首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Nineteen populations of Clintonia udensis Trautv. & Mey. were examined to quantify genetic diversity and genetic structure by chloroplast DNA microsatellites (cpSSR). Significant cpSSR genetic diversity (PPB = 63.64%) was detected in this species. Tetraploid populations demonstrated approximately the same level of genetic diversity as the diploid ones. A significant differentiation, however, was found between tetraploids and diploids. Most of the sixteen chloroplast haplotypes were limited to a single population. The level of haplotype diversity was high (Hd = 0.915). AMOVA, PCA and Bayesian clustering analysis revealed that there were significant genetic differences among populations. Inter-population genetic distances among population sites correlated significantly with geographic distances. These results indicate that the mixed-mating – breeding system, limited gene flow, environmental stress, and historical factors may be the main factors causing geographical differentiation in the genetic structure of C. udensis.  相似文献   

2.
A thorough understanding of the levels and partitioning of genetic variation across populations and geographical regions of endangered species is a prerequisite to ensure effective conservation and/or restoration activities. Here, we examined chloroplast DNA (cpDNA) trnH-psbA intergenic spacer sequences variation within Notopterygium forbesii, an endangered and endemic perennial herb in China. Sequence data obtained from 141 individuals in 14 populations revealed twenty-two haplotypes. A high level of haplotype diversity (Hd = 0.81) and low level of nucleotide diversity (Pi = 0.0047) were detected. Low genetic differentiation among populations and also among regions was consistently indicated by both hierarchical analyses of molecular variance (AMOVA) and the structure of a neighbor-joining tree. Low level of population differentiation between populations or between regions in cpDNA sequences may be due to effects of the abundance of ancestral haplotype sharing and the high number of private haplotypes fixed for each population. Based on our results, we proposed some conservation strategies.  相似文献   

3.
Tapiscia sinensis is a Tertiary relict and endangered tree species with unique scientific research value and great economic value. In this study, we assessed the genetic diversity of five wild T. sinensis populations from different geographical regions using 10 polymorphic simple sequence repeat (SSR) markers. Our results reveal that the natural populations of T. sinensis have rich genetic diversity (PPL = 100%, He = 0.6904, I = 1.4368), with Shannon's index indicating that the T. sinensis populations are at a relatively stable stage. Of the genetic relationships among populations, the distance between the Hunan Yanling (YL) and Guizhou Xifeng (XF) populations is the smallest (0.4829); the genetic distance between the Shaanxi Ningshan (NS) and the Guizhou Xifeng (XF) populations is the largest (0.9821). A Mantel test shows that there is no correlation among the populations between geographic distance and genetic distance. AMOVA suggest that 33.3% of the genetic variation arose among the populations, while 66.7% of the variation arose within them. The moderate gene flow among populations (Nm = 0.7274) is not sufficient to counteract genetic drift within the populations and result in significant differentiation (Fst = 0.2987). Our results will benefit the conservation and exploitation of T. sinensis and provide a theoretical basis for further study of the evolution and phylogeography of the species.  相似文献   

4.
Eleutheronema tetradactylum is an economically important fish species in China water. To investigate the genetic diversity and describe population structure of it, an 1151 base pair (bp) fragment of the mitochondrial DNA Cytb sequence was analyzed in 120 individuals from four populations in the East China Sea and the South China Sea. A total of 16 haplotypes were defined by 24 variable nucleotide sites. High level of haplotype diversity and low nucleotide diversity were observed in all populations. The results of AMOVA detected that 89.44% of the genetic variation occurred within populations. Significant genetic differentiations were detected among populations (0.05097, P < 0.05), but no large-scale regional differences were detected. Analysis of neutral evolution and mismatch distribution suggested no recent population expansion happened. The present results provided new information for genetic assessment, fishery management and conservation of this species.  相似文献   

5.
Gymnocypris dobula is a commercially important fishery species and mostly distributed in the freshwater of Tibetan plateau. In this study, genetic diversity and intraspecific population differentiation were examined by using mitochondrial DNA D-loop sequences in 97 individuals sampled from three localities (Pali, Lasa and Yanghu) in the Tibetan plateau. Two hundred and fourteen polymorphic sites and 50 haplotypes were defined among the three localities. Genetic diversity analysis showed that the highest genetic diversity level was found in Pali population. Phylogenetic relationships analysis results indicated that closer phylogenetic relationships were found between the Yanghu and Lasa populations. Genetic population differentiation analysis indicated that the majority of variation (84.91%) was attributed to variations among populations and the largest differentiation was found between Pali and Lasa localities (Fst = 0.874, Nm = 0.036). Moreover, the historical demographic events were assessed by implementing the mismatch distribution analysis, Fajima's D test and Fu's Fs test. The results indicated that the Pali population had undergone a demographic expansion, possibly within the last 0.163 MYA (Million Years Ago). Our study firstly identified the population genetic structure of the G. dobula, which could be helpful for artificial breeding, fishery stock identification and resource conservation for this species.  相似文献   

