. Euclidean distances based on 17 quantitative traits classified the accessions into two major clusters with two out groups, while the 19 qualitative traits clustered the accessions in one major cluster with six out groups. Sixteen out of 20 (80%) SSR markers detected polymorphism among the accessions with average PIC value of 0.36. Un-weighted neighbor joining clustering grouped the accessions into three clusters with 46, 16 and 17 accessions, respectively throwing three outliers. Average similarity coefficients of 0.62 and 0.34 based on morphological (qualitative) and SSR data indicated presence of wide variability among the Maldandi landraces. The standard check, M 35?C1 (a selection from the original Maldandi) could not be differentiated from EP 98, LG 2, LG 10, IS 4509 and IS 40791 based on qualitative data alone, while EP 54 and IS 33839 were indistinguishable from M 35?C1 solely using SSR markers. Either of the dendrogram threw unique grouping patterns with some identity. Thirteen promising Maldandi accessions selected based on field performance as well as morphological and molecular diversity could be used in the rabi improvement programme. SSR markers combined with morphological traits may effectively be used for designing breeding strategy and management of biodiversity and conservation of Maldandi genetic resources.  相似文献   

14.
Genetic variation and relationships among 37 cultivars of Ziziphus mauritiana (Lamk.) native of India were analyzed using start codon targeted (SCoT), inter-simple sequence repeats (ISSR), and ribosomal DNA (rDNA) markers. High level of polymorphism among SCoT (61.6%) and ISSR (61%) primers with higher PIC values ranging from 63.1 to 90.4% of SCoT and 47.3 to 88.8% of ISSR primers was recorded. SCoT and ISSR dendrograms revealed similarity coefficients ranging from 0.80 to 0.92 and 0.79 to 0.96, respectively, and clearly delineated all the cultivars of Z. mauritiana into well-supported distinct clusters. Greater Gst signifies higher amount of differentiation observed over multiple loci among seven Z. mauritiana populations. On the other hand, higher gene flow demonstrating a very high migration rate between Z. mauritiana populations indicated higher rates of transfer of alleles or genes from one population to another. The genetic diversity of population 1 (Rajasthan) was the richest among all the seven populations. The largest genetic distance was measured between Maharashtra and West Bengal and the least between Rajasthan and Punjab cultivars. Most of the genetic diversity exists within population rather than among populations. Substantial variation in the ITS-1 region signifies its phylogenetic utility specifically in assessing genetic diversity in Z. mauritiana. The clustering patterns using three molecular marker systems vis-à-vis place of origin exhibited no consistency in grouping of Z. mauritiana cultivars as cultivars from the same place of origin were genetically cataloged into different SCoT, ISSR, and ITS phylogram clusters indicating wide genetic diversity and distribution across agro-climatic zones validating the robustness of marker systems tested.  相似文献   

15.
Genetic diversity and relationship of Lycoris species were investigated using SCoT marker analysis. Of 57 SCoT primers screened, 23 SCoT primers were identified to be high polymorphism. A total of 154 DNA bands with size varied from 0.2 kb to 2.5 kb were amplified, and 131 (82.5%) of them were polymorphic. The average number of polymorphic DNA band per primer was 5.7. Based on Nei's similarity coefficients and genetic distances, total of 43 accessions from 14 species of the genus Lycoris tested were clustered into four groups. Group I consisting of 17 accessions was further divided into two subgroup (Ia and Ib). Subgroup Ia included four species with red flower and 22 (2n) chromosomes. Subgroup Ib contained Lycoris haywardii and Lycoris albiflora which were natural hybrids with oyster white flower. Group II consisted of three species with yellow flower and 16 (2n) chromosomes. Group III was composed of Lycoris Squamigera, Lycoris incarnata and all of hybrids whose flower color was variegated. Group IV only has one species (Lycoris sprengeri) whose petal was a mixture of pink and blue. Notably, the polymorphism generated by SCoT was associated with flower color and chromosome number in this genus plants. The present data provide high-valued information for the management of germplasm, genetic improvement, and conservation of the genetic resources of Lycoris species, important horticulture and medical plants.  相似文献   