6.
Taxus cuspidata, a tree species with high economic value because of its anticancer properties, is experiencing severe reduction in populations across its range in China. We examined one chloroplast DNA (cpDNA) region (petA-psbE) and 9 nuclear simple sequence repeats (SSRs) loci variations among seven populations in the Changbai Mountains of China to investigate the levels of genetic diversity and population structure. A moderate level of haplotype diversity (HT = 0.625), low nuclear microsatellite diversity (HE = 0.261 ± 0.028), significant genetic differences (FST = 0.065) and substantial gene flow (Nm = 2.806) were observed. Most of the total genetic variation was partitioned within the population (87.8% and 94.0% for cpDNA and SSRs, respectively). Our haplotype identification permutation tests revealed that GST > NST, indicating an absence of phylogeographic structure in T. cuspidata. Neither STRUCTURE nor UPGMA analyses showed any geographic pattern in T. cuspidata populations. By comparatively analyzing the genetic diversity and survival situation of T. cuspidata, our results provide a theoretical foundation for the resource protection, utilization cultivation and breeding of this valuable plant.  相似文献   

7.
To investigate the effect of past climate oscillations on the genetic diversity and demographic history of organisms in the Horqin sandlands, at the margin of the monsoonal zone in northern China. We selected Atraphaxis manshurica as a model and examined the spatial genetic structure in populations of this species across most of its covered range. Five haplotypes were identified on the basis of two chloroplast DNA sequences (psbK-psbI and psbB-psbH) in 127 individuals from 11 natural populations. The total genetic diversity (HT = 0.437) of A. manshurica is low compared with species to the west in arid northwestern China, outside of monsoonal influence. Analysis of molecular variance (AMOVA) indicates that genetic differentiation primarily occurred among two geographical groups distinguished by spatial analysis of molecular variance (SAMOVA). The BEAST molecular clock approach revealed that genetic divergence of the species mostly occurred in middle-late Pleistocene, in accordance with the periodic glacial periods and accompanying monsoonal changes. From species distribution modeling (SDM), we found that the species experienced range contraction and southward retreat during the Last Glacial Maximum (LGM). The current genetic pattern and demographic history may have thus been shaped by glacial–interglacial cycles and changes of habitat since the middle Pleistocene.  相似文献   

8.
Eighteen populations of the endangered aromatic and medicinal plant Mentha cervina (Lamiaceae) were sampled across its natural range, in the western half of the Iberian Peninsula, and inter-simple sequence repeats (ISSRs) markers were used to assess genetic diversity and population structure. M. cervina populations exhibited a relatively low genetic diversity (percentage of polymorphic loci PPB = 14.2–58.3%, Nei's genetic diversity He = 0.135–0.205, Shannon's information index I = 0.08 − 0.33). However, the genetic diversity at species level was relatively high (PPB = 98.3%; He = 0.325; I = 0.23). The results of the analysis of molecular variance indicated very structured populations, with 50% of the variance within populations, 44% among populations and 6% between regions defined by hydrographic basins, in line with the gene differentiation coefficient (GST = 0.532). A Mantel test did not find significant correlation between genetic and geographic distance matrices (r = 0.064), indicating that isolation by distance is not shaping the present genetic structure. The levels and patterns of genetic diversity in M. cervina populations were assumed to result largely from a combination of evolutionary history and its unique biological traits, such as breeding system, low capacity of dispersion, small effective size and habitat fragmentation. The high genetic differentiation among populations indicates the necessity of conserving the maximum possible number of populations. The results also provide information to select sites for ex situ conservation. Optimal harvesting strategies, cultivation and tissue culture should also be developed as soon as possible to guarantee sustainable use of the species under study.  相似文献   

9.
Isoetes sinensis is a critically endangered aquatic quillwort, occurring in two fragmented sites of China (Xiuning county of Anhui; Jiande county of Zhejiang). During a five-year period (2004-2009), the areas and sizes of the two populations diminished dramatically due to intensive human activities. Genetic structure of the species was investigated using simple sequence repeat makers (SSRs). For seven nuclear microsatellites, high levels of genetic diversity were found within populations (HE = 0.324-0.447). Strong genetic differentiation was detected between populations (GST = 0.376), while weak genetic differentiation was found within populations (GST = 0.026-0.080). Notably, in contrast to the source-sink model suggested by previous study (Chen et al., 2009), the migration pattern of I. sinensis along the Xin’an River is best explained by the linear symmetrical non-adjacent flow model (LSNF), which indicates that intensive human activities of recent years have greatly affected the gene exchange pattern among I. sinensis subpopulations.  相似文献   

10.
The miiuy croaker (Miichthys miiuy) is an economically important fish species in China. However, information about population structure in this species is limited. In this study, the genetic diversity and population structure of four populations of Miichthys miiuy were investigated using a mitochondrial DNA (mtDNA) cytochrome c oxidase subunit I (COI) segment of 599 bp. A total of 35 polymorphic sites, and 31 haplotypes were defined in 109 individuals. High levels of haplotype diversity (0.731 ± 0.047) and low nucleotide diversity (0.00278 ± 0.0019) were observed in miiuy croaker populations. The results of AMOVA and pairwise fixation index (FST) analysis did not indicate any significant genetic differentiation among populations obtained from four sites (P > 0.05). In addition, no significant genealogical branches or clusters were recognized in the NJ tree. Analysis of neutral evolution and mismatch distribution suggested that the miiuy croaker might have experienced a recent population expansion.  相似文献   

11.
The genetic diversity and population structure of Schizopygopsis younghusbandi from six sites in the middle reach of the Yarlung Tsangpo River were examined based on mitochondrial DNA cytochrome b (Cyt b) gene and control region (D-loop) sequences. 1141 bp of complete Cyt b sequences and 737 bp of partial D-loop sequences for 153 individuals of S. younghusbandi were obtained by using PCR amplification and sequencing. The results showed that S. younghusbandi populations had high haplotype diversity and low nucleotide diversity, and the population genetic diversity of this species was at a low level. Analysis of molecular variance revealed that most genetic variation occurred within populations, and that genetic differentiation was at low or moderate levels. The network of haplotypes based on Cyt b gene showed that there were two groups within the examined populations. Neutrality tests and mismatch distribution analysis suggested that this species might have undergone a population expansion and the expansion time was estimated to be 0.25–0.46 Ma BP. All these results would be crucial to establish scientific strategies for effective conservation and sustainable exploitation of wild resources of S. younghusbandi.  相似文献   

12.
The Chinese soft-shelled turtle (Pelodiscus sinensis) is one of the most important economical chelonians in the world. To understand the genetic variations of the Chinese soft-shelled turtle in China, 62 individuals were sampled from three localities and 18 polymorphic microsatellite loci tested were used to detect genetic diversity and population structure. Results showed that the genetic diversity of the wild P. sinensis was high. Except for the Wuhu populations, the majority of microsatellite loci are not deviation from Hardy–Weinberg equilibrium in the other two populations. AMOVA analysis indicated that genetic variations occurred mainly within populations (97.4%) rather than among populations (2.6%). The gene flow estimates (Nm) among three geographic populations demonstrated that strong gene flow existed (Nm > 1, mean 6). The present study supported that different habitats, breed turtles escaped, multiple paternity and long evolutionary history may be responsible for the current genetic diversity and differentiation in the wild Chinese soft-shelled turtle.  相似文献   

13.
Psilopeganum sinense is a perennial herb endemic to Three-Gorges Reservoir Area (TGRA) in China. Genetic diversity of this endangered species was assessed by using 11 nuclear microsatellites and three chloroplast microsatellite (cpSSR) markers. A total of 8 haplotypes were identified in a survey of 212 individuals sampled from nine populations encompassing most of the natural range of the species. A low level of genetic diversity was detected: HE = 0.301 for SSR and HE = 0.28 for cpSSR. Populations were highly differentiated from one another: an AMOVA analysis that showed that 56.3% and 68.2% genetic variation resided between populations based on SSR and cpSSR analysis, respectively, and FST and FSTc (0.467 for SSR and 0.644 for cpSSR, respectively) were high. Significant differences were found between estimates of haplotypic differentiation calculated by using unordered alleles (GSTc = 0.857) and ordered alleles (NSTc = 0.728), which indicated the existence of phylogeographical structure in P. sinense. The indirect ratio of pollen flow/seed flow derived from estimates of haplotypic and nuclear DNA differentiation indicated that gene flow via pollen is less efficient than via seed. Two distinct evolutionary lineages (evolutionary significant units, ESUs) were recognized for P. sinense on the basis of both the PCoA and NCA analysis. Sampling strategies for conserving this endangered plant were discussed.  相似文献   