16.
Genetic diversity among 25 accessions (involving 8 species, 2 interspecific hybrids and one hybrid mutant) of medicinally important genus Cymbopogon was assessed using 17 PCR-based functional markers, that were designed from members of three different multigene families. We developed 16 primer pairs from two multigene families, 8 primer pairs each from cytochrome P450 and UDP-glucosyltransferase (UGT); one primer pair was derived from 5S rRNA gene family. A total of 119 fragments were visualized, of which 108 (91%) were polymorphic. The level of diversity among different taxa/accessions observed during the present study was, however, low relative to the diversity level obtained due to RAPD markers in two earlier studies. The pattern of genetic diversity neither matched with the known taxonomic classification, nor did it always match with the distribution of chemical constituents of the essential oils available in these accessions. Thus, present investigation though revealed poor correlation between the molecular and chemical diversity, these gene-based markers may prove useful in the development of perfect markers for association mapping of genes involved in controlling agronomically important traits.  相似文献   

17.
To augment conventional crop improvement approaches in cultivated sunnhemp (Crotalaria juncea L.) and other under-utilized Crotalaria species, genetic diversity of 94 genotypes from seven Crotalaria species was studied using 20 Start Codon Targeted (SCoT) markers. High allele number (1.32), polymorphism information content (0.37) and resolving power (6.59) established SCoT as a reliable marker system for genetic analysis in Crotalaria. All the species except Crotalaria retusa L. exhibited high number of SCoT amplicons. Analysis of molecular variance revealed significant variability between (24.0%) the species as well as within species (76.0%). A cluster analysis identified distinct groups corresponding to the seven species and also identified sub-groups within the species. The sunnhemp cultivars were distant from the landraces, suggesting the need of population improvement using distantly related genotypes. Species relationship identified Crotalaria pallida Aiton to be a close relative of C. juncea. The results of principal coordinate analysis were comparable to that of cluster analysis, revealing high genetic variability in sunnhemp and other semi-domesticated Crotalaria species. The study further suggests some measure for conservation of genetic resources and genetic improvement of these species based on the results of diversity analysis.  相似文献   

18.
Persian oak (Quercus brantii Lindl.) is one of the most important woody species of the Zagros forests in Iran. Three molecular marker techniques: start codon targeted (SCoT), inter-simple sequence repeat (ISSR) and inter-retrotransposon amplified polymorphism (IRAP) markers were compared for fingerprinting of 125 individuals of this species collected from different geographical locations of north-west of Iran. A total of 233 bands were amplified by 18 ISSR primers, of which 224 (96.10%) were polymorphic, and 126 polymorphic bands (97.65%) were observed in 129 bands amplified by 10 IRAP primers. Besides, 118 bands were observed for all 10 SCoT primers, of which 113 were polymorphic (95.71%). Average polymorphism information content (PIC) for ISSR, IRAP and SCoT markers was 0.30, 0.32 and 0.38, respectively, and this revealed that SCoT markers were more informative than IRAP and ISSR for the assessment of diversity among individuals. Based on the three different molecular types, cluster analysis revealed that 125 individuals taken for the analysis can be divided into three distinct clusters. The Jaccard's genetic similarity based on the combined data ranged from 0.23 to 0.76. These results suggest that efficiency of SCoT, IRAP and ISSR markers was relatively the same in fingerprinting of individuals. All molecular marker types revealed a low genetic differentiation among populations, indicating the possibility of gene flow between the studied populations. These results have an important implication for Persian oak (Q. brantii) germplasm characterization, improvement, and conservation.  相似文献   

19.
Common wild rice (Oryza rufipogon Griff.), the progenitor of Asian cultivated rice (O. sativa L.), is endangered due to habitat loss. The objectives of this research were to evaluate the genetic diversity of wild rice species in isolated populations and to develop a core collection of representative genotypes for ex situ conservation. We collected 885 wild rice accessions from eight geographically distinct regions and transplanted these accessions in a protected conservation garden over a period of almost two decades. We evaluated these accessions for 13 morphological or phenological traits and genotyped them for 36 DNA markers evenly distributed on the 12 chromosomes. The coefficient of variation of quantitative traits was 0.56 and ranged from 0.37 to 1.06. SSR markers detected 206 different alleles with an average of 6 alleles per locus. The mean polymorphism information content (PIC) was 0.64 in all populations, indicating that the marker loci have a high level of polymorphism and genetic diversity in all populations. Phylogenetic analyses based on morphological and molecular data revealed remarkable differences in the genetic diversity of common wild rice populations. The results showed that the Zengcheng, Gaozhou, and Suixi populations possess higher levels of genetic diversity, whereas the Huilai and Boluo populations have lower levels of genetic diversity than do the other populations. Based on their genetic distance, 130 accessions were selected as a core collection that retained over 90% of the alleles at the 36 marker loci. This genetically diverse core collection will be a useful resource for genomic studies of rice and for initiatives aimed at developing rice with improved agronomic traits.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号