14.
The genetic diversity and population structure of the miiuy croaker (Miichthys miiuy) were investigated. Seventy-six individuals were sampled from six localities of the East China Sea. Genetic variation in DNA sequences was examined from the 5′-end of the mitochondrial DNA control region. High levels of haplotype diversity (h = 0.99333) in the control region were detected, indicating a high level of genetic diversity. A total of 81 polymorphic sites were found, and 65 haplotypes were defined. The results of AMOVA analysis indicated that 97.9% of the genetic variation contained within populations and 2.14% occurred among populations. No significant genealogical branches or clusters were recognized on the NJ tree. Tests of neutral evolution and analysis of mismatch distribution suggested that miiuy croaker might have undergone a population expansion. The knowledge on genetic diversity and genetic structure will be crucial to establish appropriate fishery management stocks for the species.  相似文献   

15.
Two subcosmopolitan species Ruppia maritima and Ruppia cirrhosa are recognized throughout Europe, whereas Ruppia drepanensis is endemic to SW Europe. We aimed at characterizing the geographic structure of the chloroplast DNA haplotype diversity of 56 Ruppia populations across the European part of the Mediterranean. On the basis of five cpDNA markers (total length of 2300 bp) 16 haplotypes were obtained for 1546 individuals. Three populations of R. maritima showed a single haplotype and differed in five insertions/deletions and 16 substitutions from a highly variable R. cirrhosa species complex, which included R. drepanensis. The haplotype diversity of this species complex was much higher in the western Mediterranean basin than in the eastern basin. Analysis of molecular variance (AMOVA) showed significant differentiation of R. cirrhosa between the two basins and also within the western Mediterranean thereby suggesting the latter as an important centre of Ruppia diversity. An isolation-by-distance (IBD) pattern was stronger between the West-East basin populations than within basins. A PCO analysis of the western basin populations indicated a diversity gradient with those of Sardinia as polymorph intermediates. The low diversity within the eastern basin suggests that the observed gradient could be hypothesized as a historical dispersal of only a limited number of haplotypes from west to east.  相似文献   

16.
Identifying factors governing the origin, distribution, and maintenance of Neotropical plant diversity is an enduring challenge. To explore the complex and dynamic historical processes that shaped contemporary genetic patterns for a Central American plant species, we investigated the spatial distribution of chloroplast haplotypes of a geographically and environmentally widespread epiphytic bromeliad with wind‐dispersed seeds, Catopsis nutans, in Costa Rica. We hypothesized that genetic discontinuities occur between northwestern and southwestern Pacific slope populations, resembling patterns reported for other plant taxa in the region. Using non‐coding chloroplast DNA from 469 individuals and 23 populations, we assessed the influences of geographic and environmental distance as well as historical climatic variation on the genetic structure of populations spanning >1200 m in elevation. Catopsis nutans revealed seven haplotypes with low within‐population diversity (mean haplotype richness = 1.2) and moderate genetic structure (FST = 0.699). Pairwise FST was significantly correlated with both geographic and environmental distance. The frequency of dominant haplotypes was significantly correlated with elevation. A cluster of nine Pacific lowland populations exhibited a distinct haplotype profile and contained five of the seven haplotypes, suggesting historical isolation and limited seed‐mediated gene flow with other populations. Paleodistribution models indicated lowland and upland habitats in this region were contiguous through past climatic oscillations. Based on our paleodistribution analysis and comparable prior phylogeographic studies, the genetic signature of recent climatic oscillations are likely superimposed upon the distribution of anciently divergent lineages. Our study highlights the unique phylogeographic history of a Neotropical plant species spanning an elevation gradient.  相似文献   

17.
Gymnodiptychus dybowskii is endemic to Xinjiang, China and has been locally listed as protected animals. To investigate its genetic diversity and structure, specimens were collected from six localities in Yili River system and Kaidu River. Fragments of 1092bp Cyt b gene were sequenced for 116 individuals. A total of 21 haplotypes were found in all samples, and no haplotype was shared between Yili River system and Kaidu River population. Sequence comparisons revealed 123 variable sites, with eight singleton sites and 115 parsimony informative sites. For all the populations examined, the haplotype diversity (h) was 0.8298 ± 0.0226, nucleotide diversity (π) was 0.2521 ± 0.1202, and average number of pairwise nucleotide differences (k) was 275.3369 ± 118.5660. AMOVA analysis showed that the differences were significant for total populations except for Yili River system populations. The pairwise Fst values revealed same conclusion with AMOVA analysis: Kaidu River population was divergent from Yili River system populations. The genetic distance between two groups was 0.108 and the divergence time was estimated at 5.4–6.6 Ma, the uplift of Tianshan Mountain might have separated them and resulted in the genetic differentiation. The neutrality test and mismatch analysis indicated that both two groups of G. dybowskii had went through population expansion, the expansion time of Yili River system and Kaidu River population was estimated at 0.5859–0.7146 Ma and 0.5151–0.6282 Ma, respectively. The climate changes of Qinghai-Tibetan Plateau might have influenced the demographic history of G. dybowskii.  相似文献   

18.
Chinese pine (Pinus tabulaeformis carr.), endemic to China, is a conifer species with extensive and fragmented distribution in North China. In this study, the genetic diversity and structure of 20 natural populations of this species were investigated using amplified fragment length polymorphism (AFLP) markers. A total of 445 fragments were revealed with 8 pairs of primers, 379 (85.17%) of which were polymorphic. A moderate level of genetic diversity was detected at the species level (Shannon's information index I = 0.356, Nei's gene diversity HE = 0.271) and at the population level (I = 0.219, HE = 0.206). Most of genetic variation was within populations while a considerable level of genetic differentiation was detected (GST = 0.352, ФST = 0.304). The high differentiation could be attributed to the complex and fragmented habitats, and a limited gene flow among populations (Nm = 0.572). The Mantel test indicated that there was significant correlation (r = 0.455, P < 0.001) between Nei's genetic distance and geographical distance among all the populations. The results suggested that proper countermeasures should be taken to prevent the habitat further deterioration and maintain the genetic diversity of this species.  相似文献   

19.
Praxelis clematidea (Asteraceae), a plant species native to South America, is a noxious weed in southern China. We examined the genetic variation and population structure of 12 populations (76 individuals) of P. clematidea from Fujian, Guangdong, and Hainan Provinces in China using inter-simple sequence repeat (ISSR) analysis. From an initial set of 69 ISSR primers, 10 were selected which yielded 80 reproducible bands. Polymorphic bands (P) were 100%, Shannon's information index (I) was 0.4226, and Nei's gene diversity (H) was 0.2791. We infer that the high levels of genetic diversity exhibited by P. clematidea may have contributed to its invasiveness. Gene flow among populations was 2.4930, which has led to homogenization. The coefficient of population differentiation (Gst = 0.1671) indicated low levels of genetic variation among populations and high levels of genetic polymorphism within populations. There was a negative correlation between population elevation and genetic diversity, while there was a significant positive correlation between genetic distance and geographic distance based on a Mantel test (r = 0.5820, P < 0.01). Some populations from different provinces clustered together in principal coordinate and UPGMA analyses indicating that human-mediated events may have contributed to the dispersal of the species.  相似文献   

20.
利用叶绿体DNA三个片段(trnK-matK、trnL-trnF、rpl32-trnL)对中国大陆广布的水生植物穗状狐尾藻(Myriophyllum spicatum L.)的遗传多样性进行了初步分析,以探讨其自然居群的遗传结构及具有广泛分布格局的可能机制。AMOVA分析显示,穗状狐尾藻8个居群间的遗传变异为84.97%,而居群内的遗传变异为15.03%,居群遗传分化系数(Fst)为0.85,表明穗状狐尾藻具有较高的遗传多样性(Hd=0.83)且主要存在于居群间,奠基者效应可能导致了最初的遗传差异,而隔离障碍(Nm=0.09)又进一步导致了居群间的遗传分化。基于17个单倍型构建的系统发育树和网络关系图均显示,单倍型H5和H6在居群中的分布范围最广且出现频率最高,表明H5和H6可能为最古老的祖先单倍型。Mantel检验表明居群间的遗传距离与地理距离之间不存在显著的相关性,失配分布检测结果显示穗状狐尾藻在历史上曾发生过扩张事件,而Tajima’s、FuLi’s D*和F*检测发现,该物种不存在明显的谱系地理格局,这可能与穗状狐尾藻种子的长距离扩散有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号